#[non_exhaustive]pub struct HumanTaskConfig {
pub workteam_arn: Option<String>,
pub ui_config: Option<UiConfig>,
pub pre_human_task_lambda_arn: Option<String>,
pub task_keywords: Option<Vec<String>>,
pub task_title: Option<String>,
pub task_description: Option<String>,
pub number_of_human_workers_per_data_object: Option<i32>,
pub task_time_limit_in_seconds: Option<i32>,
pub task_availability_lifetime_in_seconds: Option<i32>,
pub max_concurrent_task_count: Option<i32>,
pub annotation_consolidation_config: Option<AnnotationConsolidationConfig>,
pub public_workforce_task_price: Option<PublicWorkforceTaskPrice>,
}
Expand description
Information required for human workers to complete a labeling task.
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.workteam_arn: Option<String>
The Amazon Resource Name (ARN) of the work team assigned to complete the tasks.
ui_config: Option<UiConfig>
Information about the user interface that workers use to complete the labeling task.
pre_human_task_lambda_arn: Option<String>
The Amazon Resource Name (ARN) of a Lambda function that is run before a data object is sent to a human worker. Use this function to provide input to a custom labeling job.
For built-in task types, use one of the following Amazon SageMaker Ground Truth Lambda function ARNs for PreHumanTaskLambdaArn
. For custom labeling workflows, see Pre-annotation Lambda.
Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-BoundingBox
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-BoundingBox
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-BoundingBox
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-BoundingBox
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-BoundingBox
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-BoundingBox
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-BoundingBox
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-BoundingBox
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-BoundingBox
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-BoundingBox
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox
Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClass
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClass
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClass
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClass
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClass
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClass
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClass
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClass
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClass
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClass
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClass
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClass
Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClassMultiLabel
Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-SemanticSegmentation
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-SemanticSegmentation
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-SemanticSegmentation
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-SemanticSegmentation
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-SemanticSegmentation
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-SemanticSegmentation
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-SemanticSegmentation
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-SemanticSegmentation
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-SemanticSegmentation
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-SemanticSegmentation
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-SemanticSegmentation
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-SemanticSegmentation
Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClass
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClass
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClass
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClass
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClass
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClass
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClass
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClass
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClass
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClass
Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClassMultiLabel
Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition
Video Classification - Use this task type when you need workers to classify videos using predefined labels that you specify. Workers are shown videos and are asked to choose one label for each video.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoMultiClass
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoMultiClass
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoMultiClass
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoMultiClass
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoMultiClass
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoMultiClass
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoMultiClass
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoMultiClass
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoMultiClass
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoMultiClass
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoMultiClass
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoMultiClass
Video Frame Object Detection - Use this task type to have workers identify and locate objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to identify and localize various objects in a series of video frames, such as cars, bikes, and pedestrians.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectDetection
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectDetection
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectDetection
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectDetection
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectDetection
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectDetection
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectDetection
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectDetection
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectDetection
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectDetection
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectDetection
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectDetection
Video Frame Object Tracking - Use this task type to have workers track the movement of objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to track the movement of objects, such as cars, bikes, and pedestrians.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectTracking
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectTracking
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectTracking
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectTracking
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectTracking
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectTracking
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectTracking
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectTracking
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectTracking
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectTracking
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectTracking
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectTracking
3D Point Cloud Modalities
Use the following pre-annotation lambdas for 3D point cloud labeling modality tasks. See 3D Point Cloud Task types to learn more.
3D Point Cloud Object Detection - Use this task type when you want workers to classify objects in a 3D point cloud by drawing 3D cuboids around objects. For example, you can use this task type to ask workers to identify different types of objects in a point cloud, such as cars, bikes, and pedestrians.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectDetection
3D Point Cloud Object Tracking - Use this task type when you want workers to draw 3D cuboids around objects that appear in a sequence of 3D point cloud frames. For example, you can use this task type to ask workers to track the movement of vehicles across multiple point cloud frames.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectTracking
3D Point Cloud Semantic Segmentation - Use this task type when you want workers to create a point-level semantic segmentation masks by painting objects in a 3D point cloud using different colors where each color is assigned to one of the classes you specify.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudSemanticSegmentation
Use the following ARNs for Label Verification and Adjustment Jobs
Use label verification and adjustment jobs to review and adjust labels. To learn more, see Verify and Adjust Labels .
