ballistics_engine/
monte_carlo.rs

1//! Monte Carlo simulation support with statistical analysis
2//!
3//! This module provides core statistical functions for Monte Carlo trajectory analysis,
4//! including CEP (Circular Error Probable), confidence ellipses, and trajectory evaluation.
5//!
6//! MBA-157: Upstreamed from ballistics_rust for shared use across the ecosystem
7
8use crate::BallisticInputs;
9use crate::fast_trajectory::{fast_integrate, FastIntegrationParams};
10use crate::wind::WindSock;
11use crate::atmosphere::calculate_atmosphere;
12use crate::constants::{FPS_TO_MPS, GRAINS_TO_KG};
13use nalgebra::Vector3;
14
15const YARDS_TO_METERS: f64 = 0.9144;
16
17/// Simple trajectory output for Monte Carlo analysis
18#[derive(Debug, Clone)]
19pub struct TrajectoryOutput {
20    pub drop: f64,           // meters
21    pub wind_drift: f64,     // meters
22    pub time: f64,           // seconds
23    pub velocity: f64,       // m/s
24    pub energy: f64,         // joules
25    pub mach: f64,           // mach number
26    pub spin_drift: f64,     // meters
27    pub distance: f64,       // meters
28}
29
30/// Solve trajectory for Monte Carlo run
31///
32/// This function evaluates a single trajectory with the given inputs and returns
33/// simplified output suitable for statistical analysis.
34pub fn solve_trajectory_for_monte_carlo(inputs: &BallisticInputs) -> Result<TrajectoryOutput, String> {
35    // Convert inputs to metric
36    let target_distance_m = inputs.target_distance * YARDS_TO_METERS;
37    let muzzle_velocity_mps = inputs.muzzle_velocity * FPS_TO_MPS;
38    let mass_kg = inputs.bullet_mass * GRAINS_TO_KG;
39
40    // Calculate atmosphere at altitude
41    let (air_density, speed_of_sound) = calculate_atmosphere(
42        inputs.altitude * 0.3048,  // feet to meters
43        Some(inputs.temperature),
44        Some(inputs.pressure),
45        inputs.humidity,
46    );
47
48    // Create wind segments
49    let wind_segments = vec![(
50        0.0,  // range_m
51        inputs.wind_speed * 0.44704,  // wind_speed (mph to m/s)
52        inputs.wind_angle,  // wind_angle
53    )];
54    let wind_sock = WindSock::new(wind_segments);
55
56    // Set up initial state
57    let muzzle_angle_rad = inputs.muzzle_angle;
58    let initial_velocity = Vector3::new(
59        0.0,
60        muzzle_velocity_mps * muzzle_angle_rad.sin(),
61        muzzle_velocity_mps * muzzle_angle_rad.cos(),
62    );
63
64    let initial_position = Vector3::new(0.0, inputs.sight_height * 0.0254, 0.0);
65    let mut initial_state_array = [0.0; 6];
66    initial_state_array[0..3].copy_from_slice(&[initial_position.x, initial_position.y, initial_position.z]);
67    initial_state_array[3..6].copy_from_slice(&[initial_velocity.x, initial_velocity.y, initial_velocity.z]);
68
69    // Get atmospheric parameters (temperature, pressure, density, sound_speed)
70    let temp_c = inputs.temperature;
71    let pressure_hpa = inputs.pressure;
72
73    // Create integration params
74    let params = FastIntegrationParams {
75        initial_state: initial_state_array,
76        t_span: (0.0, 30.0),
77        horiz: target_distance_m,
78        vert: 0.0,  // Target at ground level
79        atmo_params: (temp_c, pressure_hpa, air_density, speed_of_sound),
80    };
81
82    // Solve trajectory
83    let solution = fast_integrate(inputs, &wind_sock, params);
84
85    if solution.t.is_empty() {
86        return Err("Empty trajectory solution".to_string());
87    }
88
89    // Get final state
90    // FastSolution.y is Vec<Vec<f64>> where y[i] is the ith state variable across all time points
91    let final_idx = solution.t.len() - 1;
92
93    let final_x = solution.y[0][final_idx];  // lateral drift
94    let final_y = solution.y[1][final_idx];  // vertical
95    let final_z = solution.y[2][final_idx];  // downrange
96
97    let final_vx = solution.y[3][final_idx];
98    let final_vy = solution.y[4][final_idx];
99    let final_vz = solution.y[5][final_idx];
100
101    let final_speed = (final_vx * final_vx + final_vy * final_vy + final_vz * final_vz).sqrt();
102    let final_mach = final_speed / speed_of_sound;
103    let final_energy = 0.5 * mass_kg * final_speed * final_speed;
104
105    // Calculate line-of-sight drop
106    let sight_height_m = inputs.sight_height * 0.0254;
107    let los_y = sight_height_m + (0.0 - sight_height_m) * (final_z / target_distance_m);
108    let drop = los_y - final_y;
109
110    Ok(TrajectoryOutput {
111        drop,
112        wind_drift: final_x,
113        time: solution.t[final_idx],
114        velocity: final_speed,
115        energy: final_energy,
116        mach: final_mach,
117        spin_drift: final_x,  // Approximation for now
118        distance: final_z,
119    })
120}
121
122/// Calculate CEP (Circular Error Probable) from impact points
123///
124/// CEP is the radius of a circle centered at the mean point of impact,
125/// within which 50% of the shots fall. It's a standard measure of precision.
