#[non_exhaustive]pub struct TransformInput {
pub data_source: Option<TransformDataSource>,
pub content_type: Option<String>,
pub compression_type: Option<CompressionType>,
pub split_type: Option<SplitType>,
}
Expand description
Describes the input source of a transform job and the way the transform job consumes it.
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.data_source: Option<TransformDataSource>
Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.
content_type: Option<String>
The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.
compression_type: Option<CompressionType>
If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None
.
split_type: Option<SplitType>
The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType
is None
, which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line
to split records on a newline character boundary. SplitType
also supports a number of record-oriented binary data formats. Currently, the supported record formats are:
-
RecordIO
-
TFRecord
When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy
and MaxPayloadInMB
parameters. When the value of BatchStrategy
is MultiRecord
, Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB
limit. If the value of BatchStrategy
is SingleRecord
, Amazon SageMaker sends individual records in each request.
Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of BatchStrategy
is set to SingleRecord
. Padding is not removed if the value of BatchStrategy
is set to MultiRecord
.
For more information about RecordIO
, see Create a Dataset Using RecordIO in the MXNet documentation. For more information about TFRecord
, see Consuming TFRecord data in the TensorFlow documentation.
Implementations§
Source§impl TransformInput
impl TransformInput
Sourcepub fn data_source(&self) -> Option<&TransformDataSource>
pub fn data_source(&self) -> Option<&TransformDataSource>
Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.
Sourcepub fn content_type(&self) -> Option<&str>
pub fn content_type(&self) -> Option<&str>
The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.
Sourcepub fn compression_type(&self) -> Option<&CompressionType>
pub fn compression_type(&self) -> Option<&CompressionType>
If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None
.
Sourcepub fn split_type(&self) -> Option<&SplitType>
pub fn split_type(&self) -> Option<&SplitType>
The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType
is None
, which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line
to split records on a newline character boundary. SplitType
also supports a number of record-oriented binary data formats. Currently, the supported record formats are:
-
RecordIO
-
TFRecord
When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy
and MaxPayloadInMB
parameters. When the value of BatchStrategy
is MultiRecord
, Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB
limit. If the value of BatchStrategy
is SingleRecord
, Amazon SageMaker sends individual records in each request.
Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of BatchStrategy
is set to SingleRecord
. Padding is not removed if the value of BatchStrategy
is set to MultiRecord
.
For more information about RecordIO
, see Create a Dataset Using RecordIO in the MXNet documentation. For more information about TFRecord
, see Consuming TFRecord data in the TensorFlow documentation.
Source§impl TransformInput
impl TransformInput
Sourcepub fn builder() -> TransformInputBuilder
pub fn builder() -> TransformInputBuilder
Creates a new builder-style object to manufacture TransformInput
.
Trait Implementations§
Source§impl Clone for TransformInput
impl Clone for TransformInput
Source§fn clone(&self) -> TransformInput
fn clone(&self) -> TransformInput
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl Debug for TransformInput
impl Debug for TransformInput
Source§impl PartialEq for TransformInput
impl PartialEq for TransformInput
impl StructuralPartialEq for TransformInput
Auto Trait Implementations§
impl Freeze for TransformInput
impl RefUnwindSafe for TransformInput
impl Send for TransformInput
impl Sync for TransformInput
impl Unpin for TransformInput
impl UnwindSafe for TransformInput
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Paint for Twhere
T: ?Sized,
impl<T> Paint for Twhere
T: ?Sized,
Source§fn fg(&self, value: Color) -> Painted<&T>
fn fg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the foreground set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like red()
and
green()
, which have the same functionality but are
pithier.
