1use crate::BallisticInputs;
9use crate::fast_trajectory::{fast_integrate, FastIntegrationParams};
10use crate::wind::WindSock;
11use crate::atmosphere::calculate_atmosphere;
12use crate::constants::{FPS_TO_MPS, GRAINS_TO_KG};
13use nalgebra::Vector3;
14
15const YARDS_TO_METERS: f64 = 0.9144;
16
17#[derive(Debug, Clone)]
19pub struct TrajectoryOutput {
20 pub drop: f64, pub wind_drift: f64, pub time: f64, pub velocity: f64, pub energy: f64, pub mach: f64, pub spin_drift: f64, pub distance: f64, }
29
30pub fn solve_trajectory_for_monte_carlo(inputs: &BallisticInputs) -> Result<TrajectoryOutput, String> {
35 let target_distance_m = inputs.target_distance * YARDS_TO_METERS;
37 let muzzle_velocity_mps = inputs.muzzle_velocity * FPS_TO_MPS;
38 let mass_kg = inputs.bullet_mass * GRAINS_TO_KG;
39
40 let (air_density, speed_of_sound) = calculate_atmosphere(
42 inputs.altitude * 0.3048, Some(inputs.temperature),
44 Some(inputs.pressure),
45 inputs.humidity,
46 );
47
48 let wind_segments = vec![(
50 0.0, inputs.wind_speed * 0.44704, inputs.wind_angle, )];
54 let wind_sock = WindSock::new(wind_segments);
55
56 let muzzle_angle_rad = inputs.muzzle_angle;
58 let initial_velocity = Vector3::new(
59 0.0,
60 muzzle_velocity_mps * muzzle_angle_rad.sin(),
61 muzzle_velocity_mps * muzzle_angle_rad.cos(),
62 );
63
64 let initial_position = Vector3::new(0.0, inputs.sight_height * 0.0254, 0.0);
65 let mut initial_state_array = [0.0; 6];
66 initial_state_array[0..3].copy_from_slice(&[initial_position.x, initial_position.y, initial_position.z]);
67 initial_state_array[3..6].copy_from_slice(&[initial_velocity.x, initial_velocity.y, initial_velocity.z]);
68
69 let temp_c = inputs.temperature;
71 let pressure_hpa = inputs.pressure;
72
73 let params = FastIntegrationParams {
75 initial_state: initial_state_array,
76 t_span: (0.0, 30.0),
77 horiz: target_distance_m,
78 vert: 0.0, atmo_params: (temp_c, pressure_hpa, air_density, speed_of_sound),
80 };
81
82 let solution = fast_integrate(inputs, &wind_sock, params);
84
85 if solution.t.is_empty() {
86 return Err("Empty trajectory solution".to_string());
87 }
88
89 let final_idx = solution.t.len() - 1;
92
93 let final_x = solution.y[0][final_idx]; let final_y = solution.y[1][final_idx]; let final_z = solution.y[2][final_idx]; let final_vx = solution.y[3][final_idx];
98 let final_vy = solution.y[4][final_idx];
99 let final_vz = solution.y[5][final_idx];
100
101 let final_speed = (final_vx * final_vx + final_vy * final_vy + final_vz * final_vz).sqrt();
102 let final_mach = final_speed / speed_of_sound;
103 let final_energy = 0.5 * mass_kg * final_speed * final_speed;
104
105 let sight_height_m = inputs.sight_height * 0.0254;
107 let los_y = sight_height_m + (0.0 - sight_height_m) * (final_z / target_distance_m);
108 let drop = los_y - final_y;
109
110 Ok(TrajectoryOutput {
111 drop,
112 wind_drift: final_x,
113 time: solution.t[final_idx],
114 velocity: final_speed,
115 energy: final_energy,
116 mach: final_mach,
117 spin_drift: final_x, distance: final_z,
119 })
120}
121
122pub fn calculate_cep(wind_drift_values: &[f64], drop_values: &[f64]) -> f64 {
127 if wind_drift_values.len() != drop_values.len() || wind_drift_values.is_empty() {
128 return 0.0;
129 }
130
131 let mean_x = wind_drift_values.iter().sum::<f64>() / wind_drift_values.len() as f64;
133 let mean_y = drop_values.iter().sum::<f64>() / drop_values.len() as f64;
134
135 let mut distances: Vec<f64> = wind_drift_values.iter()
137 .zip(drop_values.iter())
138 .map(|(x, y)| {
139 let dx = x - mean_x;
140 let dy = y - mean_y;
141 (dx * dx + dy * dy).sqrt()
142 })
143 .collect();
144
145 distances.sort_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal));
147
148 percentile(&distances, 0.50)
150}
151
