#[non_exhaustive]pub struct AutoMlJobConfigBuilder { /* private fields */ }
Expand description
A builder for AutoMlJobConfig
.
Implementations§
Source§impl AutoMlJobConfigBuilder
impl AutoMlJobConfigBuilder
Sourcepub fn completion_criteria(self, input: AutoMlJobCompletionCriteria) -> Self
pub fn completion_criteria(self, input: AutoMlJobCompletionCriteria) -> Self
How long an AutoML job is allowed to run, or how many candidates a job is allowed to generate.
Sourcepub fn set_completion_criteria(
self,
input: Option<AutoMlJobCompletionCriteria>,
) -> Self
pub fn set_completion_criteria( self, input: Option<AutoMlJobCompletionCriteria>, ) -> Self
How long an AutoML job is allowed to run, or how many candidates a job is allowed to generate.
Sourcepub fn get_completion_criteria(&self) -> &Option<AutoMlJobCompletionCriteria>
pub fn get_completion_criteria(&self) -> &Option<AutoMlJobCompletionCriteria>
How long an AutoML job is allowed to run, or how many candidates a job is allowed to generate.
Sourcepub fn security_config(self, input: AutoMlSecurityConfig) -> Self
pub fn security_config(self, input: AutoMlSecurityConfig) -> Self
The security configuration for traffic encryption or Amazon VPC settings.
Sourcepub fn set_security_config(self, input: Option<AutoMlSecurityConfig>) -> Self
pub fn set_security_config(self, input: Option<AutoMlSecurityConfig>) -> Self
The security configuration for traffic encryption or Amazon VPC settings.
Sourcepub fn get_security_config(&self) -> &Option<AutoMlSecurityConfig>
pub fn get_security_config(&self) -> &Option<AutoMlSecurityConfig>
The security configuration for traffic encryption or Amazon VPC settings.
Sourcepub fn candidate_generation_config(
self,
input: AutoMlCandidateGenerationConfig,
) -> Self
pub fn candidate_generation_config( self, input: AutoMlCandidateGenerationConfig, ) -> Self
The configuration for generating a candidate for an AutoML job (optional).
Sourcepub fn set_candidate_generation_config(
self,
input: Option<AutoMlCandidateGenerationConfig>,
) -> Self
pub fn set_candidate_generation_config( self, input: Option<AutoMlCandidateGenerationConfig>, ) -> Self
The configuration for generating a candidate for an AutoML job (optional).
Sourcepub fn get_candidate_generation_config(
&self,
) -> &Option<AutoMlCandidateGenerationConfig>
pub fn get_candidate_generation_config( &self, ) -> &Option<AutoMlCandidateGenerationConfig>
The configuration for generating a candidate for an AutoML job (optional).
Sourcepub fn data_split_config(self, input: AutoMlDataSplitConfig) -> Self
pub fn data_split_config(self, input: AutoMlDataSplitConfig) -> Self
The configuration for splitting the input training dataset.
Type: AutoMLDataSplitConfig
Sourcepub fn set_data_split_config(self, input: Option<AutoMlDataSplitConfig>) -> Self
pub fn set_data_split_config(self, input: Option<AutoMlDataSplitConfig>) -> Self
The configuration for splitting the input training dataset.
Type: AutoMLDataSplitConfig
Sourcepub fn get_data_split_config(&self) -> &Option<AutoMlDataSplitConfig>
pub fn get_data_split_config(&self) -> &Option<AutoMlDataSplitConfig>
The configuration for splitting the input training dataset.
Type: AutoMLDataSplitConfig
Sourcepub fn mode(self, input: AutoMlMode) -> Self
pub fn mode(self, input: AutoMlMode) -> Self
The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot choose for you based on the dataset size by selecting AUTO
. In AUTO
mode, Autopilot chooses ENSEMBLING
for datasets smaller than 100 MB, and HYPERPARAMETER_TUNING
for larger ones.