Bounding box verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationBoundingBox
Bounding box adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentBoundingBox
Semantic segmentation verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationSemanticSegmentation
Semantic segmentation adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentSemanticSegmentation
Video Frame Object Detection Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to classify and localize objects in a sequence of video frames.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectDetection
Video Frame Object Tracking Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to track object movement across a sequence of video frames.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectTracking
3D point cloud object detection adjustment - Adjust 3D cuboids in a point cloud frame.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectDetection
3D point cloud object tracking adjustment - Adjust 3D cuboids across a sequence of point cloud frames.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking
3D point cloud semantic segmentation adjustment - Adjust semantic segmentation masks in a 3D point cloud.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudSemanticSegmentation
task_keywords: Option<Vec<String>>
Keywords used to describe the task so that workers on Amazon Mechanical Turk can discover the task.
task_title: Option<String>
A title for the task for your human workers.
task_description: Option<String>
A description of the task for your human workers.
number_of_human_workers_per_data_object: Option<i32>
The number of human workers that will label an object.
task_time_limit_in_seconds: Option<i32>
The amount of time that a worker has to complete a task.
If you create a custom labeling job, the maximum value for this parameter is 8 hours (28,800 seconds).
If you create a labeling job using a built-in task type the maximum for this parameter depends on the task type you use:
-
For image and text labeling jobs, the maximum is 8 hours (28,800 seconds).
-
For 3D point cloud and video frame labeling jobs, the maximum is 30 days (2952,000 seconds) for non-AL mode. For most users, the maximum is also 30 days.
task_availability_lifetime_in_seconds: Option<i32>
The length of time that a task remains available for labeling by human workers. The default and maximum values for this parameter depend on the type of workforce you use.
-
If you choose the Amazon Mechanical Turk workforce, the maximum is 12 hours (43,200 seconds). The default is 6 hours (21,600 seconds).
-
If you choose a private or vendor workforce, the default value is 30 days (2592,000 seconds) for non-AL mode. For most users, the maximum is also 30 days.
max_concurrent_task_count: Option<i32>
Defines the maximum number of data objects that can be labeled by human workers at the same time. Also referred to as batch size. Each object may have more than one worker at one time. The default value is 1000 objects. To increase the maximum value to 5000 objects, contact Amazon Web Services Support.
annotation_consolidation_config: Option<AnnotationConsolidationConfig>
Configures how labels are consolidated across human workers.
public_workforce_task_price: Option<PublicWorkforceTaskPrice>
The price that you pay for each task performed by an Amazon Mechanical Turk worker.
Implementations§
Source§impl HumanTaskConfig
impl HumanTaskConfig
Sourcepub fn workteam_arn(&self) -> Option<&str>
pub fn workteam_arn(&self) -> Option<&str>
The Amazon Resource Name (ARN) of the work team assigned to complete the tasks.
Sourcepub fn ui_config(&self) -> Option<&UiConfig>
pub fn ui_config(&self) -> Option<&UiConfig>
Information about the user interface that workers use to complete the labeling task.
Sourcepub fn pre_human_task_lambda_arn(&self) -> Option<&str>
pub fn pre_human_task_lambda_arn(&self) -> Option<&str>
The Amazon Resource Name (ARN) of a Lambda function that is run before a data object is sent to a human worker. Use this function to provide input to a custom labeling job.
For built-in task types, use one of the following Amazon SageMaker Ground Truth Lambda function ARNs for PreHumanTaskLambdaArn
. For custom labeling workflows, see Pre-annotation Lambda.
Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-BoundingBox
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-BoundingBox
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-BoundingBox
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-BoundingBox
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-BoundingBox
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-BoundingBox
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-BoundingBox
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-BoundingBox
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-BoundingBox
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-BoundingBox
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox
Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClass
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClass
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClass
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClass
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClass
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClass
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClass
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClass
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClass
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClass
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClass
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClass
Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClassMultiLabel
Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-SemanticSegmentation
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-SemanticSegmentation
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-SemanticSegmentation
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-SemanticSegmentation
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-SemanticSegmentation
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-SemanticSegmentation
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-SemanticSegmentation
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-SemanticSegmentation
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-SemanticSegmentation
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-SemanticSegmentation
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-SemanticSegmentation
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-SemanticSegmentation
Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClass
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClass
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClass
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClass
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClass
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClass
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClass
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClass
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClass
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClass
Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClassMultiLabel
Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition
Video Classification - Use this task type when you need workers to classify videos using predefined labels that you specify. Workers are shown videos and are asked to choose one label for each video.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoMultiClass
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoMultiClass
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoMultiClass
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoMultiClass
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoMultiClass
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoMultiClass
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoMultiClass
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoMultiClass
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoMultiClass
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoMultiClass
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoMultiClass
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoMultiClass
Video Frame Object Detection - Use this task type to have workers identify and locate objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to identify and localize various objects in a series of video frames, such as cars, bikes, and pedestrians.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectDetection
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectDetection
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectDetection
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectDetection
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectDetection
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectDetection
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectDetection
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectDetection
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectDetection
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectDetection
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectDetection
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectDetection
Video Frame Object Tracking - Use this task type to have workers track the movement of objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to track the movement of objects, such as cars, bikes, and pedestrians.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectTracking
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectTracking
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectTracking
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectTracking
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectTracking
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectTracking
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectTracking
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectTracking
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectTracking
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectTracking
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectTracking
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectTracking
3D Point Cloud Modalities
Use the following pre-annotation lambdas for 3D point cloud labeling modality tasks. See 3D Point Cloud Task types to learn more.
3D Point Cloud Object Detection - Use this task type when you want workers to classify objects in a 3D point cloud by drawing 3D cuboids around objects. For example, you can use this task type to ask workers to identify different types of objects in a point cloud, such as cars, bikes, and pedestrians.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectDetection
3D Point Cloud Object Tracking - Use this task type when you want workers to draw 3D cuboids around objects that appear in a sequence of 3D point cloud frames. For example, you can use this task type to ask workers to track the movement of vehicles across multiple point cloud frames.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectTracking
3D Point Cloud Semantic Segmentation - Use this task type when you want workers to create a point-level semantic segmentation masks by painting objects in a 3D point cloud using different colors where each color is assigned to one of the classes you specify.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudSemanticSegmentation
Use the following ARNs for Label Verification and Adjustment Jobs
Use label verification and adjustment jobs to review and adjust labels. To learn more, see Verify and Adjust Labels .
Bounding box verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationBoundingBox
Bounding box adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentBoundingBox
Semantic segmentation verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationSemanticSegmentation
Semantic segmentation adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentSemanticSegmentation
Video Frame Object Detection Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to classify and localize objects in a sequence of video frames.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectDetection
Video Frame Object Tracking Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to track object movement across a sequence of video frames.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectTracking
3D point cloud object detection adjustment - Adjust 3D cuboids in a point cloud frame.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectDetection
3D point cloud object tracking adjustment - Adjust 3D cuboids across a sequence of point cloud frames.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking
3D point cloud semantic segmentation adjustment - Adjust semantic segmentation masks in a 3D point cloud.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudSemanticSegmentation
Sourcepub fn task_keywords(&self) -> &[String]
pub fn task_keywords(&self) -> &[String]
Keywords used to describe the task so that workers on Amazon Mechanical Turk can discover the task.
If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .task_keywords.is_none()
.
Sourcepub fn task_title(&self) -> Option<&str>
pub fn task_title(&self) -> Option<&str>
A title for the task for your human workers.