§Example
Set foreground color to white using fg()
:
use yansi::{Paint, Color};
painted.fg(Color::White);
Set foreground color to white using white()
.
use yansi::Paint;
painted.white();
Source§fn bright_black(&self) -> Painted<&T>
fn bright_black(&self) -> Painted<&T>
Source§fn bright_red(&self) -> Painted<&T>
fn bright_red(&self) -> Painted<&T>
Source§fn bright_green(&self) -> Painted<&T>
fn bright_green(&self) -> Painted<&T>
Source§fn bright_yellow(&self) -> Painted<&T>
fn bright_yellow(&self) -> Painted<&T>
Source§fn bright_blue(&self) -> Painted<&T>
fn bright_blue(&self) -> Painted<&T>
Source§fn bright_magenta(&self) -> Painted<&T>
fn bright_magenta(&self) -> Painted<&T>
Source§fn bright_cyan(&self) -> Painted<&T>
fn bright_cyan(&self) -> Painted<&T>
Source§fn bright_white(&self) -> Painted<&T>
fn bright_white(&self) -> Painted<&T>
Source§fn bg(&self, value: Color) -> Painted<&T>
fn bg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the background set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like on_red()
and
on_green()
, which have the same functionality but
are pithier.
§Example
Set background color to red using fg()
:
use yansi::{Paint, Color};
painted.bg(Color::Red);
Set background color to red using on_red()
.
use yansi::Paint;
painted.on_red();
Source§fn on_primary(&self) -> Painted<&T>
fn on_primary(&self) -> Painted<&T>
Source§fn on_magenta(&self) -> Painted<&T>
fn on_magenta(&self) -> Painted<&T>
Source§fn on_bright_black(&self) -> Painted<&T>
fn on_bright_black(&self) -> Painted<&T>
Source§fn on_bright_red(&self) -> Painted<&T>
fn on_bright_red(&self) -> Painted<&T>
Source§fn on_bright_green(&self) -> Painted<&T>
fn on_bright_green(&self) -> Painted<&T>
Source§fn on_bright_yellow(&self) -> Painted<&T>
fn on_bright_yellow(&self) -> Painted<&T>
Source§fn on_bright_blue(&self) -> Painted<&T>
fn on_bright_blue(&self) -> Painted<&T>
Source§fn on_bright_magenta(&self) -> Painted<&T>
fn on_bright_magenta(&self) -> Painted<&T>
Source§fn on_bright_cyan(&self) -> Painted<&T>
fn on_bright_cyan(&self) -> Painted<&T>
Source§fn on_bright_white(&self) -> Painted<&T>
fn on_bright_white(&self) -> Painted<&T>
Source§fn attr(&self, value: Attribute) -> Painted<&T>
fn attr(&self, value: Attribute) -> Painted<&T>
Enables the styling Attribute
value
.
This method should be used rarely. Instead, prefer to use
attribute-specific builder methods like bold()
and
underline()
, which have the same functionality
but are pithier.
§Example
Make text bold using attr()
:
use yansi::{Paint, Attribute};
painted.attr(Attribute::Bold);
Make text bold using using bold()
.
use yansi::Paint;
painted.bold();
Source§fn rapid_blink(&self) -> Painted<&T>
fn rapid_blink(&self) -> Painted<&T>
Source§fn quirk(&self, value: Quirk) -> Painted<&T>
fn quirk(&self, value: Quirk) -> Painted<&T>
Enables the yansi
Quirk
value
.
This method should be used rarely. Instead, prefer to use quirk-specific
builder methods like mask()
and
wrap()
, which have the same functionality but are
pithier.
§Example
Enable wrapping using .quirk()
:
use yansi::{Paint, Quirk};
painted.quirk(Quirk::Wrap);
Enable wrapping using wrap()
.
use yansi::Paint;
painted.wrap();
Source§fn clear(&self) -> Painted<&T>
👎Deprecated since 1.0.1: renamed to resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.
fn clear(&self) -> Painted<&T>
resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.Source§fn whenever(&self, value: Condition) -> Painted<&T>
fn whenever(&self, value: Condition) -> Painted<&T>
Conditionally enable styling based on whether the Condition
value
applies. Replaces any previous condition.
See the crate level docs for more details.
§Example
Enable styling painted
only when both stdout
and stderr
are TTYs:
use yansi::{Paint, Condition};
painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);