pub struct Client { /* private fields */ }
Expand description
Client for Amazon SageMaker Service
Client for invoking operations on Amazon SageMaker Service. Each operation on Amazon SageMaker Service is a method on this
this struct. .send()
MUST be invoked on the generated operations to dispatch the request to the service.
§Constructing a Client
A Config
is required to construct a client. For most use cases, the aws-config
crate should be used to automatically resolve this config using
aws_config::load_from_env()
, since this will resolve an SdkConfig
which can be shared
across multiple different AWS SDK clients. This config resolution process can be customized
by calling aws_config::from_env()
instead, which returns a ConfigLoader
that uses
the builder pattern to customize the default config.
In the simplest case, creating a client looks as follows:
let config = aws_config::load_from_env().await;
let client = aws_sdk_sagemaker::Client::new(&config);
Occasionally, SDKs may have additional service-specific values that can be set on the Config
that
is absent from SdkConfig
, or slightly different settings for a specific client may be desired.
The Builder
struct implements From<&SdkConfig>
, so setting these specific settings can be
done as follows:
let sdk_config = ::aws_config::load_from_env().await;
let config = aws_sdk_sagemaker::config::Builder::from(&sdk_config)
.some_service_specific_setting("value")
.build();
See the aws-config
docs and Config
for more information on customizing configuration.
Note: Client construction is expensive due to connection thread pool initialization, and should be done once at application start-up.
§Using the Client
A client has a function for every operation that can be performed by the service.
For example, the AddAssociation
operation has
a Client::add_association
, function which returns a builder for that operation.
The fluent builder ultimately has a send()
function that returns an async future that
returns a result, as illustrated below:
let result = client.add_association()
.source_arn("example")
.send()
.await;
The underlying HTTP requests that get made by this can be modified with the customize_operation
function on the fluent builder. See the customize
module for more
information.
§Waiters
This client provides wait_until
methods behind the Waiters
trait.
To use them, simply import the trait, and then call one of the wait_until
methods. This will
return a waiter fluent builder that takes various parameters, which are documented on the builder
type. Once parameters have been provided, the wait
method can be called to initiate waiting.
For example, if there was a wait_until_thing
method, it could look like:
let result = client.wait_until_thing()
.thing_id("someId")
.wait(Duration::from_secs(120))
.await;
Implementations§
Source§impl Client
impl Client
Sourcepub fn add_association(&self) -> AddAssociationFluentBuilder
pub fn add_association(&self) -> AddAssociationFluentBuilder
Constructs a fluent builder for the AddAssociation
operation.
- The fluent builder is configurable:
source_arn(impl Into<String>)
/set_source_arn(Option<String>)
:
required: trueThe ARN of the source.
destination_arn(impl Into<String>)
/set_destination_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of the destination.
association_type(AssociationEdgeType)
/set_association_type(Option<AssociationEdgeType>)
:
required: falseThe type of association. The following are suggested uses for each type. Amazon SageMaker places no restrictions on their use.
-
ContributedTo - The source contributed to the destination or had a part in enabling the destination. For example, the training data contributed to the training job.
-
AssociatedWith - The source is connected to the destination. For example, an approval workflow is associated with a model deployment.
-
DerivedFrom - The destination is a modification of the source. For example, a digest output of a channel input for a processing job is derived from the original inputs.
-
Produced - The source generated the destination. For example, a training job produced a model artifact.
-
- On success, responds with
AddAssociationOutput
with field(s):source_arn(Option<String>)
:The ARN of the source.
destination_arn(Option<String>)
:The Amazon Resource Name (ARN) of the destination.
- On failure, responds with
SdkError<AddAssociationError>
Source§impl Client
impl Client
Constructs a fluent builder for the AddTags
operation.
- The fluent builder is configurable:
resource_arn(impl Into<String>)
/set_resource_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of the resource that you want to tag.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: trueAn array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
- On success, responds with
AddTagsOutput
with field(s):tags(Option<Vec::<Tag>>)
:A list of tags associated with the SageMaker resource.
- On failure, responds with
SdkError<AddTagsError>
Source§impl Client
impl Client
Sourcepub fn associate_trial_component(&self) -> AssociateTrialComponentFluentBuilder
pub fn associate_trial_component(&self) -> AssociateTrialComponentFluentBuilder
Constructs a fluent builder for the AssociateTrialComponent
operation.
- The fluent builder is configurable:
trial_component_name(impl Into<String>)
/set_trial_component_name(Option<String>)
:
required: trueThe name of the component to associated with the trial.
trial_name(impl Into<String>)
/set_trial_name(Option<String>)
:
required: trueThe name of the trial to associate with.
- On success, responds with
AssociateTrialComponentOutput
with field(s):trial_component_arn(Option<String>)
:The Amazon Resource Name (ARN) of the trial component.
trial_arn(Option<String>)
:The Amazon Resource Name (ARN) of the trial.
- On failure, responds with
SdkError<AssociateTrialComponentError>
Source§impl Client
impl Client
Sourcepub fn batch_delete_cluster_nodes(&self) -> BatchDeleteClusterNodesFluentBuilder
pub fn batch_delete_cluster_nodes(&self) -> BatchDeleteClusterNodesFluentBuilder
Constructs a fluent builder for the BatchDeleteClusterNodes
operation.
- The fluent builder is configurable:
cluster_name(impl Into<String>)
/set_cluster_name(Option<String>)
:
required: trueThe name of the SageMaker HyperPod cluster from which to delete the specified nodes.
node_ids(impl Into<String>)
/set_node_ids(Option<Vec::<String>>)
:
required: trueA list of node IDs to be deleted from the specified cluster.
-
For SageMaker HyperPod clusters using the Slurm workload manager, you cannot remove instances that are configured as Slurm controller nodes.
-
If you need to delete more than 99 instances, contact Support for assistance.
-
- On success, responds with
BatchDeleteClusterNodesOutput
with field(s):failed(Option<Vec::<BatchDeleteClusterNodesError>>)
:A list of errors encountered when deleting the specified nodes.
successful(Option<Vec::<String>>)
:A list of node IDs that were successfully deleted from the specified cluster.
- On failure, responds with
SdkError<BatchDeleteClusterNodesError>
Source§impl Client
impl Client
Sourcepub fn batch_describe_model_package(
&self,
) -> BatchDescribeModelPackageFluentBuilder
pub fn batch_describe_model_package( &self, ) -> BatchDescribeModelPackageFluentBuilder
Constructs a fluent builder for the BatchDescribeModelPackage
operation.
- The fluent builder is configurable:
model_package_arn_list(impl Into<String>)
/set_model_package_arn_list(Option<Vec::<String>>)
:
required: trueThe list of Amazon Resource Name (ARN) of the model package groups.
- On success, responds with
BatchDescribeModelPackageOutput
with field(s):model_package_summaries(Option<HashMap::<String, BatchDescribeModelPackageSummary>>)
:The summaries for the model package versions
batch_describe_model_package_error_map(Option<HashMap::<String, BatchDescribeModelPackageError>>)
:A map of the resource and BatchDescribeModelPackageError objects reporting the error associated with describing the model package.
- On failure, responds with
SdkError<BatchDescribeModelPackageError>
Source§impl Client
impl Client
Sourcepub fn create_action(&self) -> CreateActionFluentBuilder
pub fn create_action(&self) -> CreateActionFluentBuilder
Constructs a fluent builder for the CreateAction
operation.
- The fluent builder is configurable:
action_name(impl Into<String>)
/set_action_name(Option<String>)
:
required: trueThe name of the action. Must be unique to your account in an Amazon Web Services Region.
source(ActionSource)
/set_source(Option<ActionSource>)
:
required: trueThe source type, ID, and URI.
action_type(impl Into<String>)
/set_action_type(Option<String>)
:
required: trueThe action type.
description(impl Into<String>)
/set_description(Option<String>)
:
required: falseThe description of the action.
status(ActionStatus)
/set_status(Option<ActionStatus>)
:
required: falseThe status of the action.
properties(impl Into<String>, impl Into<String>)
/set_properties(Option<HashMap::<String, String>>)
:
required: falseA list of properties to add to the action.
metadata_properties(MetadataProperties)
/set_metadata_properties(Option<MetadataProperties>)
:
required: falseMetadata properties of the tracking entity, trial, or trial component.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseA list of tags to apply to the action.
- On success, responds with
CreateActionOutput
with field(s):action_arn(Option<String>)
:The Amazon Resource Name (ARN) of the action.
- On failure, responds with
SdkError<CreateActionError>
Source§impl Client
impl Client
Sourcepub fn create_algorithm(&self) -> CreateAlgorithmFluentBuilder
pub fn create_algorithm(&self) -> CreateAlgorithmFluentBuilder
Constructs a fluent builder for the CreateAlgorithm
operation.
- The fluent builder is configurable:
algorithm_name(impl Into<String>)
/set_algorithm_name(Option<String>)
:
required: trueThe name of the algorithm.
algorithm_description(impl Into<String>)
/set_algorithm_description(Option<String>)
:
required: falseA description of the algorithm.
training_specification(TrainingSpecification)
/set_training_specification(Option<TrainingSpecification>)
:
required: trueSpecifies details about training jobs run by this algorithm, including the following:
-
The Amazon ECR path of the container and the version digest of the algorithm.
-
The hyperparameters that the algorithm supports.
-
The instance types that the algorithm supports for training.
-
Whether the algorithm supports distributed training.
-
The metrics that the algorithm emits to Amazon CloudWatch.
-
Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs.
-
The input channels that the algorithm supports for training data. For example, an algorithm might support
train
,validation
, andtest
channels.
-
inference_specification(InferenceSpecification)
/set_inference_specification(Option<InferenceSpecification>)
:
required: falseSpecifies details about inference jobs that the algorithm runs, including the following:
-
The Amazon ECR paths of containers that contain the inference code and model artifacts.
-
The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference.
-
The input and output content formats that the algorithm supports for inference.
-
validation_specification(AlgorithmValidationSpecification)
/set_validation_specification(Option<AlgorithmValidationSpecification>)
:
required: falseSpecifies configurations for one or more training jobs and that SageMaker runs to test the algorithm’s training code and, optionally, one or more batch transform jobs that SageMaker runs to test the algorithm’s inference code.
certify_for_marketplace(bool)
/set_certify_for_marketplace(Option<bool>)
:
required: falseWhether to certify the algorithm so that it can be listed in Amazon Web Services Marketplace.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseAn array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
- On success, responds with
CreateAlgorithmOutput
with field(s):algorithm_arn(Option<String>)
:The Amazon Resource Name (ARN) of the new algorithm.
- On failure, responds with
SdkError<CreateAlgorithmError>
Source§impl Client
impl Client
Sourcepub fn create_app(&self) -> CreateAppFluentBuilder
pub fn create_app(&self) -> CreateAppFluentBuilder
Constructs a fluent builder for the CreateApp
operation.
- The fluent builder is configurable:
domain_id(impl Into<String>)
/set_domain_id(Option<String>)
:
required: trueThe domain ID.
user_profile_name(impl Into<String>)
/set_user_profile_name(Option<String>)
:
required: falseThe user profile name. If this value is not set, then
SpaceName
must be set.space_name(impl Into<String>)
/set_space_name(Option<String>)
:
required: falseThe name of the space. If this value is not set, then
UserProfileName
must be set.app_type(AppType)
/set_app_type(Option<AppType>)
:
required: trueThe type of app.
app_name(impl Into<String>)
/set_app_name(Option<String>)
:
required: trueThe name of the app.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseEach tag consists of a key and an optional value. Tag keys must be unique per resource.
resource_spec(ResourceSpec)
/set_resource_spec(Option<ResourceSpec>)
:
required: falseThe instance type and the Amazon Resource Name (ARN) of the SageMaker AI image created on the instance.
The value of
InstanceType
passed as part of theResourceSpec
in theCreateApp
call overrides the value passed as part of theResourceSpec
configured for the user profile or the domain. IfInstanceType
is not specified in any of those threeResourceSpec
values for aKernelGateway
app, theCreateApp
call fails with a request validation error.recovery_mode(bool)
/set_recovery_mode(Option<bool>)
:
required: falseIndicates whether the application is launched in recovery mode.
- On success, responds with
CreateAppOutput
with field(s):app_arn(Option<String>)
:The Amazon Resource Name (ARN) of the app.
- On failure, responds with
SdkError<CreateAppError>
Source§impl Client
impl Client
Sourcepub fn create_app_image_config(&self) -> CreateAppImageConfigFluentBuilder
pub fn create_app_image_config(&self) -> CreateAppImageConfigFluentBuilder
Constructs a fluent builder for the CreateAppImageConfig
operation.
- The fluent builder is configurable:
app_image_config_name(impl Into<String>)
/set_app_image_config_name(Option<String>)
:
required: trueThe name of the AppImageConfig. Must be unique to your account.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseA list of tags to apply to the AppImageConfig.
kernel_gateway_image_config(KernelGatewayImageConfig)
/set_kernel_gateway_image_config(Option<KernelGatewayImageConfig>)
:
required: falseThe KernelGatewayImageConfig. You can only specify one image kernel in the AppImageConfig API. This kernel will be shown to users before the image starts. Once the image runs, all kernels are visible in JupyterLab.
jupyter_lab_app_image_config(JupyterLabAppImageConfig)
/set_jupyter_lab_app_image_config(Option<JupyterLabAppImageConfig>)
:
required: falseThe
JupyterLabAppImageConfig
. You can only specify one image kernel in theAppImageConfig
API. This kernel is shown to users before the image starts. After the image runs, all kernels are visible in JupyterLab.code_editor_app_image_config(CodeEditorAppImageConfig)
/set_code_editor_app_image_config(Option<CodeEditorAppImageConfig>)
:
required: falseThe
CodeEditorAppImageConfig
. You can only specify one image kernel in the AppImageConfig API. This kernel is shown to users before the image starts. After the image runs, all kernels are visible in Code Editor.
- On success, responds with
CreateAppImageConfigOutput
with field(s):app_image_config_arn(Option<String>)
:The ARN of the AppImageConfig.
- On failure, responds with
SdkError<CreateAppImageConfigError>
Source§impl Client
impl Client
Sourcepub fn create_artifact(&self) -> CreateArtifactFluentBuilder
pub fn create_artifact(&self) -> CreateArtifactFluentBuilder
Constructs a fluent builder for the CreateArtifact
operation.
- The fluent builder is configurable:
artifact_name(impl Into<String>)
/set_artifact_name(Option<String>)
:
required: falseThe name of the artifact. Must be unique to your account in an Amazon Web Services Region.
source(ArtifactSource)
/set_source(Option<ArtifactSource>)
:
required: trueThe ID, ID type, and URI of the source.
artifact_type(impl Into<String>)
/set_artifact_type(Option<String>)
:
required: trueThe artifact type.
properties(impl Into<String>, impl Into<String>)
/set_properties(Option<HashMap::<String, String>>)
:
required: falseA list of properties to add to the artifact.
metadata_properties(MetadataProperties)
/set_metadata_properties(Option<MetadataProperties>)
:
required: falseMetadata properties of the tracking entity, trial, or trial component.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseA list of tags to apply to the artifact.
- On success, responds with
CreateArtifactOutput
with field(s):artifact_arn(Option<String>)
:The Amazon Resource Name (ARN) of the artifact.
- On failure, responds with
SdkError<CreateArtifactError>
Source§impl Client
impl Client
Sourcepub fn create_auto_ml_job(&self) -> CreateAutoMLJobFluentBuilder
pub fn create_auto_ml_job(&self) -> CreateAutoMLJobFluentBuilder
Constructs a fluent builder for the CreateAutoMLJob
operation.
- The fluent builder is configurable:
auto_ml_job_name(impl Into<String>)
/set_auto_ml_job_name(Option<String>)
:
required: trueIdentifies an Autopilot job. The name must be unique to your account and is case insensitive.
input_data_config(AutoMlChannel)
/set_input_data_config(Option<Vec::<AutoMlChannel>>)
:
required: trueAn array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to
InputDataConfig
supported by HyperParameterTrainingJobDefinition. Format(s) supported: CSV, Parquet. A minimum of 500 rows is required for the training dataset. There is not a minimum number of rows required for the validation dataset.output_data_config(AutoMlOutputDataConfig)
/set_output_data_config(Option<AutoMlOutputDataConfig>)
:
required: trueProvides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.
problem_type(ProblemType)
/set_problem_type(Option<ProblemType>)
:
required: falseDefines the type of supervised learning problem available for the candidates. For more information, see SageMaker Autopilot problem types.
auto_ml_job_objective(AutoMlJobObjective)
/set_auto_ml_job_objective(Option<AutoMlJobObjective>)
:
required: falseSpecifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. See AutoMLJobObjective for the default values.
auto_ml_job_config(AutoMlJobConfig)
/set_auto_ml_job_config(Option<AutoMlJobConfig>)
:
required: falseA collection of settings used to configure an AutoML job.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:
required: trueThe ARN of the role that is used to access the data.
generate_candidate_definitions_only(bool)
/set_generate_candidate_definitions_only(Option<bool>)
:
required: falseGenerates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseAn array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
model_deploy_config(ModelDeployConfig)
/set_model_deploy_config(Option<ModelDeployConfig>)
:
required: falseSpecifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
- On success, responds with
CreateAutoMlJobOutput
with field(s):auto_ml_job_arn(Option<String>)
:The unique ARN assigned to the AutoML job when it is created.
- On failure, responds with
SdkError<CreateAutoMLJobError>
Source§impl Client
impl Client
Sourcepub fn create_auto_ml_job_v2(&self) -> CreateAutoMLJobV2FluentBuilder
pub fn create_auto_ml_job_v2(&self) -> CreateAutoMLJobV2FluentBuilder
Constructs a fluent builder for the CreateAutoMLJobV2
operation.
- The fluent builder is configurable:
auto_ml_job_name(impl Into<String>)
/set_auto_ml_job_name(Option<String>)
:
required: trueIdentifies an Autopilot job. The name must be unique to your account and is case insensitive.
auto_ml_job_input_data_config(AutoMlJobChannel)
/set_auto_ml_job_input_data_config(Option<Vec::<AutoMlJobChannel>>)
:
required: trueAn array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the InputDataConfig attribute in the
CreateAutoMLJob
input parameters. The supported formats depend on the problem type:-
For tabular problem types:
S3Prefix
,ManifestFile
. -
For image classification:
S3Prefix
,ManifestFile
,AugmentedManifestFile
. -
For text classification:
S3Prefix
. -
For time-series forecasting:
S3Prefix
. -
For text generation (LLMs fine-tuning):
S3Prefix
.
-
output_data_config(AutoMlOutputDataConfig)
/set_output_data_config(Option<AutoMlOutputDataConfig>)
:
required: trueProvides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.
auto_ml_problem_type_config(AutoMlProblemTypeConfig)
/set_auto_ml_problem_type_config(Option<AutoMlProblemTypeConfig>)
:
required: trueDefines the configuration settings of one of the supported problem types.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:
required: trueThe ARN of the role that is used to access the data.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseAn array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
security_config(AutoMlSecurityConfig)
/set_security_config(Option<AutoMlSecurityConfig>)
:
required: falseThe security configuration for traffic encryption or Amazon VPC settings.
auto_ml_job_objective(AutoMlJobObjective)
/set_auto_ml_job_objective(Option<AutoMlJobObjective>)
:
required: falseSpecifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see AutoMLJobObjective.
-
For tabular problem types: You must either provide both the
AutoMLJobObjective
and indicate the type of supervised learning problem inAutoMLProblemTypeConfig
(TabularJobConfig.ProblemType
), or none at all. -
For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the
AutoMLJobObjective
field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see Metrics for fine-tuning LLMs in Autopilot.
-
model_deploy_config(ModelDeployConfig)
/set_model_deploy_config(Option<ModelDeployConfig>)
:
required: falseSpecifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
data_split_config(AutoMlDataSplitConfig)
/set_data_split_config(Option<AutoMlDataSplitConfig>)
:
required: falseThis structure specifies how to split the data into train and validation datasets.
The validation and training datasets must contain the same headers. For jobs created by calling
CreateAutoMLJob
, the validation dataset must be less than 2 GB in size.This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.
auto_ml_compute_config(AutoMlComputeConfig)
/set_auto_ml_compute_config(Option<AutoMlComputeConfig>)
:
required: falseSpecifies the compute configuration for the AutoML job V2.
- On success, responds with
CreateAutoMlJobV2Output
with field(s):auto_ml_job_arn(Option<String>)
:The unique ARN assigned to the AutoMLJob when it is created.
- On failure, responds with
SdkError<CreateAutoMLJobV2Error>
Source§impl Client
impl Client
Sourcepub fn create_cluster(&self) -> CreateClusterFluentBuilder
pub fn create_cluster(&self) -> CreateClusterFluentBuilder
Constructs a fluent builder for the CreateCluster
operation.
- The fluent builder is configurable:
cluster_name(impl Into<String>)
/set_cluster_name(Option<String>)
:
required: trueThe name for the new SageMaker HyperPod cluster.
instance_groups(ClusterInstanceGroupSpecification)
/set_instance_groups(Option<Vec::<ClusterInstanceGroupSpecification>>)
:
required: trueThe instance groups to be created in the SageMaker HyperPod cluster.
vpc_config(VpcConfig)
/set_vpc_config(Option<VpcConfig>)
:
required: falseSpecifies the Amazon Virtual Private Cloud (VPC) that is associated with the Amazon SageMaker HyperPod cluster. You can control access to and from your resources by configuring your VPC. For more information, see Give SageMaker access to resources in your Amazon VPC.
When your Amazon VPC and subnets support IPv6, network communications differ based on the cluster orchestration platform:
-
Slurm-orchestrated clusters automatically configure nodes with dual IPv6 and IPv4 addresses, allowing immediate IPv6 network communications.
-
In Amazon EKS-orchestrated clusters, nodes receive dual-stack addressing, but pods can only use IPv6 when the Amazon EKS cluster is explicitly IPv6-enabled. For information about deploying an IPv6 Amazon EKS cluster, see Amazon EKS IPv6 Cluster Deployment.
Additional resources for IPv6 configuration:
-
For information about adding IPv6 support to your VPC, see to IPv6 Support for VPC.
-
For information about creating a new IPv6-compatible VPC, see Amazon VPC Creation Guide.
-
To configure SageMaker HyperPod with a custom Amazon VPC, see Custom Amazon VPC Setup for SageMaker HyperPod.
-
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseCustom tags for managing the SageMaker HyperPod cluster as an Amazon Web Services resource. You can add tags to your cluster in the same way you add them in other Amazon Web Services services that support tagging. To learn more about tagging Amazon Web Services resources in general, see Tagging Amazon Web Services Resources User Guide.
orchestrator(ClusterOrchestrator)
/set_orchestrator(Option<ClusterOrchestrator>)
:
required: falseThe type of orchestrator to use for the SageMaker HyperPod cluster. Currently, the only supported value is
“eks”
, which is to use an Amazon Elastic Kubernetes Service (EKS) cluster as the orchestrator.node_recovery(ClusterNodeRecovery)
/set_node_recovery(Option<ClusterNodeRecovery>)
:
required: falseThe node recovery mode for the SageMaker HyperPod cluster. When set to
Automatic
, SageMaker HyperPod will automatically reboot or replace faulty nodes when issues are detected. When set toNone
, cluster administrators will need to manually manage any faulty cluster instances.
- On success, responds with
CreateClusterOutput
with field(s):cluster_arn(Option<String>)
:The Amazon Resource Name (ARN) of the cluster.
- On failure, responds with
SdkError<CreateClusterError>
Source§impl Client
impl Client
Sourcepub fn create_cluster_scheduler_config(
&self,
) -> CreateClusterSchedulerConfigFluentBuilder
pub fn create_cluster_scheduler_config( &self, ) -> CreateClusterSchedulerConfigFluentBuilder
Constructs a fluent builder for the CreateClusterSchedulerConfig
operation.