The ENSEMBLING
mode uses a multi-stack ensemble model to predict classification and regression tasks directly from your dataset. This machine learning mode combines several base models to produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A multi-stack ensemble model can provide better performance over a single model by combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING
mode.
The HYPERPARAMETER_TUNING
(HPO) mode uses the best hyperparameters to train the best version of a model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING
mode.
Sourcepub fn set_mode(self, input: Option<AutoMlMode>) -> Self
pub fn set_mode(self, input: Option<AutoMlMode>) -> Self
The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot choose for you based on the dataset size by selecting AUTO
. In AUTO
mode, Autopilot chooses ENSEMBLING
for datasets smaller than 100 MB, and HYPERPARAMETER_TUNING
for larger ones.
The ENSEMBLING
mode uses a multi-stack ensemble model to predict classification and regression tasks directly from your dataset. This machine learning mode combines several base models to produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A multi-stack ensemble model can provide better performance over a single model by combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING
mode.
The HYPERPARAMETER_TUNING
(HPO) mode uses the best hyperparameters to train the best version of a model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING
mode.
Sourcepub fn get_mode(&self) -> &Option<AutoMlMode>
pub fn get_mode(&self) -> &Option<AutoMlMode>
The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot choose for you based on the dataset size by selecting AUTO
. In AUTO
mode, Autopilot chooses ENSEMBLING
for datasets smaller than 100 MB, and HYPERPARAMETER_TUNING
for larger ones.
The ENSEMBLING
mode uses a multi-stack ensemble model to predict classification and regression tasks directly from your dataset. This machine learning mode combines several base models to produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A multi-stack ensemble model can provide better performance over a single model by combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING
mode.
The HYPERPARAMETER_TUNING
(HPO) mode uses the best hyperparameters to train the best version of a model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING
mode.
Sourcepub fn build(self) -> AutoMlJobConfig
pub fn build(self) -> AutoMlJobConfig
Consumes the builder and constructs a AutoMlJobConfig
.
Trait Implementations§
Source§impl Clone for AutoMlJobConfigBuilder
impl Clone for AutoMlJobConfigBuilder
Source§fn clone(&self) -> AutoMlJobConfigBuilder
fn clone(&self) -> AutoMlJobConfigBuilder
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl Debug for AutoMlJobConfigBuilder
impl Debug for AutoMlJobConfigBuilder
Source§impl Default for AutoMlJobConfigBuilder
impl Default for AutoMlJobConfigBuilder
Source§fn default() -> AutoMlJobConfigBuilder
fn default() -> AutoMlJobConfigBuilder
Source§impl PartialEq for AutoMlJobConfigBuilder
impl PartialEq for AutoMlJobConfigBuilder
impl StructuralPartialEq for AutoMlJobConfigBuilder
Auto Trait Implementations§
impl Freeze for AutoMlJobConfigBuilder
impl RefUnwindSafe for AutoMlJobConfigBuilder
impl Send for AutoMlJobConfigBuilder
impl Sync for AutoMlJobConfigBuilder
impl Unpin for AutoMlJobConfigBuilder
impl UnwindSafe for AutoMlJobConfigBuilder
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Paint for Twhere
T: ?Sized,
impl<T> Paint for Twhere
T: ?Sized,
Source§fn fg(&self, value: Color) -> Painted<&T>
fn fg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the foreground set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like red()
and
green()
, which have the same functionality but are
pithier.