126pub fn calculate_cep(wind_drift_values: &[f64], drop_values: &[f64]) -> f64 {
127    if wind_drift_values.len() != drop_values.len() || wind_drift_values.is_empty() {
128        return 0.0;
129    }
130
131    // Calculate mean point of impact
132    let mean_x = wind_drift_values.iter().sum::<f64>() / wind_drift_values.len() as f64;
133    let mean_y = drop_values.iter().sum::<f64>() / drop_values.len() as f64;
134
135    // Calculate distance from each point to mean
136    let mut distances: Vec<f64> = wind_drift_values.iter()
137        .zip(drop_values.iter())
138        .map(|(x, y)| {
139            let dx = x - mean_x;
140            let dy = y - mean_y;
141            (dx * dx + dy * dy).sqrt()
142        })
143        .collect();
144
145    // Sort distances to find median (50th percentile)
146    distances.sort_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal));
147
148    // CEP is the median distance from center
149    percentile(&distances, 0.50)
150}
151
152/// Calculate 95% confidence ellipse parameters using covariance matrix
153///
154/// Returns (center_x, center_y, semi_major_axis, semi_minor_axis, rotation_degrees)
155pub fn calculate_confidence_ellipse(wind_drift_values: &[f64], drop_values: &[f64]) -> (f64, f64, f64, f64, f64) {
156    if wind_drift_values.len() != drop_values.len() || wind_drift_values.len() < 2 {
157        return (0.0, 0.0, 0.0, 0.0, 0.0);
158    }
159
160    let n = wind_drift_values.len() as f64;
161
162    // Calculate means
163    let mean_x = wind_drift_values.iter().sum::<f64>() / n;
164    let mean_y = drop_values.iter().sum::<f64>() / n;
165
166    // Calculate covariance matrix elements
167    let mut cov_xx = 0.0;
168    let mut cov_yy = 0.0;
169    let mut cov_xy = 0.0;
170
171    for (x, y) in wind_drift_values.iter().zip(drop_values.iter()) {
172        let dx = x - mean_x;
173        let dy = y - mean_y;
174        cov_xx += dx * dx;
175        cov_yy += dy * dy;
176        cov_xy += dx * dy;
177    }
178
179    cov_xx /= n - 1.0;
180    cov_yy /= n - 1.0;
181    cov_xy /= n - 1.0;
182
183    // Calculate eigenvalues of covariance matrix
184    // For 2x2 matrix: [[cov_xx, cov_xy], [cov_xy, cov_yy]]
185    let trace = cov_xx + cov_yy;
186    let det = cov_xx * cov_yy - cov_xy * cov_xy;
187    let discriminant = (trace * trace / 4.0 - det).max(0.0).sqrt();
188
189    let lambda1 = trace / 2.0 + discriminant;  // Larger eigenvalue
190    let lambda2 = trace / 2.0 - discriminant;  // Smaller eigenvalue
191
192    // 95% confidence interval chi-square value for 2 DOF is 5.991
193    let scale_factor = 5.991_f64.sqrt();
194    let semi_major = lambda1.max(0.0).sqrt() * scale_factor;
195    let semi_minor = lambda2.max(0.0).sqrt() * scale_factor;
196
197    // Calculate rotation angle (angle of major axis)
198    let rotation_rad = if cov_xy.abs() < 1e-10 {
199        if cov_xx >= cov_yy { 0.0 } else { std::f64::consts::PI / 2.0 }
200    } else {
201        ((lambda1 - cov_xx) / cov_xy).atan()
202    };
203
204    let rotation_deg = rotation_rad.to_degrees();
205
206    (mean_x, mean_y, semi_major, semi_minor, rotation_deg)