- The fluent builder is configurable:
name(impl Into<String>)
/set_name(Option<String>)
:
required: trueName for the cluster policy.
cluster_arn(impl Into<String>)
/set_cluster_arn(Option<String>)
:
required: trueARN of the cluster.
scheduler_config(SchedulerConfig)
/set_scheduler_config(Option<SchedulerConfig>)
:
required: trueConfiguration about the monitoring schedule.
description(impl Into<String>)
/set_description(Option<String>)
:
required: falseDescription of the cluster policy.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseTags of the cluster policy.
- On success, responds with
CreateClusterSchedulerConfigOutput
with field(s):cluster_scheduler_config_arn(Option<String>)
:ARN of the cluster policy.
cluster_scheduler_config_id(Option<String>)
:ID of the cluster policy.
- On failure, responds with
SdkError<CreateClusterSchedulerConfigError>
Source§impl Client
impl Client
Sourcepub fn create_code_repository(&self) -> CreateCodeRepositoryFluentBuilder
pub fn create_code_repository(&self) -> CreateCodeRepositoryFluentBuilder
Constructs a fluent builder for the CreateCodeRepository
operation.
- The fluent builder is configurable:
code_repository_name(impl Into<String>)
/set_code_repository_name(Option<String>)
:
required: trueThe name of the Git repository. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
git_config(GitConfig)
/set_git_config(Option<GitConfig>)
:
required: trueSpecifies details about the repository, including the URL where the repository is located, the default branch, and credentials to use to access the repository.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseAn array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
- On success, responds with
CreateCodeRepositoryOutput
with field(s):code_repository_arn(Option<String>)
:The Amazon Resource Name (ARN) of the new repository.
- On failure, responds with
SdkError<CreateCodeRepositoryError>
Source§impl Client
impl Client
Sourcepub fn create_compilation_job(&self) -> CreateCompilationJobFluentBuilder
pub fn create_compilation_job(&self) -> CreateCompilationJobFluentBuilder
Constructs a fluent builder for the CreateCompilationJob
operation.
- The fluent builder is configurable:
compilation_job_name(impl Into<String>)
/set_compilation_job_name(Option<String>)
:
required: trueA name for the model compilation job. The name must be unique within the Amazon Web Services Region and within your Amazon Web Services account.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker AI to perform tasks on your behalf.
During model compilation, Amazon SageMaker AI needs your permission to:
-
Read input data from an S3 bucket
-
Write model artifacts to an S3 bucket
-
Write logs to Amazon CloudWatch Logs
-
Publish metrics to Amazon CloudWatch
You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker AI, the caller of this API must have the
iam:PassRole
permission. For more information, see Amazon SageMaker AI Roles.-
model_package_version_arn(impl Into<String>)
/set_model_package_version_arn(Option<String>)
:
required: falseThe Amazon Resource Name (ARN) of a versioned model package. Provide either a
ModelPackageVersionArn
or anInputConfig
object in the request syntax. The presence of both objects in theCreateCompilationJob
request will return an exception.input_config(InputConfig)
/set_input_config(Option<InputConfig>)
:
required: falseProvides information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.
output_config(OutputConfig)
/set_output_config(Option<OutputConfig>)
:
required: trueProvides information about the output location for the compiled model and the target device the model runs on.
vpc_config(NeoVpcConfig)
/set_vpc_config(Option<NeoVpcConfig>)
:
required: falseA VpcConfig object that specifies the VPC that you want your compilation job to connect to. Control access to your models by configuring the VPC. For more information, see Protect Compilation Jobs by Using an Amazon Virtual Private Cloud.
stopping_condition(StoppingCondition)
/set_stopping_condition(Option<StoppingCondition>)
:
required: trueSpecifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker AI ends the compilation job. Use this API to cap model training costs.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseAn array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
- On success, responds with
CreateCompilationJobOutput
with field(s):compilation_job_arn(Option<String>)
:If the action is successful, the service sends back an HTTP 200 response. Amazon SageMaker AI returns the following data in JSON format:
-
CompilationJobArn
: The Amazon Resource Name (ARN) of the compiled job.
-
- On failure, responds with
SdkError<CreateCompilationJobError>
Source§impl Client
impl Client
Sourcepub fn create_compute_quota(&self) -> CreateComputeQuotaFluentBuilder
pub fn create_compute_quota(&self) -> CreateComputeQuotaFluentBuilder
Constructs a fluent builder for the CreateComputeQuota
operation.
- The fluent builder is configurable:
name(impl Into<String>)
/set_name(Option<String>)
:
required: trueName to the compute allocation definition.
description(impl Into<String>)
/set_description(Option<String>)
:
required: falseDescription of the compute allocation definition.
cluster_arn(impl Into<String>)
/set_cluster_arn(Option<String>)
:
required: trueARN of the cluster.
compute_quota_config(ComputeQuotaConfig)
/set_compute_quota_config(Option<ComputeQuotaConfig>)
:
required: trueConfiguration of the compute allocation definition. This includes the resource sharing option, and the setting to preempt low priority tasks.
compute_quota_target(ComputeQuotaTarget)
/set_compute_quota_target(Option<ComputeQuotaTarget>)
:
required: trueThe target entity to allocate compute resources to.
activation_state(ActivationState)
/set_activation_state(Option<ActivationState>)
:
required: falseThe state of the compute allocation being described. Use to enable or disable compute allocation.
Default is
Enabled
.tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseTags of the compute allocation definition.
- On success, responds with
CreateComputeQuotaOutput
with field(s):compute_quota_arn(Option<String>)
:ARN of the compute allocation definition.
compute_quota_id(Option<String>)
:ID of the compute allocation definition.
- On failure, responds with
SdkError<CreateComputeQuotaError>
Source§impl Client
impl Client
Sourcepub fn create_context(&self) -> CreateContextFluentBuilder
pub fn create_context(&self) -> CreateContextFluentBuilder
Constructs a fluent builder for the CreateContext
operation.
- The fluent builder is configurable:
context_name(impl Into<String>)
/set_context_name(Option<String>)
:
required: trueThe name of the context. Must be unique to your account in an Amazon Web Services Region.
source(ContextSource)
/set_source(Option<ContextSource>)
:
required: trueThe source type, ID, and URI.
context_type(impl Into<String>)
/set_context_type(Option<String>)
:
required: trueThe context type.
description(impl Into<String>)
/set_description(Option<String>)
:
required: falseThe description of the context.
properties(impl Into<String>, impl Into<String>)
/set_properties(Option<HashMap::<String, String>>)
:
required: falseA list of properties to add to the context.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseA list of tags to apply to the context.
- On success, responds with
CreateContextOutput
with field(s):context_arn(Option<String>)
:The Amazon Resource Name (ARN) of the context.
- On failure, responds with
SdkError<CreateContextError>
Source§impl Client
impl Client
Sourcepub fn create_data_quality_job_definition(
&self,
) -> CreateDataQualityJobDefinitionFluentBuilder
pub fn create_data_quality_job_definition( &self, ) -> CreateDataQualityJobDefinitionFluentBuilder
Constructs a fluent builder for the CreateDataQualityJobDefinition
operation.
- The fluent builder is configurable:
job_definition_name(impl Into<String>)
/set_job_definition_name(Option<String>)
:
required: trueThe name for the monitoring job definition.
data_quality_baseline_config(DataQualityBaselineConfig)
/set_data_quality_baseline_config(Option<DataQualityBaselineConfig>)
:
required: falseConfigures the constraints and baselines for the monitoring job.
data_quality_app_specification(DataQualityAppSpecification)
/set_data_quality_app_specification(Option<DataQualityAppSpecification>)
:
required: trueSpecifies the container that runs the monitoring job.
data_quality_job_input(DataQualityJobInput)
/set_data_quality_job_input(Option<DataQualityJobInput>)
:
required: trueA list of inputs for the monitoring job. Currently endpoints are supported as monitoring inputs.
data_quality_job_output_config(MonitoringOutputConfig)
/set_data_quality_job_output_config(Option<MonitoringOutputConfig>)
:
required: trueThe output configuration for monitoring jobs.
job_resources(MonitoringResources)
/set_job_resources(Option<MonitoringResources>)
:
required: trueIdentifies the resources to deploy for a monitoring job.
network_config(MonitoringNetworkConfig)
/set_network_config(Option<MonitoringNetworkConfig>)
:
required: falseSpecifies networking configuration for the monitoring job.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.
stopping_condition(MonitoringStoppingCondition)
/set_stopping_condition(Option<MonitoringStoppingCondition>)
:
required: falseA time limit for how long the monitoring job is allowed to run before stopping.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: false(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.
- On success, responds with
CreateDataQualityJobDefinitionOutput
with field(s):job_definition_arn(Option<String>)
:The Amazon Resource Name (ARN) of the job definition.
- On failure, responds with
SdkError<CreateDataQualityJobDefinitionError>
Source§impl Client
impl Client
Sourcepub fn create_device_fleet(&self) -> CreateDeviceFleetFluentBuilder
pub fn create_device_fleet(&self) -> CreateDeviceFleetFluentBuilder
Constructs a fluent builder for the CreateDeviceFleet
operation.
- The fluent builder is configurable:
device_fleet_name(impl Into<String>)
/set_device_fleet_name(Option<String>)
:
required: trueThe name of the fleet that the device belongs to.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:
required: falseThe Amazon Resource Name (ARN) that has access to Amazon Web Services Internet of Things (IoT).
description(impl Into<String>)
/set_description(Option<String>)
:
required: falseA description of the fleet.
output_config(EdgeOutputConfig)
/set_output_config(Option<EdgeOutputConfig>)
:
required: trueThe output configuration for storing sample data collected by the fleet.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseCreates tags for the specified fleet.
enable_iot_role_alias(bool)
/set_enable_iot_role_alias(Option<bool>)
:
required: falseWhether to create an Amazon Web Services IoT Role Alias during device fleet creation. The name of the role alias generated will match this pattern: “SageMakerEdge-{DeviceFleetName}”.
For example, if your device fleet is called “demo-fleet”, the name of the role alias will be “SageMakerEdge-demo-fleet”.
- On success, responds with
CreateDeviceFleetOutput
- On failure, responds with
SdkError<CreateDeviceFleetError>
Source§impl Client
impl Client
Sourcepub fn create_domain(&self) -> CreateDomainFluentBuilder
pub fn create_domain(&self) -> CreateDomainFluentBuilder
Constructs a fluent builder for the CreateDomain
operation.
- The fluent builder is configurable:
domain_name(impl Into<String>)
/set_domain_name(Option<String>)
:
required: trueA name for the domain.
auth_mode(AuthMode)
/set_auth_mode(Option<AuthMode>)
:
required: trueThe mode of authentication that members use to access the domain.
default_user_settings(UserSettings)
/set_default_user_settings(Option<UserSettings>)
:
required: trueThe default settings to use to create a user profile when
UserSettings
isn’t specified in the call to theCreateUserProfile
API.SecurityGroups
is aggregated when specified in both calls. For all other settings inUserSettings
, the values specified inCreateUserProfile
take precedence over those specified inCreateDomain
.domain_settings(DomainSettings)
/set_domain_settings(Option<DomainSettings>)
:
required: falseA collection of
Domain
settings.subnet_ids(impl Into<String>)
/set_subnet_ids(Option<Vec::<String>>)
:
required: trueThe VPC subnets that the domain uses for communication.
vpc_id(impl Into<String>)
/set_vpc_id(Option<String>)
:
required: trueThe ID of the Amazon Virtual Private Cloud (VPC) that the domain uses for communication.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseTags to associated with the Domain. Each tag consists of a key and an optional value. Tag keys must be unique per resource. Tags are searchable using the
Search
API.Tags that you specify for the Domain are also added to all Apps that the Domain launches.
app_network_access_type(AppNetworkAccessType)
/set_app_network_access_type(Option<AppNetworkAccessType>)
:
required: falseSpecifies the VPC used for non-EFS traffic. The default value is
PublicInternetOnly
.-
PublicInternetOnly
- Non-EFS traffic is through a VPC managed by Amazon SageMaker AI, which allows direct internet access -
VpcOnly
- All traffic is through the specified VPC and subnets
-
home_efs_file_system_kms_key_id(impl Into<String>)
/set_home_efs_file_system_kms_key_id(Option<String>)
:
required: falseUse
KmsKeyId
.kms_key_id(impl Into<String>)
/set_kms_key_id(Option<String>)
:
required: falseSageMaker AI uses Amazon Web Services KMS to encrypt EFS and EBS volumes attached to the domain with an Amazon Web Services managed key by default. For more control, specify a customer managed key.
app_security_group_management(AppSecurityGroupManagement)
/set_app_security_group_management(Option<AppSecurityGroupManagement>)
:
required: falseThe entity that creates and manages the required security groups for inter-app communication in
VPCOnly
mode. Required whenCreateDomain.AppNetworkAccessType
isVPCOnly
andDomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn
is provided. If setting up the domain for use with RStudio, this value must be set toService
.tag_propagation(TagPropagation)
/set_tag_propagation(Option<TagPropagation>)
:
required: falseIndicates whether custom tag propagation is supported for the domain. Defaults to
DISABLED
.default_space_settings(DefaultSpaceSettings)
/set_default_space_settings(Option<DefaultSpaceSettings>)
:
required: falseThe default settings for shared spaces that users create in the domain.
- On success, responds with
CreateDomainOutput
with field(s):domain_arn(Option<String>)
:The Amazon Resource Name (ARN) of the created domain.
domain_id(Option<String>)
:The ID of the created domain.
url(Option<String>)
:The URL to the created domain.
- On failure, responds with
SdkError<CreateDomainError>
Source§impl Client
impl Client
Sourcepub fn create_edge_deployment_plan(
&self,
) -> CreateEdgeDeploymentPlanFluentBuilder
pub fn create_edge_deployment_plan( &self, ) -> CreateEdgeDeploymentPlanFluentBuilder
Constructs a fluent builder for the CreateEdgeDeploymentPlan
operation.
- The fluent builder is configurable:
edge_deployment_plan_name(impl Into<String>)
/set_edge_deployment_plan_name(Option<String>)
:
required: trueThe name of the edge deployment plan.
model_configs(EdgeDeploymentModelConfig)
/set_model_configs(Option<Vec::<EdgeDeploymentModelConfig>>)
:
required: trueList of models associated with the edge deployment plan.
device_fleet_name(impl Into<String>)
/set_device_fleet_name(Option<String>)
:
required: trueThe device fleet used for this edge deployment plan.
stages(DeploymentStage)
/set_stages(Option<Vec::<DeploymentStage>>)
:
required: falseList of stages of the edge deployment plan. The number of stages is limited to 10 per deployment.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseList of tags with which to tag the edge deployment plan.
- On success, responds with
CreateEdgeDeploymentPlanOutput
with field(s):edge_deployment_plan_arn(Option<String>)
:The ARN of the edge deployment plan.
- On failure, responds with
SdkError<CreateEdgeDeploymentPlanError>
Source§impl Client
impl Client
Sourcepub fn create_edge_deployment_stage(
&self,
) -> CreateEdgeDeploymentStageFluentBuilder
pub fn create_edge_deployment_stage( &self, ) -> CreateEdgeDeploymentStageFluentBuilder
Constructs a fluent builder for the CreateEdgeDeploymentStage
operation.
- The fluent builder is configurable:
edge_deployment_plan_name(impl Into<String>)
/set_edge_deployment_plan_name(Option<String>)
:
required: trueThe name of the edge deployment plan.
stages(DeploymentStage)
/set_stages(Option<Vec::<DeploymentStage>>)
:
required: trueList of stages to be added to the edge deployment plan.
- On success, responds with
CreateEdgeDeploymentStageOutput
- On failure, responds with
SdkError<CreateEdgeDeploymentStageError>
Source§impl Client
impl Client
Sourcepub fn create_edge_packaging_job(&self) -> CreateEdgePackagingJobFluentBuilder
pub fn create_edge_packaging_job(&self) -> CreateEdgePackagingJobFluentBuilder
Constructs a fluent builder for the CreateEdgePackagingJob
operation.
- The fluent builder is configurable:
edge_packaging_job_name(impl Into<String>)
/set_edge_packaging_job_name(Option<String>)
:
required: trueThe name of the edge packaging job.
compilation_job_name(impl Into<String>)
/set_compilation_job_name(Option<String>)
:
required: trueThe name of the SageMaker Neo compilation job that will be used to locate model artifacts for packaging.
model_name(impl Into<String>)
/set_model_name(Option<String>)
:
required: trueThe name of the model.
model_version(impl Into<String>)
/set_model_version(Option<String>)
:
required: trueThe version of the model.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to download and upload the model, and to contact SageMaker Neo.
output_config(EdgeOutputConfig)
/set_output_config(Option<EdgeOutputConfig>)
:
required: trueProvides information about the output location for the packaged model.
resource_key(impl Into<String>)
/set_resource_key(Option<String>)
:
required: falseThe Amazon Web Services KMS key to use when encrypting the EBS volume the edge packaging job runs on.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseCreates tags for the packaging job.
- On success, responds with
CreateEdgePackagingJobOutput
- On failure, responds with
SdkError<CreateEdgePackagingJobError>
Source§impl Client
impl Client
Sourcepub fn create_endpoint(&self) -> CreateEndpointFluentBuilder
pub fn create_endpoint(&self) -> CreateEndpointFluentBuilder
Constructs a fluent builder for the CreateEndpoint
operation.
- The fluent builder is configurable:
endpoint_name(impl Into<String>)
/set_endpoint_name(Option<String>)
:
required: trueThe name of the endpoint.The name must be unique within an Amazon Web Services Region in your Amazon Web Services account. The name is case-insensitive in
CreateEndpoint
, but the case is preserved and must be matched in InvokeEndpoint.endpoint_config_name(impl Into<String>)
/set_endpoint_config_name(Option<String>)
:
required: trueThe name of an endpoint configuration. For more information, see CreateEndpointConfig.
deployment_config(DeploymentConfig)
/set_deployment_config(Option<DeploymentConfig>)
:
required: falseThe deployment configuration for an endpoint, which contains the desired deployment strategy and rollback configurations.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseAn array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
- On success, responds with
CreateEndpointOutput
with field(s):endpoint_arn(Option<String>)
:The Amazon Resource Name (ARN) of the endpoint.
- On failure, responds with
SdkError<CreateEndpointError>
Source§impl Client
impl Client
Sourcepub fn create_endpoint_config(&self) -> CreateEndpointConfigFluentBuilder
pub fn create_endpoint_config(&self) -> CreateEndpointConfigFluentBuilder
Constructs a fluent builder for the CreateEndpointConfig
operation.
- The fluent builder is configurable:
endpoint_config_name(impl Into<String>)
/set_endpoint_config_name(Option<String>)
:
required: trueThe name of the endpoint configuration. You specify this name in a CreateEndpoint request.
production_variants(ProductionVariant)
/set_production_variants(Option<Vec::<ProductionVariant>>)
:
required: trueAn array of
ProductionVariant
objects, one for each model that you want to host at this endpoint.data_capture_config(DataCaptureConfig)
/set_data_capture_config(Option<DataCaptureConfig>)
:
required: falseConfiguration to control how SageMaker AI captures inference data.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseAn array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
kms_key_id(impl Into<String>)
/set_kms_key_id(Option<String>)
:
required: falseThe Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint.
The KmsKeyId can be any of the following formats:
-
Key ID:
1234abcd-12ab-34cd-56ef-1234567890ab
-
Key ARN:
arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
-
Alias name:
alias/ExampleAlias
-
Alias name ARN:
arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
The KMS key policy must grant permission to the IAM role that you specify in your
CreateEndpoint
,UpdateEndpoint
requests. For more information, refer to the Amazon Web Services Key Management Service section Using Key Policies in Amazon Web Services KMSCertain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can’t request a
KmsKeyId
when using an instance type with local storage. If any of the models that you specify in theProductionVariants
parameter use nitro-based instances with local storage, do not specify a value for theKmsKeyId
parameter. If you specify a value forKmsKeyId
when using any nitro-based instances with local storage, the call toCreateEndpointConfig
fails.For a list of instance types that support local instance storage, see Instance Store Volumes.
For more information about local instance storage encryption, see SSD Instance Store Volumes.
-
async_inference_config(AsyncInferenceConfig)
/set_async_inference_config(Option<AsyncInferenceConfig>)
:
required: falseSpecifies configuration for how an endpoint performs asynchronous inference. This is a required field in order for your Endpoint to be invoked using InvokeEndpointAsync.
explainer_config(ExplainerConfig)
/set_explainer_config(Option<ExplainerConfig>)
:
required: falseA member of
CreateEndpointConfig
that enables explainers.shadow_production_variants(ProductionVariant)
/set_shadow_production_variants(Option<Vec::<ProductionVariant>>)
:
required: falseAn array of
ProductionVariant
objects, one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified onProductionVariants
. If you use this field, you can only specify one variant forProductionVariants
and one variant forShadowProductionVariants
.execution_role_arn(impl Into<String>)
/set_execution_role_arn(Option<String>)
:
required: falseThe Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform actions on your behalf. For more information, see SageMaker AI Roles.
To be able to pass this role to Amazon SageMaker AI, the caller of this action must have the
iam:PassRole
permission.vpc_config(VpcConfig)
/set_vpc_config(Option<VpcConfig>)
:
required: falseSpecifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs, hosted models, and compute resources have access to. You can control access to and from your resources by configuring a VPC. For more information, see Give SageMaker Access to Resources in your Amazon VPC.
enable_network_isolation(bool)
/set_enable_network_isolation(Option<bool>)
:
required: falseSets whether all model containers deployed to the endpoint are isolated. If they are, no inbound or outbound network calls can be made to or from the model containers.
- On success, responds with
CreateEndpointConfigOutput
with field(s):endpoint_config_arn(Option<String>)
:The Amazon Resource Name (ARN) of the endpoint configuration.
- On failure, responds with
SdkError<CreateEndpointConfigError>
Source§impl Client
impl Client
Sourcepub fn create_experiment(&self) -> CreateExperimentFluentBuilder
pub fn create_experiment(&self) -> CreateExperimentFluentBuilder
Constructs a fluent builder for the CreateExperiment
operation.
- The fluent builder is configurable:
experiment_name(impl Into<String>)
/set_experiment_name(Option<String>)
:
required: trueThe name of the experiment. The name must be unique in your Amazon Web Services account and is not case-sensitive.
display_name(impl Into<String>)
/set_display_name(Option<String>)
:
required: falseThe name of the experiment as displayed. The name doesn’t need to be unique. If you don’t specify
DisplayName
, the value inExperimentName
is displayed.description(impl Into<String>)
/set_description(Option<String>)
:
required: falseThe description of the experiment.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseA list of tags to associate with the experiment. You can use Search API to search on the tags.
- On success, responds with
CreateExperimentOutput
with field(s):experiment_arn(Option<String>)
:The Amazon Resource Name (ARN) of the experiment.
- On failure, responds with
SdkError<CreateExperimentError>
Source§impl Client
impl Client
Sourcepub fn create_feature_group(&self) -> CreateFeatureGroupFluentBuilder
pub fn create_feature_group(&self) -> CreateFeatureGroupFluentBuilder
Constructs a fluent builder for the CreateFeatureGroup
operation.
- The fluent builder is configurable:
feature_group_name(impl Into<String>)
/set_feature_group_name(Option<String>)
:
required: trueThe name of the
FeatureGroup
. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.The name:
-
Must start with an alphanumeric character.
-
Can only include alphanumeric characters, underscores, and hyphens. Spaces are not allowed.
