SendMessageBatchRequestEntry

Struct SendMessageBatchRequestEntry 

Source
#[non_exhaustive]
pub struct SendMessageBatchRequestEntry { pub id: String, pub message_body: String, pub delay_seconds: Option<i32>, pub message_attributes: Option<HashMap<String, MessageAttributeValue>>, pub message_system_attributes: Option<HashMap<MessageSystemAttributeNameForSends, MessageSystemAttributeValue>>, pub message_deduplication_id: Option<String>, pub message_group_id: Option<String>, }
Expand description

Contains the details of a single Amazon SQS message along with an Id.

Fields (Non-exhaustive)§

This struct is marked as non-exhaustive
Non-exhaustive structs could have additional fields added in future. Therefore, non-exhaustive structs cannot be constructed in external crates using the traditional Struct { .. } syntax; cannot be matched against without a wildcard ..; and struct update syntax will not work.
§id: String

An identifier for a message in this batch used to communicate the result.

The Ids of a batch request need to be unique within a request.

This identifier can have up to 80 characters. The following characters are accepted: alphanumeric characters, hyphens(-), and underscores (_).

§message_body: String

The body of the message.

§delay_seconds: Option<i32>

The length of time, in seconds, for which a specific message is delayed. Valid values: 0 to 900. Maximum: 15 minutes. Messages with a positive DelaySeconds value become available for processing after the delay period is finished. If you don't specify a value, the default value for the queue is applied.

When you set FifoQueue, you can't set DelaySeconds per message. You can set this parameter only on a queue level.

§message_attributes: Option<HashMap<String, MessageAttributeValue>>

Each message attribute consists of a Name, Type, and Value. For more information, see Amazon SQS message attributes in the Amazon SQS Developer Guide.

§message_system_attributes: Option<HashMap<MessageSystemAttributeNameForSends, MessageSystemAttributeValue>>

The message system attribute to send Each message system attribute consists of a Name, Type, and Value.

  • Currently, the only supported message system attribute is AWSTraceHeader. Its type must be String and its value must be a correctly formatted X-Ray trace header string.

  • The size of a message system attribute doesn't count towards the total size of a message.

§message_deduplication_id: Option<String>

This parameter applies only to FIFO (first-in-first-out) queues.

The token used for deduplication of messages within a 5-minute minimum deduplication interval. If a message with a particular MessageDeduplicationId is sent successfully, subsequent messages with the same MessageDeduplicationId are accepted successfully but aren't delivered. For more information, see Exactly-once processing in the Amazon SQS Developer Guide.

  • Every message must have a unique MessageDeduplicationId,

    • You may provide a MessageDeduplicationId explicitly.

    • If you aren't able to provide a MessageDeduplicationId and you enable ContentBasedDeduplication for your queue, Amazon SQS uses a SHA-256 hash to generate the MessageDeduplicationId using the body of the message (but not the attributes of the message).

    • If you don't provide a MessageDeduplicationId and the queue doesn't have ContentBasedDeduplication set, the action fails with an error.

    • If the queue has ContentBasedDeduplication set, your MessageDeduplicationId overrides the generated one.

  • When ContentBasedDeduplication is in effect, messages with identical content sent within the deduplication interval are treated as duplicates and only one copy of the message is delivered.

  • If you send one message with ContentBasedDeduplication enabled and then another message with a MessageDeduplicationId that is the same as the one generated for the first MessageDeduplicationId, the two messages are treated as duplicates and only one copy of the message is delivered.

The MessageDeduplicationId is available to the consumer of the message (this can be useful for troubleshooting delivery issues).

If a message is sent successfully but the acknowledgement is lost and the message is resent with the same MessageDeduplicationId after the deduplication interval, Amazon SQS can't detect duplicate messages.

Amazon SQS continues to keep track of the message deduplication ID even after the message is received and deleted.

The length of MessageDeduplicationId is 128 characters. MessageDeduplicationId can contain alphanumeric characters (a-z, A-Z, 0-9) and punctuation (!"#$%&'()*+,-./:;<=>?@\[\\]^_`{|}~).

For best practices of using MessageDeduplicationId, see Using the MessageDeduplicationId Property in the Amazon SQS Developer Guide.

§message_group_id: Option<String>

MessageGroupId is an attribute used in Amazon SQS FIFO (First-In-First-Out) and standard queues. In FIFO queues, MessageGroupId organizes messages into distinct groups. Messages within the same message group are always processed one at a time, in strict order, ensuring that no two messages from the same group are processed simultaneously. In standard queues, using MessageGroupId enables fair queues. It is used to identify the tenant a message belongs to, helping maintain consistent message dwell time across all tenants during noisy neighbor events. Unlike FIFO queues, messages with the same MessageGroupId can be processed in parallel, maintaining the high throughput of standard queues.

