pub struct RAY { /* private fields */ }Methods from Deref<Target = BigInt>§
pub const ZERO: BigInt
Sourcepub fn to_bytes_be(&self) -> (Sign, Vec<u8>)
pub fn to_bytes_be(&self) -> (Sign, Vec<u8>)
Sourcepub fn to_bytes_le(&self) -> (Sign, Vec<u8>)
pub fn to_bytes_le(&self) -> (Sign, Vec<u8>)
Sourcepub fn to_u32_digits(&self) -> (Sign, Vec<u32>)
pub fn to_u32_digits(&self) -> (Sign, Vec<u32>)
Returns the sign and the u32 digits representation of the BigInt ordered least
significant digit first.
§Examples
use num_bigint::{BigInt, Sign};
assert_eq!(BigInt::from(-1125).to_u32_digits(), (Sign::Minus, vec![1125]));
assert_eq!(BigInt::from(4294967295u32).to_u32_digits(), (Sign::Plus, vec![4294967295]));
assert_eq!(BigInt::from(4294967296u64).to_u32_digits(), (Sign::Plus, vec![0, 1]));
assert_eq!(BigInt::from(-112500000000i64).to_u32_digits(), (Sign::Minus, vec![830850304, 26]));
assert_eq!(BigInt::from(112500000000i64).to_u32_digits(), (Sign::Plus, vec![830850304, 26]));Sourcepub fn to_u64_digits(&self) -> (Sign, Vec<u64>)
pub fn to_u64_digits(&self) -> (Sign, Vec<u64>)
Returns the sign and the u64 digits representation of the BigInt ordered least
significant digit first.
§Examples
use num_bigint::{BigInt, Sign};
assert_eq!(BigInt::from(-1125).to_u64_digits(), (Sign::Minus, vec![1125]));
assert_eq!(BigInt::from(4294967295u32).to_u64_digits(), (Sign::Plus, vec![4294967295]));
assert_eq!(BigInt::from(4294967296u64).to_u64_digits(), (Sign::Plus, vec![4294967296]));
assert_eq!(BigInt::from(-112500000000i64).to_u64_digits(), (Sign::Minus, vec![112500000000]));
assert_eq!(BigInt::from(112500000000i64).to_u64_digits(), (Sign::Plus, vec![112500000000]));
assert_eq!(BigInt::from(1u128 << 64).to_u64_digits(), (Sign::Plus, vec![0, 1]));Sourcepub fn iter_u32_digits(&self) -> U32Digits<'_>
pub fn iter_u32_digits(&self) -> U32Digits<'_>
Returns an iterator of u32 digits representation of the BigInt ordered least
significant digit first.
§Examples
use num_bigint::BigInt;
assert_eq!(BigInt::from(-1125).iter_u32_digits().collect::<Vec<u32>>(), vec![1125]);
assert_eq!(BigInt::from(4294967295u32).iter_u32_digits().collect::<Vec<u32>>(), vec![4294967295]);
assert_eq!(BigInt::from(4294967296u64).iter_u32_digits().collect::<Vec<u32>>(), vec![0, 1]);
assert_eq!(BigInt::from(-112500000000i64).iter_u32_digits().collect::<Vec<u32>>(), vec![830850304, 26]);
assert_eq!(BigInt::from(112500000000i64).iter_u32_digits().collect::<Vec<u32>>(), vec![830850304, 26]);Sourcepub fn iter_u64_digits(&self) -> U64Digits<'_>
pub fn iter_u64_digits(&self) -> U64Digits<'_>
Returns an iterator of u64 digits representation of the BigInt ordered least
significant digit first.
§Examples
use num_bigint::BigInt;
assert_eq!(BigInt::from(-1125).iter_u64_digits().collect::<Vec<u64>>(), vec![1125u64]);
assert_eq!(BigInt::from(4294967295u32).iter_u64_digits().collect::<Vec<u64>>(), vec![4294967295u64]);
assert_eq!(BigInt::from(4294967296u64).iter_u64_digits().collect::<Vec<u64>>(), vec![4294967296u64]);
assert_eq!(BigInt::from(-112500000000i64).iter_u64_digits().collect::<Vec<u64>>(), vec![112500000000u64]);
assert_eq!(BigInt::from(112500000000i64).iter_u64_digits().collect::<Vec<u64>>(), vec![112500000000u64]);
assert_eq!(BigInt::from(1u128 << 64).iter_u64_digits().collect::<Vec<u64>>(), vec![0, 1]);Sourcepub fn to_signed_bytes_be(&self) -> Vec<u8> ⓘ
pub fn to_signed_bytes_be(&self) -> Vec<u8> ⓘ
Sourcepub fn to_signed_bytes_le(&self) -> Vec<u8> ⓘ
pub fn to_signed_bytes_le(&self) -> Vec<u8> ⓘ
Sourcepub fn to_str_radix(&self, radix: u32) -> String
pub fn to_str_radix(&self, radix: u32) -> String
Returns the integer formatted as a string in the given radix.
radix must be in the range 2...36.
§Examples
use num_bigint::BigInt;
let i = BigInt::parse_bytes(b"ff", 16).unwrap();
assert_eq!(i.to_str_radix(16), "ff");Sourcepub fn to_radix_be(&self, radix: u32) -> (Sign, Vec<u8>)
pub fn to_radix_be(&self, radix: u32) -> (Sign, Vec<u8>)
Returns the integer in the requested base in big-endian digit order.