-
record_identifier_feature_name(impl Into<String>)
/set_record_identifier_feature_name(Option<String>)
:
required: trueThe name of the
Feature
whose value uniquely identifies aRecord
defined in theFeatureStore
. Only the latest record per identifier value will be stored in theOnlineStore
.RecordIdentifierFeatureName
must be one of feature definitions’ names.You use the
RecordIdentifierFeatureName
to access data in aFeatureStore
.This name:
-
Must start with an alphanumeric character.
-
Can only contains alphanumeric characters, hyphens, underscores. Spaces are not allowed.
-
event_time_feature_name(impl Into<String>)
/set_event_time_feature_name(Option<String>)
:
required: trueThe name of the feature that stores the
EventTime
of aRecord
in aFeatureGroup
.An
EventTime
is a point in time when a new event occurs that corresponds to the creation or update of aRecord
in aFeatureGroup
. AllRecords
in theFeatureGroup
must have a correspondingEventTime
.An
EventTime
can be aString
orFractional
.-
Fractional
:EventTime
feature values must be a Unix timestamp in seconds. -
String
:EventTime
feature values must be an ISO-8601 string in the format. The following formats are supportedyyyy-MM-dd’T’HH:mm:ssZ
andyyyy-MM-dd’T’HH:mm:ss.SSSZ
whereyyyy
,MM
, anddd
represent the year, month, and day respectively andHH
,mm
,ss
, and if applicable,SSS
represent the hour, month, second and milliseconds respsectively.‘T’
andZ
are constants.
-
feature_definitions(FeatureDefinition)
/set_feature_definitions(Option<Vec::<FeatureDefinition>>)
:
required: trueA list of
Feature
names and types.Name
andType
is compulsory perFeature
.Valid feature
FeatureType
s areIntegral
,Fractional
andString
.FeatureName
s cannot be any of the following:is_deleted
,write_time
,api_invocation_time
You can create up to 2,500
FeatureDefinition
s perFeatureGroup
.online_store_config(OnlineStoreConfig)
/set_online_store_config(Option<OnlineStoreConfig>)
:
required: falseYou can turn the
OnlineStore
on or off by specifyingTrue
for theEnableOnlineStore
flag inOnlineStoreConfig
.You can also include an Amazon Web Services KMS key ID (
KMSKeyId
) for at-rest encryption of theOnlineStore
.The default value is
False
.offline_store_config(OfflineStoreConfig)
/set_offline_store_config(Option<OfflineStoreConfig>)
:
required: falseUse this to configure an
OfflineFeatureStore
. This parameter allows you to specify:-
The Amazon Simple Storage Service (Amazon S3) location of an
OfflineStore
. -
A configuration for an Amazon Web Services Glue or Amazon Web Services Hive data catalog.
-
An KMS encryption key to encrypt the Amazon S3 location used for
OfflineStore
. If KMS encryption key is not specified, by default we encrypt all data at rest using Amazon Web Services KMS key. By defining your bucket-level key for SSE, you can reduce Amazon Web Services KMS requests costs by up to 99 percent. -
Format for the offline store table. Supported formats are Glue (Default) and Apache Iceberg.
To learn more about this parameter, see OfflineStoreConfig.
-
throughput_config(ThroughputConfig)
/set_throughput_config(Option<ThroughputConfig>)
:
required: falseUsed to set feature group throughput configuration. There are two modes:
ON_DEMAND
andPROVISIONED
. With on-demand mode, you are charged for data reads and writes that your application performs on your feature group. You do not need to specify read and write throughput because Feature Store accommodates your workloads as they ramp up and down. You can switch a feature group to on-demand only once in a 24 hour period. With provisioned throughput mode, you specify the read and write capacity per second that you expect your application to require, and you are billed based on those limits. Exceeding provisioned throughput will result in your requests being throttled.Note:
PROVISIONED
throughput mode is supported only for feature groups that are offline-only, or use theStandard
tier online store.role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:
required: falseThe Amazon Resource Name (ARN) of the IAM execution role used to persist data into the
OfflineStore
if anOfflineStoreConfig
is provided.description(impl Into<String>)
/set_description(Option<String>)
:
required: falseA free-form description of a
FeatureGroup
.tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseTags used to identify
Features
in eachFeatureGroup
.
- On success, responds with
CreateFeatureGroupOutput
with field(s):feature_group_arn(Option<String>)
:The Amazon Resource Name (ARN) of the
FeatureGroup
. This is a unique identifier for the feature group.
- On failure, responds with
SdkError<CreateFeatureGroupError>
Source§impl Client
impl Client
Sourcepub fn create_flow_definition(&self) -> CreateFlowDefinitionFluentBuilder
pub fn create_flow_definition(&self) -> CreateFlowDefinitionFluentBuilder
Constructs a fluent builder for the CreateFlowDefinition
operation.
- The fluent builder is configurable:
flow_definition_name(impl Into<String>)
/set_flow_definition_name(Option<String>)
:
required: trueThe name of your flow definition.
human_loop_request_source(HumanLoopRequestSource)
/set_human_loop_request_source(Option<HumanLoopRequestSource>)
:
required: falseContainer for configuring the source of human task requests. Use to specify if Amazon Rekognition or Amazon Textract is used as an integration source.
human_loop_activation_config(HumanLoopActivationConfig)
/set_human_loop_activation_config(Option<HumanLoopActivationConfig>)
:
required: falseAn object containing information about the events that trigger a human workflow.
human_loop_config(HumanLoopConfig)
/set_human_loop_config(Option<HumanLoopConfig>)
:
required: falseAn object containing information about the tasks the human reviewers will perform.
output_config(FlowDefinitionOutputConfig)
/set_output_config(Option<FlowDefinitionOutputConfig>)
:
required: trueAn object containing information about where the human review results will be uploaded.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of the role needed to call other services on your behalf. For example,
arn:aws:iam::1234567890:role/service-role/AmazonSageMaker-ExecutionRole-20180111T151298
.tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseAn array of key-value pairs that contain metadata to help you categorize and organize a flow definition. Each tag consists of a key and a value, both of which you define.
- On success, responds with
CreateFlowDefinitionOutput
with field(s):flow_definition_arn(Option<String>)
:The Amazon Resource Name (ARN) of the flow definition you create.
- On failure, responds with
SdkError<CreateFlowDefinitionError>
Source§impl Client
impl Client
Sourcepub fn create_hub(&self) -> CreateHubFluentBuilder
pub fn create_hub(&self) -> CreateHubFluentBuilder
Constructs a fluent builder for the CreateHub
operation.
- The fluent builder is configurable:
hub_name(impl Into<String>)
/set_hub_name(Option<String>)
:
required: trueThe name of the hub to create.
hub_description(impl Into<String>)
/set_hub_description(Option<String>)
:
required: trueA description of the hub.
hub_display_name(impl Into<String>)
/set_hub_display_name(Option<String>)
:
required: falseThe display name of the hub.
hub_search_keywords(impl Into<String>)
/set_hub_search_keywords(Option<Vec::<String>>)
:
required: falseThe searchable keywords for the hub.
s3_storage_config(HubS3StorageConfig)
/set_s3_storage_config(Option<HubS3StorageConfig>)
:
required: falseThe Amazon S3 storage configuration for the hub.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseAny tags to associate with the hub.
- On success, responds with
CreateHubOutput
with field(s):hub_arn(Option<String>)
:The Amazon Resource Name (ARN) of the hub.
- On failure, responds with
SdkError<CreateHubError>
Source§impl Client
impl Client
Sourcepub fn create_hub_content_reference(
&self,
) -> CreateHubContentReferenceFluentBuilder
pub fn create_hub_content_reference( &self, ) -> CreateHubContentReferenceFluentBuilder
Constructs a fluent builder for the CreateHubContentReference
operation.
- The fluent builder is configurable:
hub_name(impl Into<String>)
/set_hub_name(Option<String>)
:
required: trueThe name of the hub to add the hub content reference to.
sage_maker_public_hub_content_arn(impl Into<String>)
/set_sage_maker_public_hub_content_arn(Option<String>)
:
required: trueThe ARN of the public hub content to reference.
hub_content_name(impl Into<String>)
/set_hub_content_name(Option<String>)
:
required: falseThe name of the hub content to reference.
min_version(impl Into<String>)
/set_min_version(Option<String>)
:
required: falseThe minimum version of the hub content to reference.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseAny tags associated with the hub content to reference.
- On success, responds with
CreateHubContentReferenceOutput
with field(s):hub_arn(Option<String>)
:The ARN of the hub that the hub content reference was added to.
hub_content_arn(Option<String>)
:The ARN of the hub content.
- On failure, responds with
SdkError<CreateHubContentReferenceError>
Source§impl Client
impl Client
Sourcepub fn create_human_task_ui(&self) -> CreateHumanTaskUiFluentBuilder
pub fn create_human_task_ui(&self) -> CreateHumanTaskUiFluentBuilder
Constructs a fluent builder for the CreateHumanTaskUi
operation.
- The fluent builder is configurable:
human_task_ui_name(impl Into<String>)
/set_human_task_ui_name(Option<String>)
:
required: trueThe name of the user interface you are creating.
ui_template(UiTemplate)
/set_ui_template(Option<UiTemplate>)
:
required: trueThe Liquid template for the worker user interface.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseAn array of key-value pairs that contain metadata to help you categorize and organize a human review workflow user interface. Each tag consists of a key and a value, both of which you define.
- On success, responds with
CreateHumanTaskUiOutput
with field(s):human_task_ui_arn(Option<String>)
:The Amazon Resource Name (ARN) of the human review workflow user interface you create.
- On failure, responds with
SdkError<CreateHumanTaskUiError>
Source§impl Client
impl Client
Sourcepub fn create_hyper_parameter_tuning_job(
&self,
) -> CreateHyperParameterTuningJobFluentBuilder
pub fn create_hyper_parameter_tuning_job( &self, ) -> CreateHyperParameterTuningJobFluentBuilder
Constructs a fluent builder for the CreateHyperParameterTuningJob
operation.
- The fluent builder is configurable:
hyper_parameter_tuning_job_name(impl Into<String>)
/set_hyper_parameter_tuning_job_name(Option<String>)
:
required: trueThe name of the tuning job. This name is the prefix for the names of all training jobs that this tuning job launches. The name must be unique within the same Amazon Web Services account and Amazon Web Services Region. The name must have 1 to 32 characters. Valid characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case sensitive.
hyper_parameter_tuning_job_config(HyperParameterTuningJobConfig)
/set_hyper_parameter_tuning_job_config(Option<HyperParameterTuningJobConfig>)
:
required: trueThe HyperParameterTuningJobConfig object that describes the tuning job, including the search strategy, the objective metric used to evaluate training jobs, ranges of parameters to search, and resource limits for the tuning job. For more information, see How Hyperparameter Tuning Works.
training_job_definition(HyperParameterTrainingJobDefinition)
/set_training_job_definition(Option<HyperParameterTrainingJobDefinition>)
:
required: falseThe HyperParameterTrainingJobDefinition object that describes the training jobs that this tuning job launches, including static hyperparameters, input data configuration, output data configuration, resource configuration, and stopping condition.
training_job_definitions(HyperParameterTrainingJobDefinition)
/set_training_job_definitions(Option<Vec::<HyperParameterTrainingJobDefinition>>)
:
required: falseA list of the HyperParameterTrainingJobDefinition objects launched for this tuning job.
warm_start_config(HyperParameterTuningJobWarmStartConfig)
/set_warm_start_config(Option<HyperParameterTuningJobWarmStartConfig>)
:
required: falseSpecifies the configuration for starting the hyperparameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.
All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric. If you specify
IDENTICAL_DATA_AND_ALGORITHM
as theWarmStartType
value for the warm start configuration, the training job that performs the best in the new tuning job is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job.All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseAn array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
Tags that you specify for the tuning job are also added to all training jobs that the tuning job launches.
autotune(Autotune)
/set_autotune(Option<Autotune>)
:
required: falseConfigures SageMaker Automatic model tuning (AMT) to automatically find optimal parameters for the following fields:
-
ParameterRanges: The names and ranges of parameters that a hyperparameter tuning job can optimize.
-
ResourceLimits: The maximum resources that can be used for a training job. These resources include the maximum number of training jobs, the maximum runtime of a tuning job, and the maximum number of training jobs to run at the same time.
-
TrainingJobEarlyStoppingType: A flag that specifies whether or not to use early stopping for training jobs launched by a hyperparameter tuning job.
-
RetryStrategy: The number of times to retry a training job.
-
Strategy: Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training jobs that it launches.
-
ConvergenceDetected: A flag to indicate that Automatic model tuning (AMT) has detected model convergence.
-
- On success, responds with
CreateHyperParameterTuningJobOutput
with field(s):hyper_parameter_tuning_job_arn(Option<String>)
:The Amazon Resource Name (ARN) of the tuning job. SageMaker assigns an ARN to a hyperparameter tuning job when you create it.
- On failure, responds with
SdkError<CreateHyperParameterTuningJobError>
Source§impl Client
impl Client
Sourcepub fn create_image(&self) -> CreateImageFluentBuilder
pub fn create_image(&self) -> CreateImageFluentBuilder
Constructs a fluent builder for the CreateImage
operation.
- The fluent builder is configurable:
description(impl Into<String>)
/set_description(Option<String>)
:
required: falseThe description of the image.
display_name(impl Into<String>)
/set_display_name(Option<String>)
:
required: falseThe display name of the image. If not provided,
ImageName
is displayed.image_name(impl Into<String>)
/set_image_name(Option<String>)
:
required: trueThe name of the image. Must be unique to your account.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:
required: trueThe ARN of an IAM role that enables Amazon SageMaker AI to perform tasks on your behalf.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseA list of tags to apply to the image.
- On success, responds with
CreateImageOutput
with field(s):image_arn(Option<String>)
:The ARN of the image.
- On failure, responds with
SdkError<CreateImageError>
Source§impl Client
impl Client
Sourcepub fn create_image_version(&self) -> CreateImageVersionFluentBuilder
pub fn create_image_version(&self) -> CreateImageVersionFluentBuilder
Constructs a fluent builder for the CreateImageVersion
operation.
- The fluent builder is configurable:
base_image(impl Into<String>)
/set_base_image(Option<String>)
:
required: trueThe registry path of the container image to use as the starting point for this version. The path is an Amazon ECR URI in the following format:
<acct-id>.dkr.ecr.<region>.amazonaws.com/<repo-name[:tag] or [@digest]>
client_token(impl Into<String>)
/set_client_token(Option<String>)
:
required: trueA unique ID. If not specified, the Amazon Web Services CLI and Amazon Web Services SDKs, such as the SDK for Python (Boto3), add a unique value to the call.
image_name(impl Into<String>)
/set_image_name(Option<String>)
:
required: trueThe
ImageName
of theImage
to create a version of.aliases(impl Into<String>)
/set_aliases(Option<Vec::<String>>)
:
required: falseA list of aliases created with the image version.
vendor_guidance(VendorGuidance)
/set_vendor_guidance(Option<VendorGuidance>)
:
required: falseThe stability of the image version, specified by the maintainer.
-
NOT_PROVIDED
: The maintainers did not provide a status for image version stability. -
STABLE
: The image version is stable. -
TO_BE_ARCHIVED
: The image version is set to be archived. Custom image versions that are set to be archived are automatically archived after three months. -
ARCHIVED
: The image version is archived. Archived image versions are not searchable and are no longer actively supported.
-
job_type(JobType)
/set_job_type(Option<JobType>)
:
required: falseIndicates SageMaker AI job type compatibility.
-
TRAINING
: The image version is compatible with SageMaker AI training jobs. -
INFERENCE
: The image version is compatible with SageMaker AI inference jobs. -
NOTEBOOK_KERNEL
: The image version is compatible with SageMaker AI notebook kernels.
-
ml_framework(impl Into<String>)
/set_ml_framework(Option<String>)
:
required: falseThe machine learning framework vended in the image version.
programming_lang(impl Into<String>)
/set_programming_lang(Option<String>)
:
required: falseThe supported programming language and its version.
processor(Processor)
/set_processor(Option<Processor>)
:
required: falseIndicates CPU or GPU compatibility.
-
CPU
: The image version is compatible with CPU. -
GPU
: The image version is compatible with GPU.
-
horovod(bool)
/set_horovod(Option<bool>)
:
required: falseIndicates Horovod compatibility.
release_notes(impl Into<String>)
/set_release_notes(Option<String>)
:
required: falseThe maintainer description of the image version.
- On success, responds with
CreateImageVersionOutput
with field(s):image_version_arn(Option<String>)
:The ARN of the image version.
- On failure, responds with
SdkError<CreateImageVersionError>
Source§impl Client
impl Client
Sourcepub fn create_inference_component(
&self,
) -> CreateInferenceComponentFluentBuilder
pub fn create_inference_component( &self, ) -> CreateInferenceComponentFluentBuilder
Constructs a fluent builder for the CreateInferenceComponent
operation.
- The fluent builder is configurable:
inference_component_name(impl Into<String>)
/set_inference_component_name(Option<String>)
:
required: trueA unique name to assign to the inference component.
endpoint_name(impl Into<String>)
/set_endpoint_name(Option<String>)
:
required: trueThe name of an existing endpoint where you host the inference component.
variant_name(impl Into<String>)
/set_variant_name(Option<String>)
:
required: falseThe name of an existing production variant where you host the inference component.
specification(InferenceComponentSpecification)
/set_specification(Option<InferenceComponentSpecification>)
:
required: trueDetails about the resources to deploy with this inference component, including the model, container, and compute resources.
runtime_config(InferenceComponentRuntimeConfig)
/set_runtime_config(Option<InferenceComponentRuntimeConfig>)
:
required: falseRuntime settings for a model that is deployed with an inference component.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseA list of key-value pairs associated with the model. For more information, see Tagging Amazon Web Services resources in the Amazon Web Services General Reference.
- On success, responds with
CreateInferenceComponentOutput
with field(s):inference_component_arn(Option<String>)
:The Amazon Resource Name (ARN) of the inference component.
- On failure, responds with
SdkError<CreateInferenceComponentError>
Source§impl Client
impl Client
Sourcepub fn create_inference_experiment(
&self,
) -> CreateInferenceExperimentFluentBuilder
pub fn create_inference_experiment( &self, ) -> CreateInferenceExperimentFluentBuilder
Constructs a fluent builder for the CreateInferenceExperiment
operation.
- The fluent builder is configurable:
name(impl Into<String>)
/set_name(Option<String>)
:
required: trueThe name for the inference experiment.
r#type(InferenceExperimentType)
/set_type(Option<InferenceExperimentType>)
:
required: trueThe type of the inference experiment that you want to run. The following types of experiments are possible:
-
ShadowMode
: You can use this type to validate a shadow variant. For more information, see Shadow tests.
-
schedule(InferenceExperimentSchedule)
/set_schedule(Option<InferenceExperimentSchedule>)
:
required: falseThe duration for which you want the inference experiment to run. If you don’t specify this field, the experiment automatically starts immediately upon creation and concludes after 7 days.
description(impl Into<String>)
/set_description(Option<String>)
:
required: falseA description for the inference experiment.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:
required: trueThe ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images, and manage Amazon SageMaker Inference endpoints for model deployment.
endpoint_name(impl Into<String>)
/set_endpoint_name(Option<String>)
:
required: trueThe name of the Amazon SageMaker endpoint on which you want to run the inference experiment.
model_variants(ModelVariantConfig)
/set_model_variants(Option<Vec::<ModelVariantConfig>>)
:
required: trueAn array of
ModelVariantConfig
objects. There is one for each variant in the inference experiment. EachModelVariantConfig
object in the array describes the infrastructure configuration for the corresponding variant.data_storage_config(InferenceExperimentDataStorageConfig)
/set_data_storage_config(Option<InferenceExperimentDataStorageConfig>)
:
required: falseThe Amazon S3 location and configuration for storing inference request and response data.
This is an optional parameter that you can use for data capture. For more information, see Capture data.
shadow_mode_config(ShadowModeConfig)
/set_shadow_mode_config(Option<ShadowModeConfig>)
:
required: trueThe configuration of
ShadowMode
inference experiment type. Use this field to specify a production variant which takes all the inference requests, and a shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant also specify the percentage of requests that Amazon SageMaker replicates.kms_key(impl Into<String>)
/set_kms_key(Option<String>)
:
required: falseThe Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. The
KmsKey
can be any of the following formats:-
KMS key ID
“1234abcd-12ab-34cd-56ef-1234567890ab”
-
Amazon Resource Name (ARN) of a KMS key
“arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab”
-
KMS key Alias
“alias/ExampleAlias”
-
Amazon Resource Name (ARN) of a KMS key Alias
“arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias”
If you use a KMS key ID or an alias of your KMS key, the Amazon SageMaker execution role must include permissions to call
kms:Encrypt
. If you don’t provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role’s account. Amazon SageMaker uses server-side encryption with KMS managed keys forOutputDataConfig
. If you use a bucket policy with ans3:PutObject
permission that only allows objects with server-side encryption, set the condition key ofs3:x-amz-server-side-encryption
to“aws:kms”
. For more information, see KMS managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.The KMS key policy must grant permission to the IAM role that you specify in your
CreateEndpoint
andUpdateEndpoint
requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.-
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseArray of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging your Amazon Web Services Resources.
- On success, responds with
CreateInferenceExperimentOutput
with field(s):inference_experiment_arn(Option<String>)
:The ARN for your inference experiment.
- On failure, responds with
SdkError<CreateInferenceExperimentError>
Source§impl Client
impl Client
Sourcepub fn create_inference_recommendations_job(
&self,
) -> CreateInferenceRecommendationsJobFluentBuilder
pub fn create_inference_recommendations_job( &self, ) -> CreateInferenceRecommendationsJobFluentBuilder
Constructs a fluent builder for the CreateInferenceRecommendationsJob
operation.
- The fluent builder is configurable:
job_name(impl Into<String>)
/set_job_name(Option<String>)
:
required: trueA name for the recommendation job. The name must be unique within the Amazon Web Services Region and within your Amazon Web Services account. The job name is passed down to the resources created by the recommendation job. The names of resources (such as the model, endpoint configuration, endpoint, and compilation) that are prefixed with the job name are truncated at 40 characters.
job_type(RecommendationJobType)
/set_job_type(Option<RecommendationJobType>)
:
required: trueDefines the type of recommendation job. Specify
Default
to initiate an instance recommendation andAdvanced
to initiate a load test. If left unspecified, Amazon SageMaker Inference Recommender will run an instance recommendation (DEFAULT
) job.role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf.
input_config(RecommendationJobInputConfig)
/set_input_config(Option<RecommendationJobInputConfig>)
:
required: trueProvides information about the versioned model package Amazon Resource Name (ARN), the traffic pattern, and endpoint configurations.
job_description(impl Into<String>)
/set_job_description(Option<String>)
:
required: falseDescription of the recommendation job.
stopping_conditions(RecommendationJobStoppingConditions)
/set_stopping_conditions(Option<RecommendationJobStoppingConditions>)
:
required: falseA set of conditions for stopping a recommendation job. If any of the conditions are met, the job is automatically stopped.
output_config(RecommendationJobOutputConfig)
/set_output_config(Option<RecommendationJobOutputConfig>)
:
required: falseProvides information about the output artifacts and the KMS key to use for Amazon S3 server-side encryption.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseThe metadata that you apply to Amazon Web Services resources to help you categorize and organize them. Each tag consists of a key and a value, both of which you define. For more information, see Tagging Amazon Web Services Resources in the Amazon Web Services General Reference.
- On success, responds with
CreateInferenceRecommendationsJobOutput
with field(s):job_arn(Option<String>)
:The Amazon Resource Name (ARN) of the recommendation job.
- On failure, responds with
SdkError<CreateInferenceRecommendationsJobError>
Source§impl Client
impl Client
Sourcepub fn create_labeling_job(&self) -> CreateLabelingJobFluentBuilder
pub fn create_labeling_job(&self) -> CreateLabelingJobFluentBuilder
Constructs a fluent builder for the CreateLabelingJob
operation.