  • FIFO queues: MessageGroupId acts as the tag that specifies that a message belongs to a specific message group. Messages that belong to the same message group are processed in a FIFO manner (however, messages in different message groups might be processed out of order). To interleave multiple ordered streams within a single queue, use MessageGroupId values (for example, session data for multiple users). In this scenario, multiple consumers can process the queue, but the session data of each user is processed in a FIFO fashion.

    If you do not provide a MessageGroupId when sending a message to a FIFO queue, the action fails.

    ReceiveMessage might return messages with multiple MessageGroupId values. For each MessageGroupId, the messages are sorted by time sent.

  • Standard queues:Use MessageGroupId in standard queues to enable fair queues. The MessageGroupId identifies the tenant a message belongs to. A tenant can be any entity that shares a queue with others, such as your customer, a client application, or a request type. When one tenant sends a disproportionately large volume of messages or has messages that require longer processing time, fair queues ensure other tenants' messages maintain low dwell time. This preserves quality of service for all tenants while maintaining the scalability and throughput of standard queues. We recommend that you include a MessageGroupId in all messages when using fair queues.

The length of MessageGroupId is 128 characters. Valid values: alphanumeric characters and punctuation (!"#$%&'()*+,-./:;<=>?@\[\\]^_`{|}~).

For best practices of using MessageGroupId, see Using the MessageGroupId Property in the Amazon SQS Developer Guide.

Implementations§

Source§

impl SendMessageBatchRequestEntry

Source

pub fn id(&self) -> &str

An identifier for a message in this batch used to communicate the result.

The Ids of a batch request need to be unique within a request.

This identifier can have up to 80 characters. The following characters are accepted: alphanumeric characters, hyphens(-), and underscores (_).

Source

pub fn message_body(&self) -> &str

The body of the message.

Source

pub fn delay_seconds(&self) -> Option<i32>

The length of time, in seconds, for which a specific message is delayed. Valid values: 0 to 900. Maximum: 15 minutes. Messages with a positive DelaySeconds value become available for processing after the delay period is finished. If you don't specify a value, the default value for the queue is applied.

When you set FifoQueue, you can't set DelaySeconds per message. You can set this parameter only on a queue level.

Source

pub fn message_attributes( &self, ) -> Option<&HashMap<String, MessageAttributeValue>>

Each message attribute consists of a Name, Type, and Value. For more information, see Amazon SQS message attributes in the Amazon SQS Developer Guide.

Source

pub fn message_system_attributes( &self, ) -> Option<&HashMap<MessageSystemAttributeNameForSends, MessageSystemAttributeValue>>

The message system attribute to send Each message system attribute consists of a Name, Type, and Value.

  • Currently, the only supported message system attribute is AWSTraceHeader. Its type must be String and its value must be a correctly formatted X-Ray trace header string.

  • The size of a message system attribute doesn't count towards the total size of a message.

Source

pub fn message_deduplication_id(&self) -> Option<&str>

This parameter applies only to FIFO (first-in-first-out) queues.

The token used for deduplication of messages within a 5-minute minimum deduplication interval. If a message with a particular MessageDeduplicationId is sent successfully, subsequent messages with the same MessageDeduplicationId are accepted successfully but aren't delivered. For more information, see Exactly-once processing in the Amazon SQS Developer Guide.

  • Every message must have a unique MessageDeduplicationId,

    • You may provide a MessageDeduplicationId explicitly.

    • If you aren't able to provide a MessageDeduplicationId and you enable ContentBasedDeduplication for your queue, Amazon SQS uses a SHA-256 hash to generate the MessageDeduplicationId using the body of the message (but not the attributes of the message).

    • If you don't provide a MessageDeduplicationId and the queue doesn't have ContentBasedDeduplication set, the action fails with an error.

    • If the queue has ContentBasedDeduplication set, your MessageDeduplicationId overrides the generated one.

  • When ContentBasedDeduplication is in effect, messages with identical content sent within the deduplication interval are treated as duplicates and only one copy of the message is delivered.

  • If you send one message with ContentBasedDeduplication enabled and then another message with a MessageDeduplicationId that is the same as the one generated for the first MessageDeduplicationId, the two messages are treated as duplicates and only one copy of the message is delivered.

The MessageDeduplicationId is available to the consumer of the message (this can be useful for troubleshooting delivery issues).

If a message is sent successfully but the acknowledgement is lost and the message is resent with the same MessageDeduplicationId after the deduplication interval, Amazon SQS can't detect duplicate messages.

Amazon SQS continues to keep track of the message deduplication ID even after the message is received and deleted.

The length of MessageDeduplicationId is 128 characters. MessageDeduplicationId can contain alphanumeric characters (a-z, A-Z, 0-9) and punctuation (!"#$%&'()*+,-./:;<=>?@\[\\]^_`{|}~).