The output is not given in a human readable alphabet but as a zero
based u8 number.
radix must be in the range 2...256.
§Examples
use num_bigint::{BigInt, Sign};
assert_eq!(BigInt::from(-0xFFFFi64).to_radix_be(159),
(Sign::Minus, vec![2, 94, 27]));
// 0xFFFF = 65535 = 2*(159^2) + 94*159 + 27Sourcepub fn to_radix_le(&self, radix: u32) -> (Sign, Vec<u8>)
pub fn to_radix_le(&self, radix: u32) -> (Sign, Vec<u8>)
Returns the integer in the requested base in little-endian digit order.
The output is not given in a human readable alphabet but as a zero
based u8 number.
radix must be in the range 2...256.
§Examples
use num_bigint::{BigInt, Sign};
assert_eq!(BigInt::from(-0xFFFFi64).to_radix_le(159),
(Sign::Minus, vec![27, 94, 2]));
// 0xFFFF = 65535 = 27 + 94*159 + 2*(159^2)Sourcepub fn magnitude(&self) -> &BigUint
pub fn magnitude(&self) -> &BigUint
Returns the magnitude of the BigInt as a BigUint.
§Examples
use num_bigint::{BigInt, BigUint};
use num_traits::Zero;
assert_eq!(BigInt::from(1234).magnitude(), &BigUint::from(1234u32));
assert_eq!(BigInt::from(-4321).magnitude(), &BigUint::from(4321u32));
assert!(BigInt::ZERO.magnitude().is_zero());Sourcepub fn bits(&self) -> u64
pub fn bits(&self) -> u64
Determines the fewest bits necessary to express the BigInt,
not including the sign.
Sourcepub fn to_biguint(&self) -> Option<BigUint>
pub fn to_biguint(&self) -> Option<BigUint>
pub fn checked_add(&self, v: &BigInt) -> Option<BigInt>
pub fn checked_sub(&self, v: &BigInt) -> Option<BigInt>
pub fn checked_mul(&self, v: &BigInt) -> Option<BigInt>
pub fn checked_div(&self, v: &BigInt) -> Option<BigInt>
Sourcepub fn modpow(&self, exponent: &BigInt, modulus: &BigInt) -> BigInt
pub fn modpow(&self, exponent: &BigInt, modulus: &BigInt) -> BigInt
Returns (self ^ exponent) mod modulus
Note that this rounds like mod_floor, not like the % operator,
which makes a difference when given a negative self or modulus.
The result will be in the interval [0, modulus) for modulus > 0,
or in the interval (modulus, 0] for modulus < 0
Panics if the exponent is negative or the modulus is zero.
Sourcepub fn modinv(&self, modulus: &BigInt) -> Option<BigInt>
pub fn modinv(&self, modulus: &BigInt) -> Option<BigInt>
Returns the modular multiplicative inverse if it exists, otherwise None.
This solves for x such that self * x ≡ 1 (mod modulus).
Note that this rounds like mod_floor, not like the % operator,
which makes a difference when given a negative self or modulus.
The solution will be in the interval [0, modulus) for modulus > 0,
or in the interval (modulus, 0] for modulus < 0,
and it exists if and only if gcd(self, modulus) == 1.
use num_bigint::BigInt;
use num_integer::Integer;
use num_traits::{One, Zero};
let m = BigInt::from(383);
// Trivial cases
assert_eq!(BigInt::zero().modinv(&m), None);
assert_eq!(BigInt::one().modinv(&m), Some(BigInt::one()));
let neg1 = &m - 1u32;
assert_eq!(neg1.modinv(&m), Some(neg1));
// Positive self and modulus
let a = BigInt::from(271);
let x = a.modinv(&m).unwrap();
assert_eq!(x, BigInt::from(106));
assert_eq!(x.modinv(&m).unwrap(), a);
assert_eq!((&a * x).mod_floor(&m), BigInt::one());
// Negative self and positive modulus
let b = -&a;
let x = b.modinv(&m).unwrap();
assert_eq!(x, BigInt::from(277));
assert_eq!((&b * x).mod_floor(&m), BigInt::one());
// Positive self and negative modulus
let n = -&m;
let x = a.modinv(&n).unwrap();
assert_eq!(x, BigInt::from(-277));
assert_eq!((&a * x).mod_floor(&n), &n + 1);
// Negative self and modulus
let x = b.modinv(&n).unwrap();
assert_eq!(x, BigInt::from(-106));
assert_eq!((&b * x).mod_floor(&n), &n + 1);Sourcepub fn sqrt(&self) -> BigInt
pub fn sqrt(&self) -> BigInt
Returns the truncated principal square root of self –
see num_integer::Roots::sqrt().
Sourcepub fn cbrt(&self) -> BigInt
pub fn cbrt(&self) -> BigInt
Returns the truncated principal cube root of self –
see num_integer::Roots::cbrt().
Sourcepub fn nth_root(&self, n: u32) -> BigInt
pub fn nth_root(&self, n: u32) -> BigInt
Returns the truncated principal nth root of self –
See num_integer::Roots::nth_root().
Sourcepub fn trailing_zeros(&self) -> Option<u64>
pub fn trailing_zeros(&self) -> Option<u64>
Returns the number of least-significant bits that are zero,
or None if the entire number is zero.