Sourcepub fn task_description(&self) -> Option<&str>
pub fn task_description(&self) -> Option<&str>
A description of the task for your human workers.
Sourcepub fn number_of_human_workers_per_data_object(&self) -> Option<i32>
pub fn number_of_human_workers_per_data_object(&self) -> Option<i32>
The number of human workers that will label an object.
Sourcepub fn task_time_limit_in_seconds(&self) -> Option<i32>
pub fn task_time_limit_in_seconds(&self) -> Option<i32>
The amount of time that a worker has to complete a task.
If you create a custom labeling job, the maximum value for this parameter is 8 hours (28,800 seconds).
If you create a labeling job using a built-in task type the maximum for this parameter depends on the task type you use:
-
For image and text labeling jobs, the maximum is 8 hours (28,800 seconds).
-
For 3D point cloud and video frame labeling jobs, the maximum is 30 days (2952,000 seconds) for non-AL mode. For most users, the maximum is also 30 days.
Sourcepub fn task_availability_lifetime_in_seconds(&self) -> Option<i32>
pub fn task_availability_lifetime_in_seconds(&self) -> Option<i32>
The length of time that a task remains available for labeling by human workers. The default and maximum values for this parameter depend on the type of workforce you use.
-
If you choose the Amazon Mechanical Turk workforce, the maximum is 12 hours (43,200 seconds). The default is 6 hours (21,600 seconds).
-
If you choose a private or vendor workforce, the default value is 30 days (2592,000 seconds) for non-AL mode. For most users, the maximum is also 30 days.
Sourcepub fn max_concurrent_task_count(&self) -> Option<i32>
pub fn max_concurrent_task_count(&self) -> Option<i32>
Defines the maximum number of data objects that can be labeled by human workers at the same time. Also referred to as batch size. Each object may have more than one worker at one time. The default value is 1000 objects. To increase the maximum value to 5000 objects, contact Amazon Web Services Support.
Sourcepub fn annotation_consolidation_config(
&self,
) -> Option<&AnnotationConsolidationConfig>
pub fn annotation_consolidation_config( &self, ) -> Option<&AnnotationConsolidationConfig>
Configures how labels are consolidated across human workers.
Sourcepub fn public_workforce_task_price(&self) -> Option<&PublicWorkforceTaskPrice>
pub fn public_workforce_task_price(&self) -> Option<&PublicWorkforceTaskPrice>
The price that you pay for each task performed by an Amazon Mechanical Turk worker.
Source§impl HumanTaskConfig
impl HumanTaskConfig
Sourcepub fn builder() -> HumanTaskConfigBuilder
pub fn builder() -> HumanTaskConfigBuilder
Creates a new builder-style object to manufacture HumanTaskConfig
.
Trait Implementations§
Source§impl Clone for HumanTaskConfig
impl Clone for HumanTaskConfig
Source§fn clone(&self) -> HumanTaskConfig
fn clone(&self) -> HumanTaskConfig
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl Debug for HumanTaskConfig
impl Debug for HumanTaskConfig
Source§impl PartialEq for HumanTaskConfig
impl PartialEq for HumanTaskConfig
impl StructuralPartialEq for HumanTaskConfig
Auto Trait Implementations§
impl Freeze for HumanTaskConfig
impl RefUnwindSafe for HumanTaskConfig
impl Send for HumanTaskConfig
impl Sync for HumanTaskConfig
impl Unpin for HumanTaskConfig
impl UnwindSafe for HumanTaskConfig
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Paint for Twhere
T: ?Sized,
impl<T> Paint for Twhere
T: ?Sized,
Source§fn fg(&self, value: Color) -> Painted<&T>
fn fg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the foreground set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like red()
and
green()
, which have the same functionality but are
pithier.