For best practices of using MessageDeduplicationId, see Using the MessageDeduplicationId Property in the Amazon SQS Developer Guide.

Source

pub fn message_group_id(&self) -> Option<&str>

MessageGroupId is an attribute used in Amazon SQS FIFO (First-In-First-Out) and standard queues. In FIFO queues, MessageGroupId organizes messages into distinct groups. Messages within the same message group are always processed one at a time, in strict order, ensuring that no two messages from the same group are processed simultaneously. In standard queues, using MessageGroupId enables fair queues. It is used to identify the tenant a message belongs to, helping maintain consistent message dwell time across all tenants during noisy neighbor events. Unlike FIFO queues, messages with the same MessageGroupId can be processed in parallel, maintaining the high throughput of standard queues.

  • FIFO queues: MessageGroupId acts as the tag that specifies that a message belongs to a specific message group. Messages that belong to the same message group are processed in a FIFO manner (however, messages in different message groups might be processed out of order). To interleave multiple ordered streams within a single queue, use MessageGroupId values (for example, session data for multiple users). In this scenario, multiple consumers can process the queue, but the session data of each user is processed in a FIFO fashion.

    If you do not provide a MessageGroupId when sending a message to a FIFO queue, the action fails.

    ReceiveMessage might return messages with multiple MessageGroupId values. For each MessageGroupId, the messages are sorted by time sent.

  • Standard queues:Use MessageGroupId in standard queues to enable fair queues. The MessageGroupId identifies the tenant a message belongs to. A tenant can be any entity that shares a queue with others, such as your customer, a client application, or a request type. When one tenant sends a disproportionately large volume of messages or has messages that require longer processing time, fair queues ensure other tenants' messages maintain low dwell time. This preserves quality of service for all tenants while maintaining the scalability and throughput of standard queues. We recommend that you include a MessageGroupId in all messages when using fair queues.

The length of MessageGroupId is 128 characters. Valid values: alphanumeric characters and punctuation (!"#$%&'()*+,-./:;<=>?@\[\\]^_`{|}~).

For best practices of using MessageGroupId, see Using the MessageGroupId Property in the Amazon SQS Developer Guide.

Source§

impl SendMessageBatchRequestEntry

Source

pub fn builder() -> SendMessageBatchRequestEntryBuilder

Creates a new builder-style object to manufacture SendMessageBatchRequestEntry.

Trait Implementations§

Source§

impl Clone for SendMessageBatchRequestEntry

Source§

fn clone(&self) -> SendMessageBatchRequestEntry

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for SendMessageBatchRequestEntry

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl PartialEq for SendMessageBatchRequestEntry

Source§

fn eq(&self, other: &SendMessageBatchRequestEntry) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl StructuralPartialEq for SendMessageBatchRequestEntry

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

Source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
Source§

impl<T> Paint for T
where T: ?Sized,

Source§

fn fg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the foreground set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like red() and green(), which have the same functionality but are pithier.

§Example

Set foreground color to white using fg():

use yansi::{Paint, Color};

painted.fg(Color::White);

Set foreground color to white using white().

use yansi::Paint;

painted.white();
Source§

fn primary(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Primary].

§Example
println!("{}", value.primary());
Source§

fn fixed(&self, color: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Fixed].

§Example
println!("{}", value.fixed(color));
Source§

fn rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Rgb].

§Example
println!("{}", value.rgb(r, g, b));
Source§

fn black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Black].

§Example
println!("{}", value.black());
Source§

fn red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Red].

§Example
println!("{}", value.red());
Source§

fn green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Green].

§Example
println!("{}", value.green());
Source§

fn yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Yellow].

§Example
println!("{}", value.yellow());
Source§

fn blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Blue].

§Example
println!("{}", value.blue());
Source§

fn magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Magenta].

§Example
println!("{}", value.magenta());
Source§

fn cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Cyan].

§Example
println!("{}", value.cyan());
Source§

fn white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: White].

§Example
println!("{}", value.white());
Source§

fn bright_black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlack].

§Example
println!("{}", value.bright_black());
Source§

fn bright_red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightRed].

§Example
println!("{}", value.bright_red());
Source§

fn bright_green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightGreen].

§Example
println!("{}", value.bright_green());
Source§

fn bright_yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightYellow].

§Example
println!("{}", value.bright_yellow());
Source§

fn bright_blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlue].

§Example
println!("{}", value.bright_blue());
Source§

fn bright_magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.bright_magenta());
Source§

fn bright_cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightCyan].

§Example
println!("{}", value.bright_cyan());
Source§

fn bright_white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightWhite].

§Example
println!("{}", value.bright_white());
Source§

fn bg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the background set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like on_red() and on_green(), which have the same functionality but are pithier.