- The fluent builder is configurable:
labeling_job_name(impl Into<String>)
/set_labeling_job_name(Option<String>)
:
required: trueThe name of the labeling job. This name is used to identify the job in a list of labeling jobs. Labeling job names must be unique within an Amazon Web Services account and region.
LabelingJobName
is not case sensitive. For example, Example-job and example-job are considered the same labeling job name by Ground Truth.label_attribute_name(impl Into<String>)
/set_label_attribute_name(Option<String>)
:
required: trueThe attribute name to use for the label in the output manifest file. This is the key for the key/value pair formed with the label that a worker assigns to the object. The
LabelAttributeName
must meet the following requirements.-
The name can’t end with “-metadata”.
-
If you are using one of the following built-in task types, the attribute name must end with “-ref”. If the task type you are using is not listed below, the attribute name must not end with “-ref”.
-
Image semantic segmentation (
SemanticSegmentation)
, and adjustment (AdjustmentSemanticSegmentation
) and verification (VerificationSemanticSegmentation
) labeling jobs for this task type. -
Video frame object detection (
VideoObjectDetection
), and adjustment and verification (AdjustmentVideoObjectDetection
) labeling jobs for this task type. -
Video frame object tracking (
VideoObjectTracking
), and adjustment and verification (AdjustmentVideoObjectTracking
) labeling jobs for this task type. -
3D point cloud semantic segmentation (
3DPointCloudSemanticSegmentation
), and adjustment and verification (Adjustment3DPointCloudSemanticSegmentation
) labeling jobs for this task type. -
3D point cloud object tracking (
3DPointCloudObjectTracking
), and adjustment and verification (Adjustment3DPointCloudObjectTracking
) labeling jobs for this task type.
-
If you are creating an adjustment or verification labeling job, you must use a different
LabelAttributeName
than the one used in the original labeling job. The original labeling job is the Ground Truth labeling job that produced the labels that you want verified or adjusted. To learn more about adjustment and verification labeling jobs, see Verify and Adjust Labels.-
input_config(LabelingJobInputConfig)
/set_input_config(Option<LabelingJobInputConfig>)
:
required: trueInput data for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.
You must specify at least one of the following:
S3DataSource
orSnsDataSource
.-
Use
SnsDataSource
to specify an SNS input topic for a streaming labeling job. If you do not specify and SNS input topic ARN, Ground Truth will create a one-time labeling job that stops after all data objects in the input manifest file have been labeled. -
Use
S3DataSource
to specify an input manifest file for both streaming and one-time labeling jobs. Adding anS3DataSource
is optional if you useSnsDataSource
to create a streaming labeling job.
If you use the Amazon Mechanical Turk workforce, your input data should not include confidential information, personal information or protected health information. Use
ContentClassifiers
to specify that your data is free of personally identifiable information and adult content.-
output_config(LabelingJobOutputConfig)
/set_output_config(Option<LabelingJobOutputConfig>)
:
required: trueThe location of the output data and the Amazon Web Services Key Management Service key ID for the key used to encrypt the output data, if any.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:
required: trueThe Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during data labeling. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete data labeling.
label_category_config_s3_uri(impl Into<String>)
/set_label_category_config_s3_uri(Option<String>)
:
required: falseThe S3 URI of the file, referred to as a label category configuration file, that defines the categories used to label the data objects.
For 3D point cloud and video frame task types, you can add label category attributes and frame attributes to your label category configuration file. To learn how, see Create a Labeling Category Configuration File for 3D Point Cloud Labeling Jobs.
For named entity recognition jobs, in addition to
“labels”
, you must provide worker instructions in the label category configuration file using the“instructions”
parameter:“instructions”: {“shortInstruction”:“<h1>Add header</h1><p>Add Instructions</p>”, “fullInstruction”:“<p>Add additional instructions.</p>”}
. For details and an example, see Create a Named Entity Recognition Labeling Job (API) .For all other built-in task types and custom tasks, your label category configuration file must be a JSON file in the following format. Identify the labels you want to use by replacing
label_1
,label_2
,…
,label_n
with your label categories.{
“document-version”: “2018-11-28”,
“labels”: [{“label”: “label_1”},{“label”: “label_2”},…{“label”: “label_n”}]
}
Note the following about the label category configuration file:
-
For image classification and text classification (single and multi-label) you must specify at least two label categories. For all other task types, the minimum number of label categories required is one.
-
Each label category must be unique, you cannot specify duplicate label categories.
-
If you create a 3D point cloud or video frame adjustment or verification labeling job, you must include
auditLabelAttributeName
in the label category configuration. Use this parameter to enter theLabelAttributeName
of the labeling job you want to adjust or verify annotations of.
-
stopping_conditions(LabelingJobStoppingConditions)
/set_stopping_conditions(Option<LabelingJobStoppingConditions>)
:
required: falseA set of conditions for stopping the labeling job. If any of the conditions are met, the job is automatically stopped. You can use these conditions to control the cost of data labeling.
labeling_job_algorithms_config(LabelingJobAlgorithmsConfig)
/set_labeling_job_algorithms_config(Option<LabelingJobAlgorithmsConfig>)
:
required: falseConfigures the information required to perform automated data labeling.
human_task_config(HumanTaskConfig)
/set_human_task_config(Option<HumanTaskConfig>)
:
required: trueConfigures the labeling task and how it is presented to workers; including, but not limited to price, keywords, and batch size (task count).
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseAn array of key/value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.
- On success, responds with
CreateLabelingJobOutput
with field(s):labeling_job_arn(Option<String>)
:The Amazon Resource Name (ARN) of the labeling job. You use this ARN to identify the labeling job.
- On failure, responds with
SdkError<CreateLabelingJobError>
Source§impl Client
impl Client
Sourcepub fn create_mlflow_tracking_server(
&self,
) -> CreateMlflowTrackingServerFluentBuilder
pub fn create_mlflow_tracking_server( &self, ) -> CreateMlflowTrackingServerFluentBuilder
Constructs a fluent builder for the CreateMlflowTrackingServer
operation.
- The fluent builder is configurable:
tracking_server_name(impl Into<String>)
/set_tracking_server_name(Option<String>)
:
required: trueA unique string identifying the tracking server name. This string is part of the tracking server ARN.
artifact_store_uri(impl Into<String>)
/set_artifact_store_uri(Option<String>)
:
required: trueThe S3 URI for a general purpose bucket to use as the MLflow Tracking Server artifact store.
tracking_server_size(TrackingServerSize)
/set_tracking_server_size(Option<TrackingServerSize>)
:
required: falseThe size of the tracking server you want to create. You can choose between
“Small”
,“Medium”
, and“Large”
. The default MLflow Tracking Server configuration size is“Small”
. You can choose a size depending on the projected use of the tracking server such as the volume of data logged, number of users, and frequency of use.We recommend using a small tracking server for teams of up to 25 users, a medium tracking server for teams of up to 50 users, and a large tracking server for teams of up to 100 users.
mlflow_version(impl Into<String>)
/set_mlflow_version(Option<String>)
:
required: falseThe version of MLflow that the tracking server uses. To see which MLflow versions are available to use, see How it works.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) for an IAM role in your account that the MLflow Tracking Server uses to access the artifact store in Amazon S3. The role should have
AmazonS3FullAccess
permissions. For more information on IAM permissions for tracking server creation, see Set up IAM permissions for MLflow.automatic_model_registration(bool)
/set_automatic_model_registration(Option<bool>)
:
required: falseWhether to enable or disable automatic registration of new MLflow models to the SageMaker Model Registry. To enable automatic model registration, set this value to
True
. To disable automatic model registration, set this value toFalse
. If not specified,AutomaticModelRegistration
defaults toFalse
.weekly_maintenance_window_start(impl Into<String>)
/set_weekly_maintenance_window_start(Option<String>)
:
required: falseThe day and time of the week in Coordinated Universal Time (UTC) 24-hour standard time that weekly maintenance updates are scheduled. For example: TUE:03:30.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseTags consisting of key-value pairs used to manage metadata for the tracking server.
- On success, responds with
CreateMlflowTrackingServerOutput
with field(s):tracking_server_arn(Option<String>)
:The ARN of the tracking server.
- On failure, responds with
SdkError<CreateMlflowTrackingServerError>
Source§impl Client
impl Client
Sourcepub fn create_model(&self) -> CreateModelFluentBuilder
pub fn create_model(&self) -> CreateModelFluentBuilder
Constructs a fluent builder for the CreateModel
operation.
- The fluent builder is configurable:
model_name(impl Into<String>)
/set_model_name(Option<String>)
:
required: trueThe name of the new model.
primary_container(ContainerDefinition)
/set_primary_container(Option<ContainerDefinition>)
:
required: falseThe location of the primary docker image containing inference code, associated artifacts, and custom environment map that the inference code uses when the model is deployed for predictions.
containers(ContainerDefinition)
/set_containers(Option<Vec::<ContainerDefinition>>)
:
required: falseSpecifies the containers in the inference pipeline.
inference_execution_config(InferenceExecutionConfig)
/set_inference_execution_config(Option<InferenceExecutionConfig>)
:
required: falseSpecifies details of how containers in a multi-container endpoint are called.
execution_role_arn(impl Into<String>)
/set_execution_role_arn(Option<String>)
:
required: falseThe Amazon Resource Name (ARN) of the IAM role that SageMaker can assume to access model artifacts and docker image for deployment on ML compute instances or for batch transform jobs. Deploying on ML compute instances is part of model hosting. For more information, see SageMaker Roles.
To be able to pass this role to SageMaker, the caller of this API must have the
iam:PassRole
permission.tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseAn array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
vpc_config(VpcConfig)
/set_vpc_config(Option<VpcConfig>)
:
required: falseA VpcConfig object that specifies the VPC that you want your model to connect to. Control access to and from your model container by configuring the VPC.
VpcConfig
is used in hosting services and in batch transform. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Data in Batch Transform Jobs by Using an Amazon Virtual Private Cloud.enable_network_isolation(bool)
/set_enable_network_isolation(Option<bool>)
:
required: falseIsolates the model container. No inbound or outbound network calls can be made to or from the model container.
- On success, responds with
CreateModelOutput
with field(s):model_arn(Option<String>)
:The ARN of the model created in SageMaker.
- On failure, responds with
SdkError<CreateModelError>
Source§impl Client
impl Client
Sourcepub fn create_model_bias_job_definition(
&self,
) -> CreateModelBiasJobDefinitionFluentBuilder
pub fn create_model_bias_job_definition( &self, ) -> CreateModelBiasJobDefinitionFluentBuilder
Constructs a fluent builder for the CreateModelBiasJobDefinition
operation.
- The fluent builder is configurable:
job_definition_name(impl Into<String>)
/set_job_definition_name(Option<String>)
:
required: trueThe name of the bias job definition. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.
model_bias_baseline_config(ModelBiasBaselineConfig)
/set_model_bias_baseline_config(Option<ModelBiasBaselineConfig>)
:
required: falseThe baseline configuration for a model bias job.
model_bias_app_specification(ModelBiasAppSpecification)
/set_model_bias_app_specification(Option<ModelBiasAppSpecification>)
:
required: trueConfigures the model bias job to run a specified Docker container image.
model_bias_job_input(ModelBiasJobInput)
/set_model_bias_job_input(Option<ModelBiasJobInput>)
:
required: trueInputs for the model bias job.
model_bias_job_output_config(MonitoringOutputConfig)
/set_model_bias_job_output_config(Option<MonitoringOutputConfig>)
:
required: trueThe output configuration for monitoring jobs.
job_resources(MonitoringResources)
/set_job_resources(Option<MonitoringResources>)
:
required: trueIdentifies the resources to deploy for a monitoring job.
network_config(MonitoringNetworkConfig)
/set_network_config(Option<MonitoringNetworkConfig>)
:
required: falseNetworking options for a model bias job.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.
stopping_condition(MonitoringStoppingCondition)
/set_stopping_condition(Option<MonitoringStoppingCondition>)
:
required: falseA time limit for how long the monitoring job is allowed to run before stopping.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: false(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.
- On success, responds with
CreateModelBiasJobDefinitionOutput
with field(s):job_definition_arn(Option<String>)
:The Amazon Resource Name (ARN) of the model bias job.
- On failure, responds with
SdkError<CreateModelBiasJobDefinitionError>
Source§impl Client
impl Client
Sourcepub fn create_model_card(&self) -> CreateModelCardFluentBuilder
pub fn create_model_card(&self) -> CreateModelCardFluentBuilder
Constructs a fluent builder for the CreateModelCard
operation.
- The fluent builder is configurable:
model_card_name(impl Into<String>)
/set_model_card_name(Option<String>)
:
required: trueThe unique name of the model card.
security_config(ModelCardSecurityConfig)
/set_security_config(Option<ModelCardSecurityConfig>)
:
required: falseAn optional Key Management Service key to encrypt, decrypt, and re-encrypt model card content for regulated workloads with highly sensitive data.
content(impl Into<String>)
/set_content(Option<String>)
:
required: trueThe content of the model card. Content must be in model card JSON schema and provided as a string.
model_card_status(ModelCardStatus)
/set_model_card_status(Option<ModelCardStatus>)
:
required: trueThe approval status of the model card within your organization. Different organizations might have different criteria for model card review and approval.
-
Draft
: The model card is a work in progress. -
PendingReview
: The model card is pending review. -
Approved
: The model card is approved. -
Archived
: The model card is archived. No more updates should be made to the model card, but it can still be exported.
-
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseKey-value pairs used to manage metadata for model cards.
- On success, responds with
CreateModelCardOutput
with field(s):model_card_arn(Option<String>)
:The Amazon Resource Name (ARN) of the successfully created model card.
- On failure, responds with
SdkError<CreateModelCardError>
Source§impl Client
impl Client
Sourcepub fn create_model_card_export_job(
&self,
) -> CreateModelCardExportJobFluentBuilder
pub fn create_model_card_export_job( &self, ) -> CreateModelCardExportJobFluentBuilder
Constructs a fluent builder for the CreateModelCardExportJob
operation.
- The fluent builder is configurable:
model_card_name(impl Into<String>)
/set_model_card_name(Option<String>)
:
required: trueThe name or Amazon Resource Name (ARN) of the model card to export.
model_card_version(i32)
/set_model_card_version(Option<i32>)
:
required: falseThe version of the model card to export. If a version is not provided, then the latest version of the model card is exported.
model_card_export_job_name(impl Into<String>)
/set_model_card_export_job_name(Option<String>)
:
required: trueThe name of the model card export job.
output_config(ModelCardExportOutputConfig)
/set_output_config(Option<ModelCardExportOutputConfig>)
:
required: trueThe model card output configuration that specifies the Amazon S3 path for exporting.
- On success, responds with
CreateModelCardExportJobOutput
with field(s):model_card_export_job_arn(Option<String>)
:The Amazon Resource Name (ARN) of the model card export job.
- On failure, responds with
SdkError<CreateModelCardExportJobError>
Source§impl Client
impl Client
Sourcepub fn create_model_explainability_job_definition(
&self,
) -> CreateModelExplainabilityJobDefinitionFluentBuilder
pub fn create_model_explainability_job_definition( &self, ) -> CreateModelExplainabilityJobDefinitionFluentBuilder
Constructs a fluent builder for the CreateModelExplainabilityJobDefinition
operation.
- The fluent builder is configurable:
job_definition_name(impl Into<String>)
/set_job_definition_name(Option<String>)
:
required: trueThe name of the model explainability job definition. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.
model_explainability_baseline_config(ModelExplainabilityBaselineConfig)
/set_model_explainability_baseline_config(Option<ModelExplainabilityBaselineConfig>)
:
required: falseThe baseline configuration for a model explainability job.
model_explainability_app_specification(ModelExplainabilityAppSpecification)
/set_model_explainability_app_specification(Option<ModelExplainabilityAppSpecification>)
:
required: trueConfigures the model explainability job to run a specified Docker container image.
model_explainability_job_input(ModelExplainabilityJobInput)
/set_model_explainability_job_input(Option<ModelExplainabilityJobInput>)
:
required: trueInputs for the model explainability job.
model_explainability_job_output_config(MonitoringOutputConfig)
/set_model_explainability_job_output_config(Option<MonitoringOutputConfig>)
:
required: trueThe output configuration for monitoring jobs.
job_resources(MonitoringResources)
/set_job_resources(Option<MonitoringResources>)
:
required: trueIdentifies the resources to deploy for a monitoring job.
network_config(MonitoringNetworkConfig)
/set_network_config(Option<MonitoringNetworkConfig>)
:
required: falseNetworking options for a model explainability job.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.
stopping_condition(MonitoringStoppingCondition)
/set_stopping_condition(Option<MonitoringStoppingCondition>)
:
required: falseA time limit for how long the monitoring job is allowed to run before stopping.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: false(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.
- On success, responds with
CreateModelExplainabilityJobDefinitionOutput
with field(s):job_definition_arn(Option<String>)
:The Amazon Resource Name (ARN) of the model explainability job.
- On failure, responds with
SdkError<CreateModelExplainabilityJobDefinitionError>
Source§impl Client
impl Client
Sourcepub fn create_model_package(&self) -> CreateModelPackageFluentBuilder
pub fn create_model_package(&self) -> CreateModelPackageFluentBuilder
Constructs a fluent builder for the CreateModelPackage
operation.
- The fluent builder is configurable:
model_package_name(impl Into<String>)
/set_model_package_name(Option<String>)
:
required: falseThe name of the model package. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
This parameter is required for unversioned models. It is not applicable to versioned models.
model_package_group_name(impl Into<String>)
/set_model_package_group_name(Option<String>)
:
required: falseThe name or Amazon Resource Name (ARN) of the model package group that this model version belongs to.
This parameter is required for versioned models, and does not apply to unversioned models.
model_package_description(impl Into<String>)
/set_model_package_description(Option<String>)
:
required: falseA description of the model package.
inference_specification(InferenceSpecification)
/set_inference_specification(Option<InferenceSpecification>)
:
required: falseSpecifies details about inference jobs that you can run with models based on this model package, including the following information:
-
The Amazon ECR paths of containers that contain the inference code and model artifacts.
-
The instance types that the model package supports for transform jobs and real-time endpoints used for inference.
-
The input and output content formats that the model package supports for inference.
-
validation_specification(ModelPackageValidationSpecification)
/set_validation_specification(Option<ModelPackageValidationSpecification>)
:
required: falseSpecifies configurations for one or more transform jobs that SageMaker runs to test the model package.
source_algorithm_specification(SourceAlgorithmSpecification)
/set_source_algorithm_specification(Option<SourceAlgorithmSpecification>)
:
required: falseDetails about the algorithm that was used to create the model package.
certify_for_marketplace(bool)
/set_certify_for_marketplace(Option<bool>)
:
required: falseWhether to certify the model package for listing on Amazon Web Services Marketplace.
This parameter is optional for unversioned models, and does not apply to versioned models.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseA list of key value pairs associated with the model. For more information, see Tagging Amazon Web Services resources in the Amazon Web Services General Reference Guide.
If you supply
ModelPackageGroupName
, your model package belongs to the model group you specify and uses the tags associated with the model group. In this case, you cannot supply atag
argument.model_approval_status(ModelApprovalStatus)
/set_model_approval_status(Option<ModelApprovalStatus>)
:
required: falseWhether the model is approved for deployment.
This parameter is optional for versioned models, and does not apply to unversioned models.
For versioned models, the value of this parameter must be set to
Approved
to deploy the model.metadata_properties(MetadataProperties)
/set_metadata_properties(Option<MetadataProperties>)
:
required: falseMetadata properties of the tracking entity, trial, or trial component.
model_metrics(ModelMetrics)
/set_model_metrics(Option<ModelMetrics>)
:
required: falseA structure that contains model metrics reports.
client_token(impl Into<String>)
/set_client_token(Option<String>)
:
required: falseA unique token that guarantees that the call to this API is idempotent.
domain(impl Into<String>)
/set_domain(Option<String>)
:
required: falseThe machine learning domain of your model package and its components. Common machine learning domains include computer vision and natural language processing.
task(impl Into<String>)
/set_task(Option<String>)
:
required: falseThe machine learning task your model package accomplishes. Common machine learning tasks include object detection and image classification. The following tasks are supported by Inference Recommender:
“IMAGE_CLASSIFICATION”
|“OBJECT_DETECTION”
|“TEXT_GENERATION”
|“IMAGE_SEGMENTATION”
|“FILL_MASK”
|“CLASSIFICATION”
|“REGRESSION”
|“OTHER”
.Specify “OTHER” if none of the tasks listed fit your use case.
sample_payload_url(impl Into<String>)
/set_sample_payload_url(Option<String>)
:
required: falseThe Amazon Simple Storage Service (Amazon S3) path where the sample payload is stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). This archive can hold multiple files that are all equally used in the load test. Each file in the archive must satisfy the size constraints of the InvokeEndpoint call.
customer_metadata_properties(impl Into<String>, impl Into<String>)
/set_customer_metadata_properties(Option<HashMap::<String, String>>)
:
required: falseThe metadata properties associated with the model package versions.
drift_check_baselines(DriftCheckBaselines)
/set_drift_check_baselines(Option<DriftCheckBaselines>)
:
required: falseRepresents the drift check baselines that can be used when the model monitor is set using the model package. For more information, see the topic on Drift Detection against Previous Baselines in SageMaker Pipelines in the Amazon SageMaker Developer Guide.
additional_inference_specifications(AdditionalInferenceSpecificationDefinition)
/set_additional_inference_specifications(Option<Vec::<AdditionalInferenceSpecificationDefinition>>)
:
required: falseAn array of additional Inference Specification objects. Each additional Inference Specification specifies artifacts based on this model package that can be used on inference endpoints. Generally used with SageMaker Neo to store the compiled artifacts.
skip_model_validation(SkipModelValidation)
/set_skip_model_validation(Option<SkipModelValidation>)
:
required: falseIndicates if you want to skip model validation.
source_uri(impl Into<String>)
/set_source_uri(Option<String>)
:
required: falseThe URI of the source for the model package. If you want to clone a model package, set it to the model package Amazon Resource Name (ARN). If you want to register a model, set it to the model ARN.
security_config(ModelPackageSecurityConfig)
/set_security_config(Option<ModelPackageSecurityConfig>)
:
required: falseThe KMS Key ID (
KMSKeyId
) used for encryption of model package information.model_card(ModelPackageModelCard)
/set_model_card(Option<ModelPackageModelCard>)
:
required: falseThe model card associated with the model package. Since
ModelPackageModelCard
is tied to a model package, it is a specific usage of a model card and its schema is simplified compared to the schema ofModelCard
. TheModelPackageModelCard
schema does not includemodel_package_details
, andmodel_overview
is composed of themodel_creator
andmodel_artifact
properties. For more information about the model package model card schema, see Model package model card schema. For more information about the model card associated with the model package, see View the Details of a Model Version.model_life_cycle(ModelLifeCycle)
/set_model_life_cycle(Option<ModelLifeCycle>)
:
required: falseA structure describing the current state of the model in its life cycle.
- On success, responds with
CreateModelPackageOutput
with field(s):model_package_arn(Option<String>)
:The Amazon Resource Name (ARN) of the new model package.
- On failure, responds with
SdkError<CreateModelPackageError>
Source§impl Client
impl Client
Sourcepub fn create_model_package_group(&self) -> CreateModelPackageGroupFluentBuilder
pub fn create_model_package_group(&self) -> CreateModelPackageGroupFluentBuilder
Constructs a fluent builder for the CreateModelPackageGroup
operation.