§Example
Set foreground color to white using fg()
:
use yansi::{Paint, Color};
painted.fg(Color::White);
Set foreground color to white using white()
.
use yansi::Paint;
painted.white();
Source§fn bright_black(&self) -> Painted<&T>
fn bright_black(&self) -> Painted<&T>
Source§fn bright_red(&self) -> Painted<&T>
fn bright_red(&self) -> Painted<&T>
Source§fn bright_green(&self) -> Painted<&T>
fn bright_green(&self) -> Painted<&T>
Source§fn bright_yellow(&self) -> Painted<&T>
fn bright_yellow(&self) -> Painted<&T>
Source§fn bright_blue(&self) -> Painted<&T>
fn bright_blue(&self) -> Painted<&T>
Source§fn bright_magenta(&self) -> Painted<&T>
fn bright_magenta(&self) -> Painted<&T>
Source§fn bright_cyan(&self) -> Painted<&T>
fn bright_cyan(&self) -> Painted<&T>
Source§fn bright_white(&self) -> Painted<&T>
fn bright_white(&self) -> Painted<&T>
Source§fn bg(&self, value: Color) -> Painted<&T>
fn bg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the background set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like on_red()
and
on_green()
, which have the same functionality but
are pithier.
§Example
Set background color to red using fg()
:
use yansi::{Paint, Color};
painted.bg(Color::Red);
Set background color to red using on_red()
.
use yansi::Paint;
painted.on_red();
Source§fn on_primary(&self) -> Painted<&T>
fn on_primary(&self) -> Painted<&T>
Source§fn on_magenta(&self) -> Painted<&T>
fn on_magenta(&self) -> Painted<&T>
Source§fn on_bright_black(&self) -> Painted<&T>
fn on_bright_black(&self) -> Painted<&T>
Source§fn on_bright_red(&self) -> Painted<&T>
fn on_bright_red(&self) -> Painted<&T>
Source§fn on_bright_green(&self) -> Painted<&T>
fn on_bright_green(&self) -> Painted<&T>
Source§fn on_bright_yellow(&self) -> Painted<&T>
fn on_bright_yellow(&self) -> Painted<&T>
Source§fn on_bright_blue(&self) -> Painted<&T>
fn on_bright_blue(&self) -> Painted<&T>
Source§fn on_bright_magenta(&self) -> Painted<&T>
fn on_bright_magenta(&self) -> Painted<&T>
Source§fn on_bright_cyan(&self) -> Painted<&T>
fn on_bright_cyan(&self) -> Painted<&T>
Source§fn on_bright_white(&self) -> Painted<&T>
fn on_bright_white(&self) -> Painted<&T>
Source§fn attr(&self, value: Attribute) -> Painted<&T>
fn attr(&self, value: Attribute) -> Painted<&T>
Enables the styling Attribute
value
.
This method should be used rarely. Instead, prefer to use
attribute-specific builder methods like bold()
and
underline()
, which have the same functionality
but are pithier.
§Example
Make text bold using attr()
:
use yansi::{Paint, Attribute};
painted.attr(Attribute::Bold);
Make text bold using using bold()
.
use yansi::Paint;
painted.bold();
Source§fn rapid_blink(&self) -> Painted<&T>
fn rapid_blink(&self) -> Painted<&T>
Source§fn quirk(&self, value: Quirk) -> Painted<&T>
fn quirk(&self, value: Quirk) -> Painted<&T>
Enables the yansi
Quirk
value
.
This method should be used rarely. Instead, prefer to use quirk-specific
builder methods like mask()
and
wrap()
, which have the same functionality but are
pithier.
§Example
Enable wrapping using .quirk()
:
use yansi::{Paint, Quirk};
painted.quirk(Quirk::Wrap);
Enable wrapping using wrap()
.
use yansi::Paint;
painted.wrap();
Source§fn clear(&self) -> Painted<&T>
👎Deprecated since 1.0.1: renamed to resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.
fn clear(&self) -> Painted<&T>
resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.Source§fn whenever(&self, value: Condition) -> Painted<&T>
fn whenever(&self, value: Condition) -> Painted<&T>
Conditionally enable styling based on whether the Condition
value
applies. Replaces any previous condition.
See the crate level docs for more details.
§Example
Enable styling painted
only when both stdout
and stderr
are TTYs:
use yansi::{Paint, Condition};
painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);