§Example
Set foreground color to white using fg()
:
use yansi::{Paint, Color};
painted.fg(Color::White);
Set foreground color to white using white()
.
use yansi::Paint;
painted.white();
Source§fn bright_black(&self) -> Painted<&T>
fn bright_black(&self) -> Painted<&T>
Source§fn bright_red(&self) -> Painted<&T>
fn bright_red(&self) -> Painted<&T>
Source§fn bright_green(&self) -> Painted<&T>
fn bright_green(&self) -> Painted<&T>
Source§fn bright_yellow(&self) -> Painted<&T>
fn bright_yellow(&self) -> Painted<&T>
Source§fn bright_blue(&self) -> Painted<&T>
fn bright_blue(&self) -> Painted<&T>
Source§fn bright_magenta(&self) -> Painted<&T>
fn bright_magenta(&self) -> Painted<&T>
Source§fn bright_cyan(&self) -> Painted<&T>
fn bright_cyan(&self) -> Painted<&T>
Source§fn bright_white(&self) -> Painted<&T>
fn bright_white(&self) -> Painted<&T>
Source§fn bg(&self, value: Color) -> Painted<&T>
fn bg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the background set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like on_red()
and
on_green()
, which have the same functionality but
are pithier.
§Example
Set background color to red using fg()
:
use yansi::{Paint, Color};
painted.bg(Color::Red);
Set background color to red using on_red()
.
use yansi::Paint;
painted.on_red();
Source§fn on_primary(&self) -> Painted<&T>
fn on_primary(&self) -> Painted<&T>
Source§fn on_magenta(&self) -> Painted<&T>
fn on_magenta(&self) -> Painted<&T>
Source§fn on_bright_black(&self) -> Painted<&T>
fn on_bright_black(&self) -> Painted<&T>
Source§fn on_bright_red(&self) -> Painted<&T>
fn on_bright_red(&self) -> Painted<&T>
Source§fn on_bright_green(&self) -> Painted<&T>
fn on_bright_green(&self) -> Painted<&T>
Source§fn on_bright_yellow(&self) -> Painted<&T>
fn on_bright_yellow(&self) -> Painted<&T>
Source§fn on_bright_blue(&self) -> Painted<&T>
fn on_bright_blue(&self) -> Painted<&T>
Source§fn on_bright_magenta(&self) -> Painted<&T>
fn on_bright_magenta(&self) -> Painted<&T>
Source§fn on_bright_cyan(&self) -> Painted<&T>
fn on_bright_cyan(&self) -> Painted<&T>
Source§fn on_bright_white(&self) -> Painted<&T>
fn on_bright_white(&self) -> Painted<&T>
Source§fn attr(&self, value: Attribute) -> Painted<&T>
fn attr(&self, value: Attribute) -> Painted<&T>
Enables the styling Attribute
value
.
This method should be used rarely. Instead, prefer to use
attribute-specific builder methods like bold()
and
underline()
, which have the same functionality
but are pithier.
§Example
Make text bold using attr()
:
use yansi::{Paint, Attribute};
painted.attr(Attribute::Bold);
Make text bold using using bold()
.
use yansi::Paint;
painted.bold();
Source§fn rapid_blink(&self) -> Painted<&T>
fn rapid_blink(&self) -> Painted<&T>
Source§fn quirk(&self, value: Quirk) -> Painted<&T>
fn quirk(&self, value: Quirk) -> Painted<&T>
Enables the yansi
Quirk
value
.
This method should be used rarely. Instead, prefer to use quirk-specific
builder methods like mask()
and
wrap()
, which have the same functionality but are
pithier.
§Example
Enable wrapping using .quirk()
:
use yansi::{Paint, Quirk};
painted.quirk(Quirk::Wrap);
Enable wrapping using wrap()
.
use yansi::Paint;
painted.wrap();
Source§fn clear(&self) -> Painted<&T>
👎Deprecated since 1.0.1: renamed to resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.
fn clear(&self) -> Painted<&T>
resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.Source§fn whenever(&self, value: Condition) -> Painted<&T>
fn whenever(&self, value: Condition) -> Painted<&T>
Conditionally enable styling based on whether the Condition
value
applies. Replaces any previous condition.
See the crate level docs for more details.
§Example
Enable styling painted
only when both stdout
and stderr
are TTYs:
use yansi::{Paint, Condition};
painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);