- The fluent builder is configurable:
model_package_group_name(impl Into<String>)
/set_model_package_group_name(Option<String>)
:
required: trueThe name of the model group.
model_package_group_description(impl Into<String>)
/set_model_package_group_description(Option<String>)
:
required: falseA description for the model group.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseA list of key value pairs associated with the model group. For more information, see Tagging Amazon Web Services resources in the Amazon Web Services General Reference Guide.
- On success, responds with
CreateModelPackageGroupOutput
with field(s):model_package_group_arn(Option<String>)
:The Amazon Resource Name (ARN) of the model group.
- On failure, responds with
SdkError<CreateModelPackageGroupError>
Source§impl Client
impl Client
Sourcepub fn create_model_quality_job_definition(
&self,
) -> CreateModelQualityJobDefinitionFluentBuilder
pub fn create_model_quality_job_definition( &self, ) -> CreateModelQualityJobDefinitionFluentBuilder
Constructs a fluent builder for the CreateModelQualityJobDefinition
operation.
- The fluent builder is configurable:
job_definition_name(impl Into<String>)
/set_job_definition_name(Option<String>)
:
required: trueThe name of the monitoring job definition.
model_quality_baseline_config(ModelQualityBaselineConfig)
/set_model_quality_baseline_config(Option<ModelQualityBaselineConfig>)
:
required: falseSpecifies the constraints and baselines for the monitoring job.
model_quality_app_specification(ModelQualityAppSpecification)
/set_model_quality_app_specification(Option<ModelQualityAppSpecification>)
:
required: trueThe container that runs the monitoring job.
model_quality_job_input(ModelQualityJobInput)
/set_model_quality_job_input(Option<ModelQualityJobInput>)
:
required: trueA list of the inputs that are monitored. Currently endpoints are supported.
model_quality_job_output_config(MonitoringOutputConfig)
/set_model_quality_job_output_config(Option<MonitoringOutputConfig>)
:
required: trueThe output configuration for monitoring jobs.
job_resources(MonitoringResources)
/set_job_resources(Option<MonitoringResources>)
:
required: trueIdentifies the resources to deploy for a monitoring job.
network_config(MonitoringNetworkConfig)
/set_network_config(Option<MonitoringNetworkConfig>)
:
required: falseSpecifies the network configuration for the monitoring job.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.
stopping_condition(MonitoringStoppingCondition)
/set_stopping_condition(Option<MonitoringStoppingCondition>)
:
required: falseA time limit for how long the monitoring job is allowed to run before stopping.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: false(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.
- On success, responds with
CreateModelQualityJobDefinitionOutput
with field(s):job_definition_arn(Option<String>)
:The Amazon Resource Name (ARN) of the model quality monitoring job.
- On failure, responds with
SdkError<CreateModelQualityJobDefinitionError>
Source§impl Client
impl Client
Sourcepub fn create_monitoring_schedule(
&self,
) -> CreateMonitoringScheduleFluentBuilder
pub fn create_monitoring_schedule( &self, ) -> CreateMonitoringScheduleFluentBuilder
Constructs a fluent builder for the CreateMonitoringSchedule
operation.
- The fluent builder is configurable:
monitoring_schedule_name(impl Into<String>)
/set_monitoring_schedule_name(Option<String>)
:
required: trueThe name of the monitoring schedule. The name must be unique within an Amazon Web Services Region within an Amazon Web Services account.
monitoring_schedule_config(MonitoringScheduleConfig)
/set_monitoring_schedule_config(Option<MonitoringScheduleConfig>)
:
required: trueThe configuration object that specifies the monitoring schedule and defines the monitoring job.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: false(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.
- On success, responds with
CreateMonitoringScheduleOutput
with field(s):monitoring_schedule_arn(Option<String>)
:The Amazon Resource Name (ARN) of the monitoring schedule.
- On failure, responds with
SdkError<CreateMonitoringScheduleError>
Source§impl Client
impl Client
Sourcepub fn create_notebook_instance(&self) -> CreateNotebookInstanceFluentBuilder
pub fn create_notebook_instance(&self) -> CreateNotebookInstanceFluentBuilder
Constructs a fluent builder for the CreateNotebookInstance
operation.
- The fluent builder is configurable:
notebook_instance_name(impl Into<String>)
/set_notebook_instance_name(Option<String>)
:
required: trueThe name of the new notebook instance.
instance_type(InstanceType)
/set_instance_type(Option<InstanceType>)
:
required: trueThe type of ML compute instance to launch for the notebook instance.
subnet_id(impl Into<String>)
/set_subnet_id(Option<String>)
:
required: falseThe ID of the subnet in a VPC to which you would like to have a connectivity from your ML compute instance.
security_group_ids(impl Into<String>)
/set_security_group_ids(Option<Vec::<String>>)
:
required: falseThe VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:
required: trueWhen you send any requests to Amazon Web Services resources from the notebook instance, SageMaker AI assumes this role to perform tasks on your behalf. You must grant this role necessary permissions so SageMaker AI can perform these tasks. The policy must allow the SageMaker AI service principal (sagemaker.amazonaws.com) permissions to assume this role. For more information, see SageMaker AI Roles.
To be able to pass this role to SageMaker AI, the caller of this API must have the
iam:PassRole
permission.kms_key_id(impl Into<String>)
/set_kms_key_id(Option<String>)
:
required: falseThe Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker AI uses to encrypt data on the storage volume attached to your notebook instance. The KMS key you provide must be enabled. For information, see Enabling and Disabling Keys in the Amazon Web Services Key Management Service Developer Guide.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseAn array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
lifecycle_config_name(impl Into<String>)
/set_lifecycle_config_name(Option<String>)
:
required: falseThe name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
direct_internet_access(DirectInternetAccess)
/set_direct_internet_access(Option<DirectInternetAccess>)
:
required: falseSets whether SageMaker AI provides internet access to the notebook instance. If you set this to
Disabled
this notebook instance is able to access resources only in your VPC, and is not be able to connect to SageMaker AI training and endpoint services unless you configure a NAT Gateway in your VPC.For more information, see Notebook Instances Are Internet-Enabled by Default. You can set the value of this parameter to
Disabled
only if you set a value for theSubnetId
parameter.volume_size_in_gb(i32)
/set_volume_size_in_gb(Option<i32>)
:
required: falseThe size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
accelerator_types(NotebookInstanceAcceleratorType)
/set_accelerator_types(Option<Vec::<NotebookInstanceAcceleratorType>>)
:
required: falseThis parameter is no longer supported. Elastic Inference (EI) is no longer available.
This parameter was used to specify a list of EI instance types to associate with this notebook instance.
default_code_repository(impl Into<String>)
/set_default_code_repository(Option<String>)
:
required: falseA Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.
additional_code_repositories(impl Into<String>)
/set_additional_code_repositories(Option<Vec::<String>>)
:
required: falseAn array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.
root_access(RootAccess)
/set_root_access(Option<RootAccess>)
:
required: falseWhether root access is enabled or disabled for users of the notebook instance. The default value is
Enabled
.Lifecycle configurations need root access to be able to set up a notebook instance. Because of this, lifecycle configurations associated with a notebook instance always run with root access even if you disable root access for users.
platform_identifier(impl Into<String>)
/set_platform_identifier(Option<String>)
:
required: falseThe platform identifier of the notebook instance runtime environment.
instance_metadata_service_configuration(InstanceMetadataServiceConfiguration)
/set_instance_metadata_service_configuration(Option<InstanceMetadataServiceConfiguration>)
:
required: falseInformation on the IMDS configuration of the notebook instance
- On success, responds with
CreateNotebookInstanceOutput
with field(s):notebook_instance_arn(Option<String>)
:The Amazon Resource Name (ARN) of the notebook instance.
- On failure, responds with
SdkError<CreateNotebookInstanceError>
Source§impl Client
impl Client
Sourcepub fn create_notebook_instance_lifecycle_config(
&self,
) -> CreateNotebookInstanceLifecycleConfigFluentBuilder
pub fn create_notebook_instance_lifecycle_config( &self, ) -> CreateNotebookInstanceLifecycleConfigFluentBuilder
Constructs a fluent builder for the CreateNotebookInstanceLifecycleConfig
operation.
- The fluent builder is configurable:
notebook_instance_lifecycle_config_name(impl Into<String>)
/set_notebook_instance_lifecycle_config_name(Option<String>)
:
required: trueThe name of the lifecycle configuration.
on_create(NotebookInstanceLifecycleHook)
/set_on_create(Option<Vec::<NotebookInstanceLifecycleHook>>)
:
required: falseA shell script that runs only once, when you create a notebook instance. The shell script must be a base64-encoded string.
on_start(NotebookInstanceLifecycleHook)
/set_on_start(Option<Vec::<NotebookInstanceLifecycleHook>>)
:
required: falseA shell script that runs every time you start a notebook instance, including when you create the notebook instance. The shell script must be a base64-encoded string.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseAn array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
- On success, responds with
CreateNotebookInstanceLifecycleConfigOutput
with field(s):notebook_instance_lifecycle_config_arn(Option<String>)
:The Amazon Resource Name (ARN) of the lifecycle configuration.
- On failure, responds with
SdkError<CreateNotebookInstanceLifecycleConfigError>
Source§impl Client
impl Client
Sourcepub fn create_optimization_job(&self) -> CreateOptimizationJobFluentBuilder
pub fn create_optimization_job(&self) -> CreateOptimizationJobFluentBuilder
Constructs a fluent builder for the CreateOptimizationJob
operation.
- The fluent builder is configurable:
optimization_job_name(impl Into<String>)
/set_optimization_job_name(Option<String>)
:
required: trueA custom name for the new optimization job.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker AI to perform tasks on your behalf.
During model optimization, Amazon SageMaker AI needs your permission to:
-
Read input data from an S3 bucket
-
Write model artifacts to an S3 bucket
-
Write logs to Amazon CloudWatch Logs
-
Publish metrics to Amazon CloudWatch
You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker AI, the caller of this API must have the
iam:PassRole
permission. For more information, see Amazon SageMaker AI Roles.-
model_source(OptimizationJobModelSource)
/set_model_source(Option<OptimizationJobModelSource>)
:
required: trueThe location of the source model to optimize with an optimization job.
deployment_instance_type(OptimizationJobDeploymentInstanceType)
/set_deployment_instance_type(Option<OptimizationJobDeploymentInstanceType>)
:
required: trueThe type of instance that hosts the optimized model that you create with the optimization job.
optimization_environment(impl Into<String>, impl Into<String>)
/set_optimization_environment(Option<HashMap::<String, String>>)
:
required: falseThe environment variables to set in the model container.
optimization_configs(OptimizationConfig)
/set_optimization_configs(Option<Vec::<OptimizationConfig>>)
:
required: trueSettings for each of the optimization techniques that the job applies.
output_config(OptimizationJobOutputConfig)
/set_output_config(Option<OptimizationJobOutputConfig>)
:
required: trueDetails for where to store the optimized model that you create with the optimization job.
stopping_condition(StoppingCondition)
/set_stopping_condition(Option<StoppingCondition>)
:
required: trueSpecifies a limit to how long a job can run. When the job reaches the time limit, SageMaker ends the job. Use this API to cap costs.
To stop a training job, SageMaker sends the algorithm the
SIGTERM
signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.The training algorithms provided by SageMaker automatically save the intermediate results of a model training job when possible. This attempt to save artifacts is only a best effort case as model might not be in a state from which it can be saved. For example, if training has just started, the model might not be ready to save. When saved, this intermediate data is a valid model artifact. You can use it to create a model with
CreateModel
.The Neural Topic Model (NTM) currently does not support saving intermediate model artifacts. When training NTMs, make sure that the maximum runtime is sufficient for the training job to complete.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseA list of key-value pairs associated with the optimization job. For more information, see Tagging Amazon Web Services resources in the Amazon Web Services General Reference Guide.
vpc_config(OptimizationVpcConfig)
/set_vpc_config(Option<OptimizationVpcConfig>)
:
required: falseA VPC in Amazon VPC that your optimized model has access to.
- On success, responds with
CreateOptimizationJobOutput
with field(s):optimization_job_arn(Option<String>)
:The Amazon Resource Name (ARN) of the optimization job.
- On failure, responds with
SdkError<CreateOptimizationJobError>
Source§impl Client
impl Client
Sourcepub fn create_partner_app(&self) -> CreatePartnerAppFluentBuilder
pub fn create_partner_app(&self) -> CreatePartnerAppFluentBuilder
Constructs a fluent builder for the CreatePartnerApp
operation.
- The fluent builder is configurable:
name(impl Into<String>)
/set_name(Option<String>)
:
required: trueThe name to give the SageMaker Partner AI App.
r#type(PartnerAppType)
/set_type(Option<PartnerAppType>)
:
required: trueThe type of SageMaker Partner AI App to create. Must be one of the following:
lakera-guard
,comet
,deepchecks-llm-evaluation
, orfiddler
.execution_role_arn(impl Into<String>)
/set_execution_role_arn(Option<String>)
:
required: trueThe ARN of the IAM role that the partner application uses.
kms_key_id(impl Into<String>)
/set_kms_key_id(Option<String>)
:
required: falseSageMaker Partner AI Apps uses Amazon Web Services KMS to encrypt data at rest using an Amazon Web Services managed key by default. For more control, specify a customer managed key.
maintenance_config(PartnerAppMaintenanceConfig)
/set_maintenance_config(Option<PartnerAppMaintenanceConfig>)
:
required: falseMaintenance configuration settings for the SageMaker Partner AI App.
tier(impl Into<String>)
/set_tier(Option<String>)
:
required: trueIndicates the instance type and size of the cluster attached to the SageMaker Partner AI App.
application_config(PartnerAppConfig)
/set_application_config(Option<PartnerAppConfig>)
:
required: falseConfiguration settings for the SageMaker Partner AI App.
auth_type(PartnerAppAuthType)
/set_auth_type(Option<PartnerAppAuthType>)
:
required: trueThe authorization type that users use to access the SageMaker Partner AI App.
enable_iam_session_based_identity(bool)
/set_enable_iam_session_based_identity(Option<bool>)
:
required: falseWhen set to
TRUE
, the SageMaker Partner AI App sets the Amazon Web Services IAM session name or the authenticated IAM user as the identity of the SageMaker Partner AI App user.client_token(impl Into<String>)
/set_client_token(Option<String>)
:
required: falseA unique token that guarantees that the call to this API is idempotent.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseEach tag consists of a key and an optional value. Tag keys must be unique per resource.
- On success, responds with
CreatePartnerAppOutput
with field(s):arn(Option<String>)
:The ARN of the SageMaker Partner AI App.
- On failure, responds with
SdkError<CreatePartnerAppError>
Source§impl Client
impl Client
Sourcepub fn create_partner_app_presigned_url(
&self,
) -> CreatePartnerAppPresignedUrlFluentBuilder
pub fn create_partner_app_presigned_url( &self, ) -> CreatePartnerAppPresignedUrlFluentBuilder
Constructs a fluent builder for the CreatePartnerAppPresignedUrl
operation.
- The fluent builder is configurable:
arn(impl Into<String>)
/set_arn(Option<String>)
:
required: trueThe ARN of the SageMaker Partner AI App to create the presigned URL for.
expires_in_seconds(i32)
/set_expires_in_seconds(Option<i32>)
:
required: falseThe time that will pass before the presigned URL expires.
session_expiration_duration_in_seconds(i32)
/set_session_expiration_duration_in_seconds(Option<i32>)
:
required: falseIndicates how long the Amazon SageMaker Partner AI App session can be accessed for after logging in.
- On success, responds with
CreatePartnerAppPresignedUrlOutput
with field(s):url(Option<String>)
:The presigned URL that you can use to access the SageMaker Partner AI App.
- On failure, responds with
SdkError<CreatePartnerAppPresignedUrlError>
Source§impl Client
impl Client
Sourcepub fn create_pipeline(&self) -> CreatePipelineFluentBuilder
pub fn create_pipeline(&self) -> CreatePipelineFluentBuilder
Constructs a fluent builder for the CreatePipeline
operation.
- The fluent builder is configurable:
pipeline_name(impl Into<String>)
/set_pipeline_name(Option<String>)
:
required: trueThe name of the pipeline.
pipeline_display_name(impl Into<String>)
/set_pipeline_display_name(Option<String>)
:
required: falseThe display name of the pipeline.
pipeline_definition(impl Into<String>)
/set_pipeline_definition(Option<String>)
:
required: falseThe JSON pipeline definition of the pipeline.
pipeline_definition_s3_location(PipelineDefinitionS3Location)
/set_pipeline_definition_s3_location(Option<PipelineDefinitionS3Location>)
:
required: falseThe location of the pipeline definition stored in Amazon S3. If specified, SageMaker will retrieve the pipeline definition from this location.
pipeline_description(impl Into<String>)
/set_pipeline_description(Option<String>)
:
required: falseA description of the pipeline.
client_request_token(impl Into<String>)
/set_client_request_token(Option<String>)
:
required: trueA unique, case-sensitive identifier that you provide to ensure the idempotency of the operation. An idempotent operation completes no more than one time.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of the role used by the pipeline to access and create resources.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseA list of tags to apply to the created pipeline.
parallelism_configuration(ParallelismConfiguration)
/set_parallelism_configuration(Option<ParallelismConfiguration>)
:
required: falseThis is the configuration that controls the parallelism of the pipeline. If specified, it applies to all runs of this pipeline by default.
- On success, responds with
CreatePipelineOutput
with field(s):pipeline_arn(Option<String>)
:The Amazon Resource Name (ARN) of the created pipeline.
- On failure, responds with
SdkError<CreatePipelineError>
Source§impl Client
impl Client
Sourcepub fn create_presigned_domain_url(
&self,
) -> CreatePresignedDomainUrlFluentBuilder
pub fn create_presigned_domain_url( &self, ) -> CreatePresignedDomainUrlFluentBuilder
Constructs a fluent builder for the CreatePresignedDomainUrl
operation.
- The fluent builder is configurable:
domain_id(impl Into<String>)
/set_domain_id(Option<String>)
:
required: trueThe domain ID.
user_profile_name(impl Into<String>)
/set_user_profile_name(Option<String>)
:
required: trueThe name of the UserProfile to sign-in as.
session_expiration_duration_in_seconds(i32)
/set_session_expiration_duration_in_seconds(Option<i32>)
:
required: falseThe session expiration duration in seconds. This value defaults to 43200.
expires_in_seconds(i32)
/set_expires_in_seconds(Option<i32>)
:
required: falseThe number of seconds until the pre-signed URL expires. This value defaults to 300.
space_name(impl Into<String>)
/set_space_name(Option<String>)
:
required: falseThe name of the space.
landing_uri(impl Into<String>)
/set_landing_uri(Option<String>)
:
required: falseThe landing page that the user is directed to when accessing the presigned URL. Using this value, users can access Studio or Studio Classic, even if it is not the default experience for the domain. The supported values are:
-
studio::relative/path
: Directs users to the relative path in Studio. -
app:JupyterServer:relative/path
: Directs users to the relative path in the Studio Classic application. -
app:JupyterLab:relative/path
: Directs users to the relative path in the JupyterLab application. -
app:RStudioServerPro:relative/path
: Directs users to the relative path in the RStudio application. -
app:CodeEditor:relative/path
: Directs users to the relative path in the Code Editor, based on Code-OSS, Visual Studio Code - Open Source application. -
app:Canvas:relative/path
: Directs users to the relative path in the Canvas application.
-
- On success, responds with
CreatePresignedDomainUrlOutput
with field(s):authorized_url(Option<String>)
:The presigned URL.
- On failure, responds with
SdkError<CreatePresignedDomainUrlError>
Source§impl Client
impl Client
Sourcepub fn create_presigned_mlflow_tracking_server_url(
&self,
) -> CreatePresignedMlflowTrackingServerUrlFluentBuilder
pub fn create_presigned_mlflow_tracking_server_url( &self, ) -> CreatePresignedMlflowTrackingServerUrlFluentBuilder
Constructs a fluent builder for the CreatePresignedMlflowTrackingServerUrl
operation.
- The fluent builder is configurable:
tracking_server_name(impl Into<String>)
/set_tracking_server_name(Option<String>)
:
required: trueThe name of the tracking server to connect to your MLflow UI.
expires_in_seconds(i32)
/set_expires_in_seconds(Option<i32>)
:
required: falseThe duration in seconds that your presigned URL is valid. The presigned URL can be used only once.
session_expiration_duration_in_seconds(i32)
/set_session_expiration_duration_in_seconds(Option<i32>)
:
required: falseThe duration in seconds that your MLflow UI session is valid.
- On success, responds with
CreatePresignedMlflowTrackingServerUrlOutput
with field(s):authorized_url(Option<String>)
:A presigned URL with an authorization token.
- On failure, responds with
SdkError<CreatePresignedMlflowTrackingServerUrlError>
Source§impl Client
impl Client
Sourcepub fn create_presigned_notebook_instance_url(
&self,
) -> CreatePresignedNotebookInstanceUrlFluentBuilder
pub fn create_presigned_notebook_instance_url( &self, ) -> CreatePresignedNotebookInstanceUrlFluentBuilder
Constructs a fluent builder for the CreatePresignedNotebookInstanceUrl
operation.
- The fluent builder is configurable:
notebook_instance_name(impl Into<String>)
/set_notebook_instance_name(Option<String>)
:
required: trueThe name of the notebook instance.
session_expiration_duration_in_seconds(i32)
/set_session_expiration_duration_in_seconds(Option<i32>)
:
required: falseThe duration of the session, in seconds. The default is 12 hours.
- On success, responds with
CreatePresignedNotebookInstanceUrlOutput
with field(s):authorized_url(Option<String>)
:A JSON object that contains the URL string.
- On failure, responds with
SdkError<CreatePresignedNotebookInstanceUrlError>
Source§impl Client
impl Client
Sourcepub fn create_processing_job(&self) -> CreateProcessingJobFluentBuilder
pub fn create_processing_job(&self) -> CreateProcessingJobFluentBuilder
Constructs a fluent builder for the CreateProcessingJob
operation.
- The fluent builder is configurable:
processing_inputs(ProcessingInput)
/set_processing_inputs(Option<Vec::<ProcessingInput>>)
:
required: falseAn array of inputs configuring the data to download into the processing container.
processing_output_config(ProcessingOutputConfig)
/set_processing_output_config(Option<ProcessingOutputConfig>)
:
required: falseOutput configuration for the processing job.
processing_job_name(impl Into<String>)
/set_processing_job_name(Option<String>)
:
required: trueThe name of the processing job. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.
processing_resources(ProcessingResources)
/set_processing_resources(Option<ProcessingResources>)
:
required: trueIdentifies the resources, ML compute instances, and ML storage volumes to deploy for a processing job. In distributed training, you specify more than one instance.
stopping_condition(ProcessingStoppingCondition)
/set_stopping_condition(Option<ProcessingStoppingCondition>)
:
required: falseThe time limit for how long the processing job is allowed to run.
app_specification(AppSpecification)
/set_app_specification(Option<AppSpecification>)
:
required: trueConfigures the processing job to run a specified Docker container image.
environment(impl Into<String>, impl Into<String>)
/set_environment(Option<HashMap::<String, String>>)
:
required: falseThe environment variables to set in the Docker container. Up to 100 key and values entries in the map are supported.
Do not include any security-sensitive information including account access IDs, secrets, or tokens in any environment fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by security-sensitive information included in the request environment variable or plain text fields.
network_config(NetworkConfig)
/set_network_config(Option<NetworkConfig>)
:
required: falseNetworking options for a processing job, such as whether to allow inbound and outbound network calls to and from processing containers, and the VPC subnets and security groups to use for VPC-enabled processing jobs.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: false(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.
Do not include any security-sensitive information including account access IDs, secrets, or tokens in any tags. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by security-sensitive information included in the request tag variable or plain text fields.
experiment_config(ExperimentConfig)
/set_experiment_config(Option<ExperimentConfig>)
:
required: falseAssociates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:
- On success, responds with
CreateProcessingJobOutput
with field(s):processing_job_arn(Option<String>)
:The Amazon Resource Name (ARN) of the processing job.