207}
208
209/// Sample points for visualization (limit to avoid huge payloads)
210pub fn sample_points_for_visualization(
211    wind_drift_values: &[f64],
212    drop_values: &[f64],
213    max_points: usize
214) -> Vec<(f64, f64)> {
215    let n = wind_drift_values.len();
216    if n == 0 {
217        return Vec::new();
218    }
219
220    if n <= max_points {
221        // Return all points
222        wind_drift_values.iter()
223            .zip(drop_values.iter())
224            .map(|(x, y)| (*x, *y))
225            .collect()
226    } else {
227        // Sample evenly spaced points
228        let step = n as f64 / max_points as f64;
229        (0..max_points)
230            .map(|i| {
231                let idx = (i as f64 * step) as usize;
232                (wind_drift_values[idx], drop_values[idx])
233            })
234            .collect()
235    }
236}
237
238/// Calculate percentile from sorted values
239pub fn percentile(sorted_values: &[f64], p: f64) -> f64 {
240    if sorted_values.is_empty() {
241        return 0.0;
242    }
243
244    if sorted_values.len() == 1 {
245        return sorted_values[0];
246    }
247
248    let rank = p * (sorted_values.len() - 1) as f64;
249    let lower_idx = rank.floor() as usize;
250    let upper_idx = rank.ceil() as usize;
251    let fraction = rank - lower_idx as f64;
252
253    if lower_idx == upper_idx {
254        sorted_values[lower_idx]
255    } else {
256        sorted_values[lower_idx] * (1.0 - fraction) + sorted_values[upper_idx] * fraction
257    }
258}
259
260#[cfg(test)]
261mod tests {
262    use super::*;
263
264    #[test]
265    fn test_calculate_cep() {
266        let wind_drift = vec![0.0, 1.0, -1.0, 0.5, -0.5];
267        let drop = vec![0.0, 0.5, -0.5, 1.0, -1.0];
268
269        let cep = calculate_cep(&wind_drift, &drop);
270        assert!(cep > 0.0);
271        assert!(cep < 2.0); // Reasonable range
272    }
273
274    #[test]
275    fn test_calculate_confidence_ellipse() {
276        let wind_drift = vec![0.0, 1.0, -1.0, 0.5, -0.5];
277        let drop = vec![0.0, 0.5, -0.5, 1.0, -1.0];
278
279        let (cx, cy, major, minor, _rotation) = calculate_confidence_ellipse(&wind_drift, &drop);
280
281        // Center should be near origin
282        assert!(cx.abs() < 0.5);
283        assert!(cy.abs() < 0.5);
284
285        // Axes should be positive
286        assert!(major > 0.0);
287        assert!(minor > 0.0);
288        assert!(major >= minor); // Major axis should be >= minor axis
289    }
290
291    #[test]
292    fn test_sample_points() {
293        let wind_drift = vec![0.0, 1.0, 2.0, 3.0, 4.0, 5.0];
294        let drop = vec![0.0, 0.1, 0.2, 0.3, 0.4, 0.5];
295
296        let sampled = sample_points_for_visualization(&wind_drift, &drop, 3);
297        assert_eq!(sampled.len(), 3);
298    }
299
300    #[test]
301    fn test_percentile() {
302        let values = vec![1.0, 2.0, 3.0, 4.0, 5.0];
303
304        assert_eq!(percentile(&values, 0.0), 1.0);
305        assert_eq!(percentile(&values, 0.5), 3.0);
306        assert_eq!(percentile(&values, 1.0), 5.0);
307    }
308}