152pub fn calculate_confidence_ellipse(wind_drift_values: &[f64], drop_values: &[f64]) -> (f64, f64, f64, f64, f64) {
156 if wind_drift_values.len() != drop_values.len() || wind_drift_values.len() < 2 {
157 return (0.0, 0.0, 0.0, 0.0, 0.0);
158 }
159
160 let n = wind_drift_values.len() as f64;
161
162 let mean_x = wind_drift_values.iter().sum::<f64>() / n;
164 let mean_y = drop_values.iter().sum::<f64>() / n;
165
166 let mut cov_xx = 0.0;
168 let mut cov_yy = 0.0;
169 let mut cov_xy = 0.0;
170
171 for (x, y) in wind_drift_values.iter().zip(drop_values.iter()) {
172 let dx = x - mean_x;
173 let dy = y - mean_y;
174 cov_xx += dx * dx;
175 cov_yy += dy * dy;
176 cov_xy += dx * dy;
177 }
178
179 cov_xx /= n - 1.0;
180 cov_yy /= n - 1.0;
181 cov_xy /= n - 1.0;
182
183 let trace = cov_xx + cov_yy;
186 let det = cov_xx * cov_yy - cov_xy * cov_xy;
187 let discriminant = (trace * trace / 4.0 - det).max(0.0).sqrt();
188
189 let lambda1 = trace / 2.0 + discriminant; let lambda2 = trace / 2.0 - discriminant; let scale_factor = 5.991_f64.sqrt();
194 let semi_major = lambda1.max(0.0).sqrt() * scale_factor;
195 let semi_minor = lambda2.max(0.0).sqrt() * scale_factor;
196
197 let rotation_rad = if cov_xy.abs() < 1e-10 {
199 if cov_xx >= cov_yy { 0.0 } else { std::f64::consts::PI / 2.0 }
200 } else {
201 ((lambda1 - cov_xx) / cov_xy).atan()
202 };
203
204 let rotation_deg = rotation_rad.to_degrees();
205
206 (mean_x, mean_y, semi_major, semi_minor, rotation_deg)
207}
208
209pub fn sample_points_for_visualization(
211 wind_drift_values: &[f64],
212 drop_values: &[f64],
213 max_points: usize
214) -> Vec<(f64, f64)> {
215 let n = wind_drift_values.len();
216 if n == 0 {
217 return Vec::new();
218 }
219
220 if n <= max_points {
221 wind_drift_values.iter()
223 .zip(drop_values.iter())
224 .map(|(x, y)| (*x, *y))
225 .collect()
226 } else {
227 let step = n as f64 / max_points as f64;
229 (0..max_points)
230 .map(|i| {
231 let idx = (i as f64 * step) as usize;
232 (wind_drift_values[idx], drop_values[idx])
233 })
234 .collect()
235 }
236}
237
238pub fn percentile(sorted_values: &[f64], p: f64) -> f64 {
240 if sorted_values.is_empty() {
241 return 0.0;
242 }
243
244 if sorted_values.len() == 1 {
245 return sorted_values[0];
246 }
247
248 let rank = p * (sorted_values.len() - 1) as f64;
249 let lower_idx = rank.floor() as usize;
250 let upper_idx = rank.ceil() as usize;
251 let fraction = rank - lower_idx as f64;
252
253 if lower_idx == upper_idx {
254 sorted_values[lower_idx]
255 } else {
256 sorted_values[lower_idx] * (1.0 - fraction) + sorted_values[upper_idx] * fraction
257 }
258}
259
260#[cfg(test)]
261mod tests {
262 use super::*;
263
264 #[test]
265 fn test_calculate_cep() {
266 let wind_drift = vec![0.0, 1.0, -1.0, 0.5, -0.5];
267 let drop = vec![0.0, 0.5, -0.5, 1.0, -1.0];
268
269 let cep = calculate_cep(&wind_drift, &drop);
270 assert!(cep > 0.0);
271 assert!(cep < 2.0); }
273
274 #[test]
275 fn test_calculate_confidence_ellipse() {
276 let wind_drift = vec![0.0, 1.0, -1.0, 0.5, -0.5];
277 let drop = vec![0.0, 0.5, -0.5, 1.0, -1.0];
278
279 let (cx, cy, major, minor, _rotation) = calculate_confidence_ellipse(&wind_drift, &drop);
280
281 assert!(cx.abs() < 0.5);
283 assert!(cy.abs() < 0.5);
284
285 assert!(major > 0.0);
287 assert!(minor > 0.0);
288 assert!(major >= minor); }
290
291 #[test]
292 fn test_sample_points() {
293 let wind_drift = vec![0.0, 1.0, 2.0, 3.0, 4.0, 5.0];
294 let drop = vec![0.0, 0.1, 0.2, 0.3, 0.4, 0.5];
295
296 let sampled = sample_points_for_visualization(&wind_drift, &drop, 3);
297 assert_eq!(sampled.len(), 3);
298 }
299
300 #[test]
301 fn test_percentile() {
302 let values = vec![1.0, 2.0, 3.0, 4.0, 5.0];
303
304 assert_eq!(percentile(&values, 0.0), 1.0);
305 assert_eq!(percentile(&values, 0.5), 3.0);
306 assert_eq!(percentile(&values, 1.0), 5.0);
307 }
308}