- On failure, responds with
SdkError<CreateProcessingJobError>
Source§impl Client
impl Client
Sourcepub fn create_project(&self) -> CreateProjectFluentBuilder
pub fn create_project(&self) -> CreateProjectFluentBuilder
Constructs a fluent builder for the CreateProject
operation.
- The fluent builder is configurable:
project_name(impl Into<String>)
/set_project_name(Option<String>)
:
required: trueThe name of the project.
project_description(impl Into<String>)
/set_project_description(Option<String>)
:
required: falseA description for the project.
service_catalog_provisioning_details(ServiceCatalogProvisioningDetails)
/set_service_catalog_provisioning_details(Option<ServiceCatalogProvisioningDetails>)
:
required: falseThe product ID and provisioning artifact ID to provision a service catalog. The provisioning artifact ID will default to the latest provisioning artifact ID of the product, if you don’t provide the provisioning artifact ID. For more information, see What is Amazon Web Services Service Catalog.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseAn array of key-value pairs that you want to use to organize and track your Amazon Web Services resource costs. For more information, see Tagging Amazon Web Services resources in the Amazon Web Services General Reference Guide.
- On success, responds with
CreateProjectOutput
with field(s):project_arn(Option<String>)
:The Amazon Resource Name (ARN) of the project.
project_id(Option<String>)
:The ID of the new project.
- On failure, responds with
SdkError<CreateProjectError>
Source§impl Client
impl Client
Sourcepub fn create_space(&self) -> CreateSpaceFluentBuilder
pub fn create_space(&self) -> CreateSpaceFluentBuilder
Constructs a fluent builder for the CreateSpace
operation.
- The fluent builder is configurable:
domain_id(impl Into<String>)
/set_domain_id(Option<String>)
:
required: trueThe ID of the associated domain.
space_name(impl Into<String>)
/set_space_name(Option<String>)
:
required: trueThe name of the space.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseTags to associated with the space. Each tag consists of a key and an optional value. Tag keys must be unique for each resource. Tags are searchable using the
Search
API.space_settings(SpaceSettings)
/set_space_settings(Option<SpaceSettings>)
:
required: falseA collection of space settings.
ownership_settings(OwnershipSettings)
/set_ownership_settings(Option<OwnershipSettings>)
:
required: falseA collection of ownership settings.
space_sharing_settings(SpaceSharingSettings)
/set_space_sharing_settings(Option<SpaceSharingSettings>)
:
required: falseA collection of space sharing settings.
space_display_name(impl Into<String>)
/set_space_display_name(Option<String>)
:
required: falseThe name of the space that appears in the SageMaker Studio UI.
- On success, responds with
CreateSpaceOutput
with field(s):space_arn(Option<String>)
:The space’s Amazon Resource Name (ARN).
- On failure, responds with
SdkError<CreateSpaceError>
Source§impl Client
impl Client
Sourcepub fn create_studio_lifecycle_config(
&self,
) -> CreateStudioLifecycleConfigFluentBuilder
pub fn create_studio_lifecycle_config( &self, ) -> CreateStudioLifecycleConfigFluentBuilder
Constructs a fluent builder for the CreateStudioLifecycleConfig
operation.
- The fluent builder is configurable:
studio_lifecycle_config_name(impl Into<String>)
/set_studio_lifecycle_config_name(Option<String>)
:
required: trueThe name of the Amazon SageMaker AI Studio Lifecycle Configuration to create.
studio_lifecycle_config_content(impl Into<String>)
/set_studio_lifecycle_config_content(Option<String>)
:
required: trueThe content of your Amazon SageMaker AI Studio Lifecycle Configuration script. This content must be base64 encoded.
studio_lifecycle_config_app_type(StudioLifecycleConfigAppType)
/set_studio_lifecycle_config_app_type(Option<StudioLifecycleConfigAppType>)
:
required: trueThe App type that the Lifecycle Configuration is attached to.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseTags to be associated with the Lifecycle Configuration. Each tag consists of a key and an optional value. Tag keys must be unique per resource. Tags are searchable using the Search API.
- On success, responds with
CreateStudioLifecycleConfigOutput
with field(s):studio_lifecycle_config_arn(Option<String>)
:The ARN of your created Lifecycle Configuration.
- On failure, responds with
SdkError<CreateStudioLifecycleConfigError>
Source§impl Client
impl Client
Sourcepub fn create_training_job(&self) -> CreateTrainingJobFluentBuilder
pub fn create_training_job(&self) -> CreateTrainingJobFluentBuilder
Constructs a fluent builder for the CreateTrainingJob
operation.
- The fluent builder is configurable:
training_job_name(impl Into<String>)
/set_training_job_name(Option<String>)
:
required: trueThe name of the training job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.
hyper_parameters(impl Into<String>, impl Into<String>)
/set_hyper_parameters(Option<HashMap::<String, String>>)
:
required: falseAlgorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see Algorithms.
You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the
Length Constraint
.Do not include any security-sensitive information including account access IDs, secrets, or tokens in any hyperparameter fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by any security-sensitive information included in the request hyperparameter variable or plain text fields.
algorithm_specification(AlgorithmSpecification)
/set_algorithm_specification(Option<AlgorithmSpecification>)
:
required: trueThe registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode. For more information about algorithms provided by SageMaker, see Algorithms. For information about providing your own algorithms, see Using Your Own Algorithms with Amazon SageMaker.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of an IAM role that SageMaker can assume to perform tasks on your behalf.
During model training, SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see SageMaker Roles.
To be able to pass this role to SageMaker, the caller of this API must have the
iam:PassRole
permission.input_data_config(Channel)
/set_input_data_config(Option<Vec::<Channel>>)
:
required: falseAn array of
Channel
objects. Each channel is a named input source.InputDataConfig
describes the input data and its location.Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data,
training_data
andvalidation_data
. The configuration for each channel provides the S3, EFS, or FSx location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format.Depending on the input mode that the algorithm supports, SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files are available as input streams. They do not need to be downloaded.
Your input must be in the same Amazon Web Services region as your training job.
output_data_config(OutputDataConfig)
/set_output_data_config(Option<OutputDataConfig>)
:
required: trueSpecifies the path to the S3 location where you want to store model artifacts. SageMaker creates subfolders for the artifacts.
resource_config(ResourceConfig)
/set_resource_config(Option<ResourceConfig>)
:
required: trueThe resources, including the ML compute instances and ML storage volumes, to use for model training.
ML storage volumes store model artifacts and incremental states. Training algorithms might also use ML storage volumes for scratch space. If you want SageMaker to use the ML storage volume to store the training data, choose
File
as theTrainingInputMode
in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.vpc_config(VpcConfig)
/set_vpc_config(Option<VpcConfig>)
:
required: falseA VpcConfig object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
stopping_condition(StoppingCondition)
/set_stopping_condition(Option<StoppingCondition>)
:
required: trueSpecifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.
To stop a job, SageMaker sends the algorithm the
SIGTERM
signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseAn array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
Do not include any security-sensitive information including account access IDs, secrets, or tokens in any tags. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by any security-sensitive information included in the request tag variable or plain text fields.
enable_network_isolation(bool)
/set_enable_network_isolation(Option<bool>)
:
required: falseIsolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.
enable_inter_container_traffic_encryption(bool)
/set_enable_inter_container_traffic_encryption(Option<bool>)
:
required: falseTo encrypt all communications between ML compute instances in distributed training, choose
True
. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training. For more information, see Protect Communications Between ML Compute Instances in a Distributed Training Job.enable_managed_spot_training(bool)
/set_enable_managed_spot_training(Option<bool>)
:
required: falseTo train models using managed spot training, choose
True
. Managed spot training provides a fully managed and scalable infrastructure for training machine learning models. this option is useful when training jobs can be interrupted and when there is flexibility when the training job is run.The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to see when managed spot training jobs are running, interrupted, resumed, or completed.
checkpoint_config(CheckpointConfig)
/set_checkpoint_config(Option<CheckpointConfig>)
:
required: falseContains information about the output location for managed spot training checkpoint data.
debug_hook_config(DebugHookConfig)
/set_debug_hook_config(Option<DebugHookConfig>)
:
required: falseConfiguration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the
DebugHookConfig
parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.debug_rule_configurations(DebugRuleConfiguration)
/set_debug_rule_configurations(Option<Vec::<DebugRuleConfiguration>>)
:
required: falseConfiguration information for Amazon SageMaker Debugger rules for debugging output tensors.
tensor_board_output_config(TensorBoardOutputConfig)
/set_tensor_board_output_config(Option<TensorBoardOutputConfig>)
:
required: falseConfiguration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.
experiment_config(ExperimentConfig)
/set_experiment_config(Option<ExperimentConfig>)
:
required: falseAssociates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:
profiler_config(ProfilerConfig)
/set_profiler_config(Option<ProfilerConfig>)
:
required: falseConfiguration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.
profiler_rule_configurations(ProfilerRuleConfiguration)
/set_profiler_rule_configurations(Option<Vec::<ProfilerRuleConfiguration>>)
:
required: falseConfiguration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.
environment(impl Into<String>, impl Into<String>)
/set_environment(Option<HashMap::<String, String>>)
:
required: falseThe environment variables to set in the Docker container.
Do not include any security-sensitive information including account access IDs, secrets, or tokens in any environment fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by security-sensitive information included in the request environment variable or plain text fields.
retry_strategy(RetryStrategy)
/set_retry_strategy(Option<RetryStrategy>)
:
required: falseThe number of times to retry the job when the job fails due to an
InternalServerError
.remote_debug_config(RemoteDebugConfig)
/set_remote_debug_config(Option<RemoteDebugConfig>)
:
required: falseConfiguration for remote debugging. To learn more about the remote debugging functionality of SageMaker, see Access a training container through Amazon Web Services Systems Manager (SSM) for remote debugging.
infra_check_config(InfraCheckConfig)
/set_infra_check_config(Option<InfraCheckConfig>)
:
required: falseContains information about the infrastructure health check configuration for the training job.
session_chaining_config(SessionChainingConfig)
/set_session_chaining_config(Option<SessionChainingConfig>)
:
required: falseContains information about attribute-based access control (ABAC) for the training job.
- On success, responds with
CreateTrainingJobOutput
with field(s):training_job_arn(Option<String>)
:The Amazon Resource Name (ARN) of the training job.
- On failure, responds with
SdkError<CreateTrainingJobError>
Source§impl Client
impl Client
Sourcepub fn create_training_plan(&self) -> CreateTrainingPlanFluentBuilder
pub fn create_training_plan(&self) -> CreateTrainingPlanFluentBuilder
Constructs a fluent builder for the CreateTrainingPlan
operation.
- The fluent builder is configurable:
training_plan_name(impl Into<String>)
/set_training_plan_name(Option<String>)
:
required: trueThe name of the training plan to create.
training_plan_offering_id(impl Into<String>)
/set_training_plan_offering_id(Option<String>)
:
required: trueThe unique identifier of the training plan offering to use for creating this plan.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseAn array of key-value pairs to apply to this training plan.
- On success, responds with
CreateTrainingPlanOutput
with field(s):training_plan_arn(Option<String>)
:The Amazon Resource Name (ARN); of the created training plan.
- On failure, responds with
SdkError<CreateTrainingPlanError>
Source§impl Client
impl Client
Sourcepub fn create_transform_job(&self) -> CreateTransformJobFluentBuilder
pub fn create_transform_job(&self) -> CreateTransformJobFluentBuilder
Constructs a fluent builder for the CreateTransformJob
operation.
- The fluent builder is configurable:
transform_job_name(impl Into<String>)
/set_transform_job_name(Option<String>)
:
required: trueThe name of the transform job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.
model_name(impl Into<String>)
/set_model_name(Option<String>)
:
required: trueThe name of the model that you want to use for the transform job.
ModelName
must be the name of an existing Amazon SageMaker model within an Amazon Web Services Region in an Amazon Web Services account.max_concurrent_transforms(i32)
/set_max_concurrent_transforms(Option<i32>)
:
required: falseThe maximum number of parallel requests that can be sent to each instance in a transform job. If
MaxConcurrentTransforms
is set to0
or left unset, Amazon SageMaker checks the optional execution-parameters to determine the settings for your chosen algorithm. If the execution-parameters endpoint is not enabled, the default value is1
. For more information on execution-parameters, see How Containers Serve Requests. For built-in algorithms, you don’t need to set a value forMaxConcurrentTransforms
.model_client_config(ModelClientConfig)
/set_model_client_config(Option<ModelClientConfig>)
:
required: falseConfigures the timeout and maximum number of retries for processing a transform job invocation.
max_payload_in_mb(i32)
/set_max_payload_in_mb(Option<i32>)
:
required: falseThe maximum allowed size of the payload, in MB. A payload is the data portion of a record (without metadata). The value in
MaxPayloadInMB
must be greater than, or equal to, the size of a single record. To estimate the size of a record in MB, divide the size of your dataset by the number of records. To ensure that the records fit within the maximum payload size, we recommend using a slightly larger value. The default value is6
MB.The value of
MaxPayloadInMB
cannot be greater than 100 MB. If you specify theMaxConcurrentTransforms
parameter, the value of(MaxConcurrentTransforms * MaxPayloadInMB)
also cannot exceed 100 MB.For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked encoding, set the value to
0
. This feature works only in supported algorithms. Currently, Amazon SageMaker built-in algorithms do not support HTTP chunked encoding.batch_strategy(BatchStrategy)
/set_batch_strategy(Option<BatchStrategy>)
:
required: falseSpecifies the number of records to include in a mini-batch for an HTTP inference request. A record is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.
To enable the batch strategy, you must set the
SplitType
property toLine
,RecordIO
, orTFRecord
.To use only one record when making an HTTP invocation request to a container, set
BatchStrategy
toSingleRecord
andSplitType
toLine
.To fit as many records in a mini-batch as can fit within the
MaxPayloadInMB
limit, setBatchStrategy
toMultiRecord
andSplitType
toLine
.environment(impl Into<String>, impl Into<String>)
/set_environment(Option<HashMap::<String, String>>)
:
required: falseThe environment variables to set in the Docker container. Don’t include any sensitive data in your environment variables. We support up to 16 key and values entries in the map.
transform_input(TransformInput)
/set_transform_input(Option<TransformInput>)
:
required: trueDescribes the input source and the way the transform job consumes it.
transform_output(TransformOutput)
/set_transform_output(Option<TransformOutput>)
:
required: trueDescribes the results of the transform job.
data_capture_config(BatchDataCaptureConfig)
/set_data_capture_config(Option<BatchDataCaptureConfig>)
:
required: falseConfiguration to control how SageMaker captures inference data.
transform_resources(TransformResources)
/set_transform_resources(Option<TransformResources>)
:
required: trueDescribes the resources, including ML instance types and ML instance count, to use for the transform job.
data_processing(DataProcessing)
/set_data_processing(Option<DataProcessing>)
:
required: falseThe data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: false(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.
experiment_config(ExperimentConfig)
/set_experiment_config(Option<ExperimentConfig>)
:
required: falseAssociates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:
- On success, responds with
CreateTransformJobOutput
with field(s):transform_job_arn(Option<String>)
:The Amazon Resource Name (ARN) of the transform job.
- On failure, responds with
SdkError<CreateTransformJobError>
Source§impl Client
impl Client
Sourcepub fn create_trial(&self) -> CreateTrialFluentBuilder
pub fn create_trial(&self) -> CreateTrialFluentBuilder
Constructs a fluent builder for the CreateTrial
operation.
- The fluent builder is configurable:
trial_name(impl Into<String>)
/set_trial_name(Option<String>)
:
required: trueThe name of the trial. The name must be unique in your Amazon Web Services account and is not case-sensitive.
display_name(impl Into<String>)
/set_display_name(Option<String>)
:
required: falseThe name of the trial as displayed. The name doesn’t need to be unique. If
DisplayName
isn’t specified,TrialName
is displayed.experiment_name(impl Into<String>)
/set_experiment_name(Option<String>)
:
required: trueThe name of the experiment to associate the trial with.
metadata_properties(MetadataProperties)
/set_metadata_properties(Option<MetadataProperties>)
:
required: falseMetadata properties of the tracking entity, trial, or trial component.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseA list of tags to associate with the trial. You can use Search API to search on the tags.
- On success, responds with
CreateTrialOutput
with field(s):trial_arn(Option<String>)
:The Amazon Resource Name (ARN) of the trial.
- On failure, responds with
SdkError<CreateTrialError>
Source§impl Client
impl Client
Sourcepub fn create_trial_component(&self) -> CreateTrialComponentFluentBuilder
pub fn create_trial_component(&self) -> CreateTrialComponentFluentBuilder
Constructs a fluent builder for the CreateTrialComponent
operation.
- The fluent builder is configurable:
trial_component_name(impl Into<String>)
/set_trial_component_name(Option<String>)
:
required: trueThe name of the component. The name must be unique in your Amazon Web Services account and is not case-sensitive.
display_name(impl Into<String>)
/set_display_name(Option<String>)
:
required: falseThe name of the component as displayed. The name doesn’t need to be unique. If
DisplayName
isn’t specified,TrialComponentName
is displayed.status(TrialComponentStatus)
/set_status(Option<TrialComponentStatus>)
:
required: falseThe status of the component. States include:
-
InProgress
-
Completed
-
Failed
-
start_time(DateTime)
/set_start_time(Option<DateTime>)
:
required: falseWhen the component started.
end_time(DateTime)
/set_end_time(Option<DateTime>)
:
required: falseWhen the component ended.
parameters(impl Into<String>, TrialComponentParameterValue)
/set_parameters(Option<HashMap::<String, TrialComponentParameterValue>>)
:
required: falseThe hyperparameters for the component.
input_artifacts(impl Into<String>, TrialComponentArtifact)
/set_input_artifacts(Option<HashMap::<String, TrialComponentArtifact>>)
:
required: falseThe input artifacts for the component. Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types.
output_artifacts(impl Into<String>, TrialComponentArtifact)
/set_output_artifacts(Option<HashMap::<String, TrialComponentArtifact>>)
:
required: falseThe output artifacts for the component. Examples of output artifacts are metrics, snapshots, logs, and images.
metadata_properties(MetadataProperties)
/set_metadata_properties(Option<MetadataProperties>)
:
required: falseMetadata properties of the tracking entity, trial, or trial component.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseA list of tags to associate with the component. You can use Search API to search on the tags.
- On success, responds with
CreateTrialComponentOutput
with field(s):trial_component_arn(Option<String>)
:The Amazon Resource Name (ARN) of the trial component.
- On failure, responds with
SdkError<CreateTrialComponentError>
Source§impl Client
impl Client
Sourcepub fn create_user_profile(&self) -> CreateUserProfileFluentBuilder
pub fn create_user_profile(&self) -> CreateUserProfileFluentBuilder
Constructs a fluent builder for the CreateUserProfile
operation.
- The fluent builder is configurable:
domain_id(impl Into<String>)
/set_domain_id(Option<String>)
:
required: trueThe ID of the associated Domain.
user_profile_name(impl Into<String>)
/set_user_profile_name(Option<String>)
:
required: trueA name for the UserProfile. This value is not case sensitive.
single_sign_on_user_identifier(impl Into<String>)
/set_single_sign_on_user_identifier(Option<String>)
:
required: falseA specifier for the type of value specified in SingleSignOnUserValue. Currently, the only supported value is “UserName”. If the Domain’s AuthMode is IAM Identity Center, this field is required. If the Domain’s AuthMode is not IAM Identity Center, this field cannot be specified.
single_sign_on_user_value(impl Into<String>)
/set_single_sign_on_user_value(Option<String>)
:
required: falseThe username of the associated Amazon Web Services Single Sign-On User for this UserProfile. If the Domain’s AuthMode is IAM Identity Center, this field is required, and must match a valid username of a user in your directory. If the Domain’s AuthMode is not IAM Identity Center, this field cannot be specified.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseEach tag consists of a key and an optional value. Tag keys must be unique per resource.
Tags that you specify for the User Profile are also added to all Apps that the User Profile launches.
user_settings(UserSettings)
/set_user_settings(Option<UserSettings>)
:
required: falseA collection of settings.
- On success, responds with
CreateUserProfileOutput
with field(s):user_profile_arn(Option<String>)
:The user profile Amazon Resource Name (ARN).
- On failure, responds with
SdkError<CreateUserProfileError>
Source§impl Client
impl Client
Sourcepub fn create_workforce(&self) -> CreateWorkforceFluentBuilder
pub fn create_workforce(&self) -> CreateWorkforceFluentBuilder
Constructs a fluent builder for the CreateWorkforce
operation.
- The fluent builder is configurable:
cognito_config(CognitoConfig)
/set_cognito_config(Option<CognitoConfig>)
:
required: falseUse this parameter to configure an Amazon Cognito private workforce. A single Cognito workforce is created using and corresponds to a single Amazon Cognito user pool.
Do not use
OidcConfig
if you specify values forCognitoConfig
.oidc_config(OidcConfig)
/set_oidc_config(Option<OidcConfig>)
:
required: falseUse this parameter to configure a private workforce using your own OIDC Identity Provider.
Do not use
CognitoConfig
if you specify values forOidcConfig
.source_ip_config(SourceIpConfig)
/set_source_ip_config(Option<SourceIpConfig>)
:
required: falseA list of IP address ranges (CIDRs). Used to create an allow list of IP addresses for a private workforce. Workers will only be able to log in to their worker portal from an IP address within this range. By default, a workforce isn’t restricted to specific IP addresses.
workforce_name(impl Into<String>)
/set_workforce_name(Option<String>)
:
required: trueThe name of the private workforce.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseAn array of key-value pairs that contain metadata to help you categorize and organize our workforce. Each tag consists of a key and a value, both of which you define.
workforce_vpc_config(WorkforceVpcConfigRequest)
/set_workforce_vpc_config(Option<WorkforceVpcConfigRequest>)
:
required: falseUse this parameter to configure a workforce using VPC.
- On success, responds with
CreateWorkforceOutput
with field(s):workforce_arn(Option<String>)
:The Amazon Resource Name (ARN) of the workforce.
- On failure, responds with
SdkError<CreateWorkforceError>
Source§impl Client
impl Client
Sourcepub fn create_workteam(&self) -> CreateWorkteamFluentBuilder
pub fn create_workteam(&self) -> CreateWorkteamFluentBuilder
Constructs a fluent builder for the CreateWorkteam
operation.
- The fluent builder is configurable:
workteam_name(impl Into<String>)
/set_workteam_name(Option<String>)
:
required: trueThe name of the work team. Use this name to identify the work team.
workforce_name(impl Into<String>)
/set_workforce_name(Option<String>)
:
required: falseThe name of the workforce.
member_definitions(MemberDefinition)
/set_member_definitions(Option<Vec::<MemberDefinition>>)
:
required: trueA list of
MemberDefinition
objects that contains objects that identify the workers that make up the work team.Workforces can be created using Amazon Cognito or your own OIDC Identity Provider (IdP). For private workforces created using Amazon Cognito use
CognitoMemberDefinition
. For workforces created using your own OIDC identity provider (IdP) useOidcMemberDefinition
. Do not provide input for both of these parameters in a single request.For workforces created using Amazon Cognito, private work teams correspond to Amazon Cognito user groups within the user pool used to create a workforce. All of the
CognitoMemberDefinition
objects that make up the member definition must have the sameClientId
andUserPool
values. To add a Amazon Cognito user group to an existing worker pool, seeAdding groups to a User Pool
. For more information about user pools, see Amazon Cognito User Pools.For workforces created using your own OIDC IdP, specify the user groups that you want to include in your private work team in
OidcMemberDefinition
by listing those groups inGroups
.description(impl Into<String>)
/set_description(Option<String>)
:
required: trueA description of the work team.
notification_configuration(NotificationConfiguration)
/set_notification_configuration(Option<NotificationConfiguration>)
:
required: falseConfigures notification of workers regarding available or expiring work items.
worker_access_configuration(WorkerAccessConfiguration)
/set_worker_access_configuration(Option<WorkerAccessConfiguration>)
:
required: falseUse this optional parameter to constrain access to an Amazon S3 resource based on the IP address using supported IAM global condition keys. The Amazon S3 resource is accessed in the worker portal using a Amazon S3 presigned URL.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseAn array of key-value pairs.