§Example

Set background color to red using fg():

use yansi::{Paint, Color};

painted.bg(Color::Red);

Set background color to red using on_red().

use yansi::Paint;

painted.on_red();
Source§

fn on_primary(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Primary].

§Example
println!("{}", value.on_primary());
Source§

fn on_fixed(&self, color: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Fixed].

§Example
println!("{}", value.on_fixed(color));
Source§

fn on_rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Rgb].

§Example
println!("{}", value.on_rgb(r, g, b));
Source§

fn on_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Black].

§Example
println!("{}", value.on_black());
Source§

fn on_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Red].

§Example
println!("{}", value.on_red());
Source§

fn on_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Green].

§Example
println!("{}", value.on_green());
Source§

fn on_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Yellow].

§Example
println!("{}", value.on_yellow());
Source§

fn on_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Blue].

§Example
println!("{}", value.on_blue());
Source§

fn on_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Magenta].

§Example
println!("{}", value.on_magenta());
Source§

fn on_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Cyan].

§Example
println!("{}", value.on_cyan());
Source§

fn on_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: White].

§Example
println!("{}", value.on_white());
Source§

fn on_bright_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlack].

§Example
println!("{}", value.on_bright_black());
Source§

fn on_bright_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightRed].

§Example
println!("{}", value.on_bright_red());
Source§

fn on_bright_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightGreen].

§Example
println!("{}", value.on_bright_green());
Source§

fn on_bright_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightYellow].

§Example
println!("{}", value.on_bright_yellow());
Source§

fn on_bright_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlue].

§Example
println!("{}", value.on_bright_blue());
Source§

fn on_bright_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.on_bright_magenta());
Source§

fn on_bright_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightCyan].

§Example
println!("{}", value.on_bright_cyan());
Source§

fn on_bright_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightWhite].

§Example
println!("{}", value.on_bright_white());
Source§

fn attr(&self, value: Attribute) -> Painted<&T>

Enables the styling Attribute value.

This method should be used rarely. Instead, prefer to use attribute-specific builder methods like bold() and underline(), which have the same functionality but are pithier.

§Example

Make text bold using attr():

use yansi::{Paint, Attribute};

painted.attr(Attribute::Bold);

Make text bold using using bold().

use yansi::Paint;

painted.bold();
Source§

fn bold(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Bold].

§Example
println!("{}", value.bold());
Source§

fn dim(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Dim].

§Example
println!("{}", value.dim());
Source§

fn italic(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Italic].

§Example
println!("{}", value.italic());
Source§

fn underline(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Underline].

§Example
println!("{}", value.underline());

Returns self with the attr() set to [Attribute :: Blink].

§Example
println!("{}", value.blink());

Returns self with the attr() set to [Attribute :: RapidBlink].

§Example
println!("{}", value.rapid_blink());
Source§

fn invert(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Invert].

§Example
println!("{}", value.invert());
Source§

fn conceal(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Conceal].

§Example
println!("{}", value.conceal());
Source§

fn strike(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Strike].

§Example
println!("{}", value.strike());
Source§

fn quirk(&self, value: Quirk) -> Painted<&T>

Enables the yansi Quirk value.

This method should be used rarely. Instead, prefer to use quirk-specific builder methods like mask() and wrap(), which have the same functionality but are pithier.

§Example

Enable wrapping using .quirk():

use yansi::{Paint, Quirk};

painted.quirk(Quirk::Wrap);

Enable wrapping using wrap().

use yansi::Paint;

painted.wrap();
Source§

fn mask(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Mask].

§Example
println!("{}", value.mask());
Source§

fn wrap(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Wrap].

§Example
println!("{}", value.wrap());
Source§

fn linger(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Linger].

§Example
println!("{}", value.linger());
Source§

fn clear(&self) -> Painted<&T>

👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear(). The clear() method will be removed in a future release.

Returns self with the quirk() set to [Quirk :: Clear].

§Example
println!("{}", value.clear());
Source§

fn resetting(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Resetting].

§Example
println!("{}", value.resetting());
Source§

fn bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Bright].

§Example
println!("{}", value.bright());
Source§

fn on_bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: OnBright].

§Example
println!("{}", value.on_bright());
Source§

fn whenever(&self, value: Condition) -> Painted<&T>

Conditionally enable styling based on whether the Condition value applies. Replaces any previous condition.

See the crate level docs for more details.

§Example

Enable styling painted only when both stdout and stderr are TTYs:

use yansi::{Paint, Condition};

painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);
Source§

fn new(self) -> Painted<Self>
where Self: Sized,

Create a new Painted with a default Style. Read more
Source§

fn paint<S>(&self, style: S) -> Painted<&Self>
where S: Into<Style>,

Apply a style wholesale to self. Any previous style is replaced. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> ErasedDestructor for T
where T: 'static,