For more information, see Resource Tag and Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.
- On success, responds with
CreateWorkteamOutput
with field(s):workteam_arn(Option<String>)
:The Amazon Resource Name (ARN) of the work team. You can use this ARN to identify the work team.
- On failure, responds with
SdkError<CreateWorkteamError>
Source§impl Client
impl Client
Sourcepub fn delete_action(&self) -> DeleteActionFluentBuilder
pub fn delete_action(&self) -> DeleteActionFluentBuilder
Constructs a fluent builder for the DeleteAction
operation.
- The fluent builder is configurable:
action_name(impl Into<String>)
/set_action_name(Option<String>)
:
required: trueThe name of the action to delete.
- On success, responds with
DeleteActionOutput
with field(s):action_arn(Option<String>)
:The Amazon Resource Name (ARN) of the action.
- On failure, responds with
SdkError<DeleteActionError>
Source§impl Client
impl Client
Sourcepub fn delete_algorithm(&self) -> DeleteAlgorithmFluentBuilder
pub fn delete_algorithm(&self) -> DeleteAlgorithmFluentBuilder
Constructs a fluent builder for the DeleteAlgorithm
operation.
- The fluent builder is configurable:
algorithm_name(impl Into<String>)
/set_algorithm_name(Option<String>)
:
required: trueThe name of the algorithm to delete.
- On success, responds with
DeleteAlgorithmOutput
- On failure, responds with
SdkError<DeleteAlgorithmError>
Source§impl Client
impl Client
Sourcepub fn delete_app(&self) -> DeleteAppFluentBuilder
pub fn delete_app(&self) -> DeleteAppFluentBuilder
Constructs a fluent builder for the DeleteApp
operation.
- The fluent builder is configurable:
domain_id(impl Into<String>)
/set_domain_id(Option<String>)
:
required: trueThe domain ID.
user_profile_name(impl Into<String>)
/set_user_profile_name(Option<String>)
:
required: falseThe user profile name. If this value is not set, then
SpaceName
must be set.space_name(impl Into<String>)
/set_space_name(Option<String>)
:
required: falseThe name of the space. If this value is not set, then
UserProfileName
must be set.app_type(AppType)
/set_app_type(Option<AppType>)
:
required: trueThe type of app.
app_name(impl Into<String>)
/set_app_name(Option<String>)
:
required: trueThe name of the app.
- On success, responds with
DeleteAppOutput
- On failure, responds with
SdkError<DeleteAppError>
Source§impl Client
impl Client
Sourcepub fn delete_app_image_config(&self) -> DeleteAppImageConfigFluentBuilder
pub fn delete_app_image_config(&self) -> DeleteAppImageConfigFluentBuilder
Constructs a fluent builder for the DeleteAppImageConfig
operation.
- The fluent builder is configurable:
app_image_config_name(impl Into<String>)
/set_app_image_config_name(Option<String>)
:
required: trueThe name of the AppImageConfig to delete.
- On success, responds with
DeleteAppImageConfigOutput
- On failure, responds with
SdkError<DeleteAppImageConfigError>
Source§impl Client
impl Client
Sourcepub fn delete_artifact(&self) -> DeleteArtifactFluentBuilder
pub fn delete_artifact(&self) -> DeleteArtifactFluentBuilder
Constructs a fluent builder for the DeleteArtifact
operation.
- The fluent builder is configurable:
artifact_arn(impl Into<String>)
/set_artifact_arn(Option<String>)
:
required: falseThe Amazon Resource Name (ARN) of the artifact to delete.
source(ArtifactSource)
/set_source(Option<ArtifactSource>)
:
required: falseThe URI of the source.
- On success, responds with
DeleteArtifactOutput
with field(s):artifact_arn(Option<String>)
:The Amazon Resource Name (ARN) of the artifact.
- On failure, responds with
SdkError<DeleteArtifactError>
Source§impl Client
impl Client
Sourcepub fn delete_association(&self) -> DeleteAssociationFluentBuilder
pub fn delete_association(&self) -> DeleteAssociationFluentBuilder
Constructs a fluent builder for the DeleteAssociation
operation.
- The fluent builder is configurable:
source_arn(impl Into<String>)
/set_source_arn(Option<String>)
:
required: trueThe ARN of the source.
destination_arn(impl Into<String>)
/set_destination_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of the destination.
- On success, responds with
DeleteAssociationOutput
with field(s):source_arn(Option<String>)
:The ARN of the source.
destination_arn(Option<String>)
:The Amazon Resource Name (ARN) of the destination.
- On failure, responds with
SdkError<DeleteAssociationError>
Source§impl Client
impl Client
Sourcepub fn delete_cluster(&self) -> DeleteClusterFluentBuilder
pub fn delete_cluster(&self) -> DeleteClusterFluentBuilder
Constructs a fluent builder for the DeleteCluster
operation.
- The fluent builder is configurable:
cluster_name(impl Into<String>)
/set_cluster_name(Option<String>)
:
required: trueThe string name or the Amazon Resource Name (ARN) of the SageMaker HyperPod cluster to delete.
- On success, responds with
DeleteClusterOutput
with field(s):cluster_arn(Option<String>)
:The Amazon Resource Name (ARN) of the SageMaker HyperPod cluster to delete.
- On failure, responds with
SdkError<DeleteClusterError>
Source§impl Client
impl Client
Sourcepub fn delete_cluster_scheduler_config(
&self,
) -> DeleteClusterSchedulerConfigFluentBuilder
pub fn delete_cluster_scheduler_config( &self, ) -> DeleteClusterSchedulerConfigFluentBuilder
Constructs a fluent builder for the DeleteClusterSchedulerConfig
operation.
- The fluent builder is configurable:
cluster_scheduler_config_id(impl Into<String>)
/set_cluster_scheduler_config_id(Option<String>)
:
required: trueID of the cluster policy.
- On success, responds with
DeleteClusterSchedulerConfigOutput
- On failure, responds with
SdkError<DeleteClusterSchedulerConfigError>
Source§impl Client
impl Client
Sourcepub fn delete_code_repository(&self) -> DeleteCodeRepositoryFluentBuilder
pub fn delete_code_repository(&self) -> DeleteCodeRepositoryFluentBuilder
Constructs a fluent builder for the DeleteCodeRepository
operation.
- The fluent builder is configurable:
code_repository_name(impl Into<String>)
/set_code_repository_name(Option<String>)
:
required: trueThe name of the Git repository to delete.
- On success, responds with
DeleteCodeRepositoryOutput
- On failure, responds with
SdkError<DeleteCodeRepositoryError>
Source§impl Client
impl Client
Sourcepub fn delete_compilation_job(&self) -> DeleteCompilationJobFluentBuilder
pub fn delete_compilation_job(&self) -> DeleteCompilationJobFluentBuilder
Constructs a fluent builder for the DeleteCompilationJob
operation.
- The fluent builder is configurable:
compilation_job_name(impl Into<String>)
/set_compilation_job_name(Option<String>)
:
required: trueThe name of the compilation job to delete.
- On success, responds with
DeleteCompilationJobOutput
- On failure, responds with
SdkError<DeleteCompilationJobError>
Source§impl Client
impl Client
Sourcepub fn delete_compute_quota(&self) -> DeleteComputeQuotaFluentBuilder
pub fn delete_compute_quota(&self) -> DeleteComputeQuotaFluentBuilder
Constructs a fluent builder for the DeleteComputeQuota
operation.
- The fluent builder is configurable:
compute_quota_id(impl Into<String>)
/set_compute_quota_id(Option<String>)
:
required: trueID of the compute allocation definition.
- On success, responds with
DeleteComputeQuotaOutput
- On failure, responds with
SdkError<DeleteComputeQuotaError>
Source§impl Client
impl Client
Sourcepub fn delete_context(&self) -> DeleteContextFluentBuilder
pub fn delete_context(&self) -> DeleteContextFluentBuilder
Constructs a fluent builder for the DeleteContext
operation.
- The fluent builder is configurable:
context_name(impl Into<String>)
/set_context_name(Option<String>)
:
required: trueThe name of the context to delete.
- On success, responds with
DeleteContextOutput
with field(s):context_arn(Option<String>)
:The Amazon Resource Name (ARN) of the context.
- On failure, responds with
SdkError<DeleteContextError>
Source§impl Client
impl Client
Sourcepub fn delete_data_quality_job_definition(
&self,
) -> DeleteDataQualityJobDefinitionFluentBuilder
pub fn delete_data_quality_job_definition( &self, ) -> DeleteDataQualityJobDefinitionFluentBuilder
Constructs a fluent builder for the DeleteDataQualityJobDefinition
operation.
- The fluent builder is configurable:
job_definition_name(impl Into<String>)
/set_job_definition_name(Option<String>)
:
required: trueThe name of the data quality monitoring job definition to delete.
- On success, responds with
DeleteDataQualityJobDefinitionOutput
- On failure, responds with
SdkError<DeleteDataQualityJobDefinitionError>
Source§impl Client
impl Client
Sourcepub fn delete_device_fleet(&self) -> DeleteDeviceFleetFluentBuilder
pub fn delete_device_fleet(&self) -> DeleteDeviceFleetFluentBuilder
Constructs a fluent builder for the DeleteDeviceFleet
operation.
- The fluent builder is configurable:
device_fleet_name(impl Into<String>)
/set_device_fleet_name(Option<String>)
:
required: trueThe name of the fleet to delete.
- On success, responds with
DeleteDeviceFleetOutput
- On failure, responds with
SdkError<DeleteDeviceFleetError>
Source§impl Client
impl Client
Sourcepub fn delete_domain(&self) -> DeleteDomainFluentBuilder
pub fn delete_domain(&self) -> DeleteDomainFluentBuilder
Constructs a fluent builder for the DeleteDomain
operation.
- The fluent builder is configurable:
domain_id(impl Into<String>)
/set_domain_id(Option<String>)
:
required: trueThe domain ID.
retention_policy(RetentionPolicy)
/set_retention_policy(Option<RetentionPolicy>)
:
required: falseThe retention policy for this domain, which specifies whether resources will be retained after the Domain is deleted. By default, all resources are retained (not automatically deleted).
- On success, responds with
DeleteDomainOutput
- On failure, responds with
SdkError<DeleteDomainError>
Source§impl Client
impl Client
Sourcepub fn delete_edge_deployment_plan(
&self,
) -> DeleteEdgeDeploymentPlanFluentBuilder
pub fn delete_edge_deployment_plan( &self, ) -> DeleteEdgeDeploymentPlanFluentBuilder
Constructs a fluent builder for the DeleteEdgeDeploymentPlan
operation.
- The fluent builder is configurable:
edge_deployment_plan_name(impl Into<String>)
/set_edge_deployment_plan_name(Option<String>)
:
required: trueThe name of the edge deployment plan to delete.
- On success, responds with
DeleteEdgeDeploymentPlanOutput
- On failure, responds with
SdkError<DeleteEdgeDeploymentPlanError>
Source§impl Client
impl Client
Sourcepub fn delete_edge_deployment_stage(
&self,
) -> DeleteEdgeDeploymentStageFluentBuilder
pub fn delete_edge_deployment_stage( &self, ) -> DeleteEdgeDeploymentStageFluentBuilder
Constructs a fluent builder for the DeleteEdgeDeploymentStage
operation.
- The fluent builder is configurable:
edge_deployment_plan_name(impl Into<String>)
/set_edge_deployment_plan_name(Option<String>)
:
required: trueThe name of the edge deployment plan from which the stage will be deleted.
stage_name(impl Into<String>)
/set_stage_name(Option<String>)
:
required: trueThe name of the stage.
- On success, responds with
DeleteEdgeDeploymentStageOutput
- On failure, responds with
SdkError<DeleteEdgeDeploymentStageError>
Source§impl Client
impl Client
Sourcepub fn delete_endpoint(&self) -> DeleteEndpointFluentBuilder
pub fn delete_endpoint(&self) -> DeleteEndpointFluentBuilder
Constructs a fluent builder for the DeleteEndpoint
operation.
- The fluent builder is configurable:
endpoint_name(impl Into<String>)
/set_endpoint_name(Option<String>)
:
required: trueThe name of the endpoint that you want to delete.
- On success, responds with
DeleteEndpointOutput
- On failure, responds with
SdkError<DeleteEndpointError>
Source§impl Client
impl Client
Sourcepub fn delete_endpoint_config(&self) -> DeleteEndpointConfigFluentBuilder
pub fn delete_endpoint_config(&self) -> DeleteEndpointConfigFluentBuilder
Constructs a fluent builder for the DeleteEndpointConfig
operation.
- The fluent builder is configurable:
endpoint_config_name(impl Into<String>)
/set_endpoint_config_name(Option<String>)
:
required: trueThe name of the endpoint configuration that you want to delete.
- On success, responds with
DeleteEndpointConfigOutput
- On failure, responds with
SdkError<DeleteEndpointConfigError>
Source§impl Client
impl Client
Sourcepub fn delete_experiment(&self) -> DeleteExperimentFluentBuilder
pub fn delete_experiment(&self) -> DeleteExperimentFluentBuilder
Constructs a fluent builder for the DeleteExperiment
operation.
- The fluent builder is configurable:
experiment_name(impl Into<String>)
/set_experiment_name(Option<String>)
:
required: trueThe name of the experiment to delete.
- On success, responds with
DeleteExperimentOutput
with field(s):experiment_arn(Option<String>)
:The Amazon Resource Name (ARN) of the experiment that is being deleted.
- On failure, responds with
SdkError<DeleteExperimentError>
Source§impl Client
impl Client
Sourcepub fn delete_feature_group(&self) -> DeleteFeatureGroupFluentBuilder
pub fn delete_feature_group(&self) -> DeleteFeatureGroupFluentBuilder
Constructs a fluent builder for the DeleteFeatureGroup
operation.
- The fluent builder is configurable:
feature_group_name(impl Into<String>)
/set_feature_group_name(Option<String>)
:
required: trueThe name of the
FeatureGroup
you want to delete. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.
- On success, responds with
DeleteFeatureGroupOutput
- On failure, responds with
SdkError<DeleteFeatureGroupError>
Source§impl Client
impl Client
Sourcepub fn delete_flow_definition(&self) -> DeleteFlowDefinitionFluentBuilder
pub fn delete_flow_definition(&self) -> DeleteFlowDefinitionFluentBuilder
Constructs a fluent builder for the DeleteFlowDefinition
operation.
- The fluent builder is configurable:
flow_definition_name(impl Into<String>)
/set_flow_definition_name(Option<String>)
:
required: trueThe name of the flow definition you are deleting.
- On success, responds with
DeleteFlowDefinitionOutput
- On failure, responds with
SdkError<DeleteFlowDefinitionError>
Source§impl Client
impl Client
Sourcepub fn delete_hub(&self) -> DeleteHubFluentBuilder
pub fn delete_hub(&self) -> DeleteHubFluentBuilder
Constructs a fluent builder for the DeleteHub
operation.
- The fluent builder is configurable:
hub_name(impl Into<String>)
/set_hub_name(Option<String>)
:
required: trueThe name of the hub to delete.
- On success, responds with
DeleteHubOutput
- On failure, responds with
SdkError<DeleteHubError>
Source§impl Client
impl Client
Sourcepub fn delete_hub_content(&self) -> DeleteHubContentFluentBuilder
pub fn delete_hub_content(&self) -> DeleteHubContentFluentBuilder
Constructs a fluent builder for the DeleteHubContent
operation.
- The fluent builder is configurable:
hub_name(impl Into<String>)
/set_hub_name(Option<String>)
:
required: trueThe name of the hub that you want to delete content in.
hub_content_type(HubContentType)
/set_hub_content_type(Option<HubContentType>)
:
required: trueThe type of content that you want to delete from a hub.
hub_content_name(impl Into<String>)
/set_hub_content_name(Option<String>)
:
required: trueThe name of the content that you want to delete from a hub.
hub_content_version(impl Into<String>)
/set_hub_content_version(Option<String>)
:
required: trueThe version of the content that you want to delete from a hub.
- On success, responds with
DeleteHubContentOutput
- On failure, responds with
SdkError<DeleteHubContentError>
Source§impl Client
impl Client
Sourcepub fn delete_hub_content_reference(
&self,
) -> DeleteHubContentReferenceFluentBuilder
pub fn delete_hub_content_reference( &self, ) -> DeleteHubContentReferenceFluentBuilder
Constructs a fluent builder for the DeleteHubContentReference
operation.
- The fluent builder is configurable:
hub_name(impl Into<String>)
/set_hub_name(Option<String>)
:
required: trueThe name of the hub to delete the hub content reference from.
hub_content_type(HubContentType)
/set_hub_content_type(Option<HubContentType>)
:
required: trueThe type of hub content reference to delete. The only supported type of hub content reference to delete is
ModelReference
.hub_content_name(impl Into<String>)
/set_hub_content_name(Option<String>)
:
required: trueThe name of the hub content to delete.
- On success, responds with
DeleteHubContentReferenceOutput
- On failure, responds with
SdkError<DeleteHubContentReferenceError>
Source§impl Client
impl Client
Sourcepub fn delete_human_task_ui(&self) -> DeleteHumanTaskUiFluentBuilder
pub fn delete_human_task_ui(&self) -> DeleteHumanTaskUiFluentBuilder
Constructs a fluent builder for the DeleteHumanTaskUi
operation.
- The fluent builder is configurable:
human_task_ui_name(impl Into<String>)
/set_human_task_ui_name(Option<String>)
:
required: trueThe name of the human task user interface (work task template) you want to delete.
- On success, responds with
DeleteHumanTaskUiOutput
- On failure, responds with
SdkError<DeleteHumanTaskUiError>
Source§impl Client
impl Client
Sourcepub fn delete_hyper_parameter_tuning_job(
&self,
) -> DeleteHyperParameterTuningJobFluentBuilder
pub fn delete_hyper_parameter_tuning_job( &self, ) -> DeleteHyperParameterTuningJobFluentBuilder
Constructs a fluent builder for the DeleteHyperParameterTuningJob
operation.
- The fluent builder is configurable:
hyper_parameter_tuning_job_name(impl Into<String>)
/set_hyper_parameter_tuning_job_name(Option<String>)
:
required: trueThe name of the hyperparameter tuning job that you want to delete.
- On success, responds with
DeleteHyperParameterTuningJobOutput
- On failure, responds with
SdkError<DeleteHyperParameterTuningJobError>
Source§impl Client
impl Client
Sourcepub fn delete_image(&self) -> DeleteImageFluentBuilder
pub fn delete_image(&self) -> DeleteImageFluentBuilder
Constructs a fluent builder for the DeleteImage
operation.
- The fluent builder is configurable:
image_name(impl Into<String>)
/set_image_name(Option<String>)
:
required: trueThe name of the image to delete.
- On success, responds with
DeleteImageOutput
- On failure, responds with
SdkError<DeleteImageError>
Source§impl Client
impl Client
Sourcepub fn delete_image_version(&self) -> DeleteImageVersionFluentBuilder
pub fn delete_image_version(&self) -> DeleteImageVersionFluentBuilder
Constructs a fluent builder for the DeleteImageVersion
operation.
- The fluent builder is configurable:
image_name(impl Into<String>)
/set_image_name(Option<String>)
:
required: trueThe name of the image to delete.
version(i32)
/set_version(Option<i32>)
:
required: falseThe version to delete.
alias(impl Into<String>)
/set_alias(Option<String>)
:
required: falseThe alias of the image to delete.
- On success, responds with
DeleteImageVersionOutput
- On failure, responds with
SdkError<DeleteImageVersionError>
Source§impl Client
impl Client
Sourcepub fn delete_inference_component(
&self,
) -> DeleteInferenceComponentFluentBuilder
pub fn delete_inference_component( &self, ) -> DeleteInferenceComponentFluentBuilder
Constructs a fluent builder for the DeleteInferenceComponent
operation.
- The fluent builder is configurable:
inference_component_name(impl Into<String>)
/set_inference_component_name(Option<String>)
:
required: trueThe name of the inference component to delete.
- On success, responds with
DeleteInferenceComponentOutput
- On failure, responds with
SdkError<DeleteInferenceComponentError>
Source§impl Client
impl Client
Sourcepub fn delete_inference_experiment(
&self,
) -> DeleteInferenceExperimentFluentBuilder
pub fn delete_inference_experiment( &self, ) -> DeleteInferenceExperimentFluentBuilder
Constructs a fluent builder for the DeleteInferenceExperiment
operation.
- The fluent builder is configurable:
name(impl Into<String>)
/set_name(Option<String>)
:
required: trueThe name of the inference experiment you want to delete.
- On success, responds with
DeleteInferenceExperimentOutput
with field(s):inference_experiment_arn(Option<String>)
:The ARN of the deleted inference experiment.
- On failure, responds with
SdkError<DeleteInferenceExperimentError>
Source§impl Client
impl Client
Sourcepub fn delete_mlflow_tracking_server(
&self,
) -> DeleteMlflowTrackingServerFluentBuilder
pub fn delete_mlflow_tracking_server( &self, ) -> DeleteMlflowTrackingServerFluentBuilder
Constructs a fluent builder for the DeleteMlflowTrackingServer
operation.
- The fluent builder is configurable:
tracking_server_name(impl Into<String>)
/set_tracking_server_name(Option<String>)
:
required: trueThe name of the the tracking server to delete.
- On success, responds with
DeleteMlflowTrackingServerOutput
with field(s):tracking_server_arn(Option<String>)
:A
TrackingServerArn
object, the ARN of the tracking server that is deleted if successfully found.
- On failure, responds with
SdkError<DeleteMlflowTrackingServerError>
Source§impl Client
impl Client
Sourcepub fn delete_model(&self) -> DeleteModelFluentBuilder
pub fn delete_model(&self) -> DeleteModelFluentBuilder
Constructs a fluent builder for the DeleteModel
operation.
- The fluent builder is configurable:
model_name(impl Into<String>)
/set_model_name(Option<String>)
:
required: trueThe name of the model to delete.
- On success, responds with
DeleteModelOutput
- On failure, responds with
SdkError<DeleteModelError>
Source§impl Client
impl Client
Sourcepub fn delete_model_bias_job_definition(
&self,
) -> DeleteModelBiasJobDefinitionFluentBuilder
pub fn delete_model_bias_job_definition( &self, ) -> DeleteModelBiasJobDefinitionFluentBuilder
Constructs a fluent builder for the DeleteModelBiasJobDefinition
operation.
- The fluent builder is configurable:
job_definition_name(impl Into<String>)
/set_job_definition_name(Option<String>)
:
required: trueThe name of the model bias job definition to delete.
- On success, responds with
DeleteModelBiasJobDefinitionOutput
- On failure, responds with
SdkError<DeleteModelBiasJobDefinitionError>
Source§impl Client
impl Client
Sourcepub fn delete_model_card(&self) -> DeleteModelCardFluentBuilder
pub fn delete_model_card(&self) -> DeleteModelCardFluentBuilder
Constructs a fluent builder for the DeleteModelCard
operation.
- The fluent builder is configurable:
model_card_name(impl Into<String>)
/set_model_card_name(Option<String>)
:
required: trueThe name of the model card to delete.
- On success, responds with
DeleteModelCardOutput
- On failure, responds with
SdkError<DeleteModelCardError>
Source§impl Client
impl Client
Sourcepub fn delete_model_explainability_job_definition(
&self,
) -> DeleteModelExplainabilityJobDefinitionFluentBuilder
pub fn delete_model_explainability_job_definition( &self, ) -> DeleteModelExplainabilityJobDefinitionFluentBuilder
Constructs a fluent builder for the DeleteModelExplainabilityJobDefinition
operation.
- The fluent builder is configurable:
job_definition_name(impl Into<String>)
/set_job_definition_name(Option<String>)
:
required: trueThe name of the model explainability job definition to delete.
- On success, responds with
DeleteModelExplainabilityJobDefinitionOutput
- On failure, responds with
SdkError<DeleteModelExplainabilityJobDefinitionError>
Source§impl Client
impl Client
Sourcepub fn delete_model_package(&self) -> DeleteModelPackageFluentBuilder
pub fn delete_model_package(&self) -> DeleteModelPackageFluentBuilder
Constructs a fluent builder for the DeleteModelPackage
operation.
- The fluent builder is configurable:
model_package_name(impl Into<String>)
/set_model_package_name(Option<String>)
:
required: trueThe name or Amazon Resource Name (ARN) of the model package to delete.
When you specify a name, the name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
- On success, responds with
DeleteModelPackageOutput
- On failure, responds with
SdkError<DeleteModelPackageError>
Source§impl Client
impl Client
Sourcepub fn delete_model_package_group(&self) -> DeleteModelPackageGroupFluentBuilder
pub fn delete_model_package_group(&self) -> DeleteModelPackageGroupFluentBuilder
Constructs a fluent builder for the DeleteModelPackageGroup
operation.
- The fluent builder is configurable:
model_package_group_name(impl Into<String>)
/set_model_package_group_name(Option<String>)
:
required: trueThe name of the model group to delete.
- On success, responds with
DeleteModelPackageGroupOutput
- On failure, responds with
SdkError<DeleteModelPackageGroupError>
Source§impl Client
impl Client
Sourcepub fn delete_model_package_group_policy(
&self,
) -> DeleteModelPackageGroupPolicyFluentBuilder
pub fn delete_model_package_group_policy( &self, ) -> DeleteModelPackageGroupPolicyFluentBuilder
Constructs a fluent builder for the DeleteModelPackageGroupPolicy
operation.
- The fluent builder is configurable:
model_package_group_name(impl Into<String>)
/set_model_package_group_name(Option<String>)
:
required: trueThe name of the model group for which to delete the policy.
- On success, responds with
DeleteModelPackageGroupPolicyOutput
- On failure, responds with
SdkError<DeleteModelPackageGroupPolicyError>
Source§impl Client
impl Client
Sourcepub fn delete_model_quality_job_definition(
&self,
) -> DeleteModelQualityJobDefinitionFluentBuilder
pub fn delete_model_quality_job_definition( &self, ) -> DeleteModelQualityJobDefinitionFluentBuilder
Constructs a fluent builder for the DeleteModelQualityJobDefinition
operation.
- The fluent builder is configurable:
job_definition_name(impl Into<String>)
/set_job_definition_name(Option<String>)
:
required: trueThe name of the model quality monitoring job definition to delete.
- On success, responds with
DeleteModelQualityJobDefinitionOutput
- On failure, responds with
SdkError<DeleteModelQualityJobDefinitionError>
Source§impl Client
impl Client
Sourcepub fn delete_monitoring_schedule(
&self,
) -> DeleteMonitoringScheduleFluentBuilder
pub fn delete_monitoring_schedule( &self, ) -> DeleteMonitoringScheduleFluentBuilder
Constructs a fluent builder for the DeleteMonitoringSchedule
operation.
- The fluent builder is configurable:
monitoring_schedule_name(impl Into<String>)
/set_monitoring_schedule_name(Option<String>)
:
required: trueThe name of the monitoring schedule to delete.
- On success, responds with
DeleteMonitoringScheduleOutput
- On failure, responds with
SdkError<DeleteMonitoringScheduleError>
Source§impl Client
impl Client
Sourcepub fn delete_notebook_instance(&self) -> DeleteNotebookInstanceFluentBuilder
pub fn delete_notebook_instance(&self) -> DeleteNotebookInstanceFluentBuilder
Constructs a fluent builder for the DeleteNotebookInstance
operation.
- The fluent builder is configurable:
notebook_instance_name(impl Into<String>)
/set_notebook_instance_name(Option<String>)
:
required: trueThe name of the SageMaker AI notebook instance to delete.
- On success, responds with
DeleteNotebookInstanceOutput
- On failure, responds with
SdkError<DeleteNotebookInstanceError>
Source§impl Client
impl Client
Sourcepub fn delete_notebook_instance_lifecycle_config(
&self,
) -> DeleteNotebookInstanceLifecycleConfigFluentBuilder
pub fn delete_notebook_instance_lifecycle_config( &self, ) -> DeleteNotebookInstanceLifecycleConfigFluentBuilder
Constructs a fluent builder for the DeleteNotebookInstanceLifecycleConfig
operation.
- The fluent builder is configurable:
notebook_instance_lifecycle_config_name(impl Into<String>)
/set_notebook_instance_lifecycle_config_name(Option<String>)
:
required: trueThe name of the lifecycle configuration to delete.
- On success, responds with
DeleteNotebookInstanceLifecycleConfigOutput
- On failure, responds with
SdkError<DeleteNotebookInstanceLifecycleConfigError>
Source§impl Client
impl Client
Sourcepub fn delete_optimization_job(&self) -> DeleteOptimizationJobFluentBuilder
pub fn delete_optimization_job(&self) -> DeleteOptimizationJobFluentBuilder
Constructs a fluent builder for the DeleteOptimizationJob
operation.
- The fluent builder is configurable:
optimization_job_name(impl Into<String>)
/set_optimization_job_name(Option<String>)
:
required: trueThe name that you assigned to the optimization job.
- On success, responds with
DeleteOptimizationJobOutput
- On failure, responds with
SdkError<DeleteOptimizationJobError>
Source§impl Client
impl Client
Sourcepub fn delete_partner_app(&self) -> DeletePartnerAppFluentBuilder
pub fn delete_partner_app(&self) -> DeletePartnerAppFluentBuilder
Constructs a fluent builder for the DeletePartnerApp
operation.
- The fluent builder is configurable:
arn(impl Into<String>)
/set_arn(Option<String>)
:
required: trueThe ARN of the SageMaker Partner AI App to delete.
client_token(impl Into<String>)
/set_client_token(Option<String>)
:
required: falseA unique token that guarantees that the call to this API is idempotent.
- On success, responds with
DeletePartnerAppOutput
with field(s):arn(Option<String>)
:The ARN of the SageMaker Partner AI App that was deleted.
- On failure, responds with
SdkError<DeletePartnerAppError>
Source§impl Client
impl Client
Sourcepub fn delete_pipeline(&self) -> DeletePipelineFluentBuilder
pub fn delete_pipeline(&self) -> DeletePipelineFluentBuilder
Constructs a fluent builder for the DeletePipeline
operation.
- The fluent builder is configurable:
pipeline_name(impl Into<String>)
/set_pipeline_name(Option<String>)
:
required: trueThe name of the pipeline to delete.
client_request_token(impl Into<String>)
/set_client_request_token(Option<String>)
:
required: trueA unique, case-sensitive identifier that you provide to ensure the idempotency of the operation. An idempotent operation completes no more than one time.
- On success, responds with
DeletePipelineOutput
with field(s):pipeline_arn(Option<String>)
:The Amazon Resource Name (ARN) of the pipeline to delete.
- On failure, responds with
SdkError<DeletePipelineError>
Source§impl Client
impl Client
Sourcepub fn delete_project(&self) -> DeleteProjectFluentBuilder
pub fn delete_project(&self) -> DeleteProjectFluentBuilder
Constructs a fluent builder for the DeleteProject
operation.
- The fluent builder is configurable:
project_name(impl Into<String>)
/set_project_name(Option<String>)
:
required: trueThe name of the project to delete.
- On success, responds with
DeleteProjectOutput
- On failure, responds with
SdkError<DeleteProjectError>
Source§impl Client
impl Client
Sourcepub fn delete_space(&self) -> DeleteSpaceFluentBuilder
pub fn delete_space(&self) -> DeleteSpaceFluentBuilder
Constructs a fluent builder for the DeleteSpace
operation.
- The fluent builder is configurable:
domain_id(impl Into<String>)
/set_domain_id(Option<String>)
:
required: trueThe ID of the associated domain.
space_name(impl Into<String>)
/set_space_name(Option<String>)
:
required: trueThe name of the space.
- On success, responds with
DeleteSpaceOutput
- On failure, responds with
SdkError<DeleteSpaceError>
Source§impl Client
impl Client
Sourcepub fn delete_studio_lifecycle_config(
&self,
) -> DeleteStudioLifecycleConfigFluentBuilder
pub fn delete_studio_lifecycle_config( &self, ) -> DeleteStudioLifecycleConfigFluentBuilder
Constructs a fluent builder for the DeleteStudioLifecycleConfig
operation.
- The fluent builder is configurable:
studio_lifecycle_config_name(impl Into<String>)
/set_studio_lifecycle_config_name(Option<String>)
:
required: trueThe name of the Amazon SageMaker AI Studio Lifecycle Configuration to delete.
- On success, responds with
DeleteStudioLifecycleConfigOutput
- On failure, responds with
SdkError<DeleteStudioLifecycleConfigError>
Source§impl Client
impl Client
Constructs a fluent builder for the DeleteTags
operation.
- The fluent builder is configurable:
resource_arn(impl Into<String>)
/set_resource_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of the resource whose tags you want to delete.
tag_keys(impl Into<String>)
/set_tag_keys(Option<Vec::<String>>)
:
required: trueAn array or one or more tag keys to delete.
- On success, responds with
DeleteTagsOutput
- On failure, responds with
SdkError<DeleteTagsError>
Source§impl Client
impl Client
Sourcepub fn delete_trial(&self) -> DeleteTrialFluentBuilder
pub fn delete_trial(&self) -> DeleteTrialFluentBuilder
Constructs a fluent builder for the DeleteTrial
operation.
- The fluent builder is configurable:
trial_name(impl Into<String>)
/set_trial_name(Option<String>)
:
required: trueThe name of the trial to delete.
- On success, responds with
DeleteTrialOutput
with field(s):trial_arn(Option<String>)
:The Amazon Resource Name (ARN) of the trial that is being deleted.
- On failure, responds with
SdkError<DeleteTrialError>
Source§impl Client
impl Client
Sourcepub fn delete_trial_component(&self) -> DeleteTrialComponentFluentBuilder
pub fn delete_trial_component(&self) -> DeleteTrialComponentFluentBuilder
Constructs a fluent builder for the DeleteTrialComponent
operation.
- The fluent builder is configurable:
trial_component_name(impl Into<String>)
/set_trial_component_name(Option<String>)
:
required: trueThe name of the component to delete.
- On success, responds with
DeleteTrialComponentOutput
with field(s):trial_component_arn(Option<String>)
:The Amazon Resource Name (ARN) of the component is being deleted.
- On failure, responds with
SdkError<DeleteTrialComponentError>
Source§impl Client
impl Client
Sourcepub fn delete_user_profile(&self) -> DeleteUserProfileFluentBuilder
pub fn delete_user_profile(&self) -> DeleteUserProfileFluentBuilder
Constructs a fluent builder for the DeleteUserProfile
operation.
- The fluent builder is configurable:
domain_id(impl Into<String>)
/set_domain_id(Option<String>)
:
required: trueThe domain ID.
user_profile_name(impl Into<String>)
/set_user_profile_name(Option<String>)
:
required: trueThe user profile name.
- On success, responds with
DeleteUserProfileOutput
- On failure, responds with
SdkError<DeleteUserProfileError>
Source§impl Client
impl Client
Sourcepub fn delete_workforce(&self) -> DeleteWorkforceFluentBuilder
pub fn delete_workforce(&self) -> DeleteWorkforceFluentBuilder
Constructs a fluent builder for the DeleteWorkforce
operation.
- The fluent builder is configurable:
workforce_name(impl Into<String>)
/set_workforce_name(Option<String>)
:
required: trueThe name of the workforce.
- On success, responds with
DeleteWorkforceOutput
- On failure, responds with
SdkError<DeleteWorkforceError>
Source§impl Client
impl Client
Sourcepub fn delete_workteam(&self) -> DeleteWorkteamFluentBuilder
pub fn delete_workteam(&self) -> DeleteWorkteamFluentBuilder
Constructs a fluent builder for the DeleteWorkteam
operation.
- The fluent builder is configurable:
workteam_name(impl Into<String>)
/set_workteam_name(Option<String>)
:
required: trueThe name of the work team to delete.
- On success, responds with
DeleteWorkteamOutput
with field(s):success(Option<bool>)
:Returns
true
if the work team was successfully deleted; otherwise, returnsfalse
.
- On failure, responds with
SdkError<DeleteWorkteamError>
Source§impl Client
impl Client
Sourcepub fn deregister_devices(&self) -> DeregisterDevicesFluentBuilder
pub fn deregister_devices(&self) -> DeregisterDevicesFluentBuilder
Constructs a fluent builder for the DeregisterDevices
operation.
- The fluent builder is configurable:
device_fleet_name(impl Into<String>)
/set_device_fleet_name(Option<String>)
:
required: trueThe name of the fleet the devices belong to.
device_names(impl Into<String>)
/set_device_names(Option<Vec::<String>>)
:
required: trueThe unique IDs of the devices.
- On success, responds with
DeregisterDevicesOutput
- On failure, responds with
SdkError<DeregisterDevicesError>
Source§impl Client
impl Client
Sourcepub fn describe_action(&self) -> DescribeActionFluentBuilder
pub fn describe_action(&self) -> DescribeActionFluentBuilder
Constructs a fluent builder for the DescribeAction
operation.
- The fluent builder is configurable:
action_name(impl Into<String>)
/set_action_name(Option<String>)
:
required: trueThe name of the action to describe.
- On success, responds with
DescribeActionOutput
with field(s):action_name(Option<String>)
:The name of the action.
action_arn(Option<String>)
:The Amazon Resource Name (ARN) of the action.
source(Option<ActionSource>)
:The source of the action.
action_type(Option<String>)
:The type of the action.
description(Option<String>)
:The description of the action.
status(Option<ActionStatus>)
:The status of the action.
properties(Option<HashMap::<String, String>>)
:A list of the action’s properties.
creation_time(Option<DateTime>)
:When the action was created.
created_by(Option<UserContext>)
:Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
last_modified_time(Option<DateTime>)
:When the action was last modified.
last_modified_by(Option<UserContext>)
:Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
metadata_properties(Option<MetadataProperties>)
:Metadata properties of the tracking entity, trial, or trial component.
lineage_group_arn(Option<String>)
:The Amazon Resource Name (ARN) of the lineage group.
- On failure, responds with
SdkError<DescribeActionError>
Source§impl Client
impl Client
Sourcepub fn describe_algorithm(&self) -> DescribeAlgorithmFluentBuilder
pub fn describe_algorithm(&self) -> DescribeAlgorithmFluentBuilder
Constructs a fluent builder for the DescribeAlgorithm
operation.
- The fluent builder is configurable:
algorithm_name(impl Into<String>)
/set_algorithm_name(Option<String>)
:
required: trueThe name of the algorithm to describe.
- On success, responds with
DescribeAlgorithmOutput
with field(s):algorithm_name(Option<String>)
:The name of the algorithm being described.
algorithm_arn(Option<String>)
:The Amazon Resource Name (ARN) of the algorithm.
algorithm_description(Option<String>)
:A brief summary about the algorithm.
creation_time(Option<DateTime>)
:A timestamp specifying when the algorithm was created.
training_specification(Option<TrainingSpecification>)
:Details about training jobs run by this algorithm.
inference_specification(Option<InferenceSpecification>)
:Details about inference jobs that the algorithm runs.
validation_specification(Option<AlgorithmValidationSpecification>)
:Details about configurations for one or more training jobs that SageMaker runs to test the algorithm.
algorithm_status(Option<AlgorithmStatus>)
:The current status of the algorithm.
algorithm_status_details(Option<AlgorithmStatusDetails>)
:Details about the current status of the algorithm.
product_id(Option<String>)
:The product identifier of the algorithm.
certify_for_marketplace(Option<bool>)
:Whether the algorithm is certified to be listed in Amazon Web Services Marketplace.
- On failure, responds with
SdkError<DescribeAlgorithmError>
Source§impl Client
impl Client
Sourcepub fn describe_app(&self) -> DescribeAppFluentBuilder
pub fn describe_app(&self) -> DescribeAppFluentBuilder
Constructs a fluent builder for the DescribeApp
operation.
- The fluent builder is configurable:
domain_id(impl Into<String>)
/set_domain_id(Option<String>)
:
required: trueThe domain ID.
user_profile_name(impl Into<String>)
/set_user_profile_name(Option<String>)
:
required: falseThe user profile name. If this value is not set, then
SpaceName
must be set.space_name(impl Into<String>)
/set_space_name(Option<String>)
:
required: falseThe name of the space.
app_type(AppType)
/set_app_type(Option<AppType>)
:
required: trueThe type of app.
app_name(impl Into<String>)
/set_app_name(Option<String>)
:
required: trueThe name of the app.
- On success, responds with
DescribeAppOutput
with field(s):app_arn(Option<String>)
:The Amazon Resource Name (ARN) of the app.
app_type(Option<AppType>)
:The type of app.
app_name(Option<String>)
:The name of the app.
domain_id(Option<String>)
:The domain ID.
user_profile_name(Option<String>)
:The user profile name.
space_name(Option<String>)
:The name of the space. If this value is not set, then
UserProfileName
must be set.status(Option<AppStatus>)
:The status.
recovery_mode(Option<bool>)
:Indicates whether the application is launched in recovery mode.
last_health_check_timestamp(Option<DateTime>)
:The timestamp of the last health check.
last_user_activity_timestamp(Option<DateTime>)
:The timestamp of the last user’s activity.
LastUserActivityTimestamp
is also updated when SageMaker AI performs health checks without user activity. As a result, this value is set to the same value asLastHealthCheckTimestamp
.creation_time(Option<DateTime>)
:The creation time of the application.
After an application has been shut down for 24 hours, SageMaker AI deletes all metadata for the application. To be considered an update and retain application metadata, applications must be restarted within 24 hours after the previous application has been shut down. After this time window, creation of an application is considered a new application rather than an update of the previous application.
failure_reason(Option<String>)
:The failure reason.
resource_spec(Option<ResourceSpec>)
:The instance type and the Amazon Resource Name (ARN) of the SageMaker AI image created on the instance.
built_in_lifecycle_config_arn(Option<String>)
:The lifecycle configuration that runs before the default lifecycle configuration
- On failure, responds with
SdkError<DescribeAppError>
Source§impl Client
impl Client
Sourcepub fn describe_app_image_config(&self) -> DescribeAppImageConfigFluentBuilder
pub fn describe_app_image_config(&self) -> DescribeAppImageConfigFluentBuilder
Constructs a fluent builder for the DescribeAppImageConfig
operation.
- The fluent builder is configurable:
app_image_config_name(impl Into<String>)
/set_app_image_config_name(Option<String>)
:
required: trueThe name of the AppImageConfig to describe.
- On success, responds with
DescribeAppImageConfigOutput
with field(s):app_image_config_arn(Option<String>)
:The ARN of the AppImageConfig.
app_image_config_name(Option<String>)
:The name of the AppImageConfig.
creation_time(Option<DateTime>)
:When the AppImageConfig was created.
last_modified_time(Option<DateTime>)
:When the AppImageConfig was last modified.
kernel_gateway_image_config(Option<KernelGatewayImageConfig>)
:The configuration of a KernelGateway app.
jupyter_lab_app_image_config(Option<JupyterLabAppImageConfig>)
:The configuration of the JupyterLab app.
code_editor_app_image_config(Option<CodeEditorAppImageConfig>)
:The configuration of the Code Editor app.
- On failure, responds with
SdkError<DescribeAppImageConfigError>
Source§impl Client
impl Client
Sourcepub fn describe_artifact(&self) -> DescribeArtifactFluentBuilder
pub fn describe_artifact(&self) -> DescribeArtifactFluentBuilder
Constructs a fluent builder for the DescribeArtifact
operation.
- The fluent builder is configurable:
artifact_arn(impl Into<String>)
/set_artifact_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of the artifact to describe.
- On success, responds with
DescribeArtifactOutput
with field(s):artifact_name(Option<String>)
:The name of the artifact.
artifact_arn(Option<String>)
:The Amazon Resource Name (ARN) of the artifact.
source(Option<ArtifactSource>)
:The source of the artifact.
artifact_type(Option<String>)
:The type of the artifact.
properties(Option<HashMap::<String, String>>)
:A list of the artifact’s properties.
creation_time(Option<DateTime>)
:When the artifact was created.
created_by(Option<UserContext>)
:Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
last_modified_time(Option<DateTime>)
:When the artifact was last modified.
last_modified_by(Option<UserContext>)
:Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
metadata_properties(Option<MetadataProperties>)
:Metadata properties of the tracking entity, trial, or trial component.
lineage_group_arn(Option<String>)
:The Amazon Resource Name (ARN) of the lineage group.
- On failure, responds with
SdkError<DescribeArtifactError>
Source§impl Client
impl Client
Sourcepub fn describe_auto_ml_job(&self) -> DescribeAutoMLJobFluentBuilder
pub fn describe_auto_ml_job(&self) -> DescribeAutoMLJobFluentBuilder
Constructs a fluent builder for the DescribeAutoMLJob
operation.
- The fluent builder is configurable:
auto_ml_job_name(impl Into<String>)
/set_auto_ml_job_name(Option<String>)
:
required: trueRequests information about an AutoML job using its unique name.
- On success, responds with
DescribeAutoMlJobOutput
with field(s):auto_ml_job_name(Option<String>)
:Returns the name of the AutoML job.
auto_ml_job_arn(Option<String>)
:Returns the ARN of the AutoML job.
input_data_config(Option<Vec::<AutoMlChannel>>)
:Returns the input data configuration for the AutoML job.
output_data_config(Option<AutoMlOutputDataConfig>)
:Returns the job’s output data config.
role_arn(Option<String>)
:The ARN of the IAM role that has read permission to the input data location and write permission to the output data location in Amazon S3.
auto_ml_job_objective(Option<AutoMlJobObjective>)
:Returns the job’s objective.
problem_type(Option<ProblemType>)
:Returns the job’s problem type.
auto_ml_job_config(Option<AutoMlJobConfig>)
:Returns the configuration for the AutoML job.
creation_time(Option<DateTime>)
:Returns the creation time of the AutoML job.
end_time(Option<DateTime>)
:Returns the end time of the AutoML job.
last_modified_time(Option<DateTime>)
:Returns the job’s last modified time.
failure_reason(Option<String>)
:Returns the failure reason for an AutoML job, when applicable.
partial_failure_reasons(Option<Vec::<AutoMlPartialFailureReason>>)
:Returns a list of reasons for partial failures within an AutoML job.
best_candidate(Option<AutoMlCandidate>)
:The best model candidate selected by SageMaker AI Autopilot using both the best objective metric and lowest InferenceLatency for an experiment.
auto_ml_job_status(Option<AutoMlJobStatus>)
:Returns the status of the AutoML job.
auto_ml_job_secondary_status(Option<AutoMlJobSecondaryStatus>)
:Returns the secondary status of the AutoML job.
generate_candidate_definitions_only(Option<bool>)
:Indicates whether the output for an AutoML job generates candidate definitions only.
auto_ml_job_artifacts(Option<AutoMlJobArtifacts>)
:Returns information on the job’s artifacts found in
AutoMLJobArtifacts
.resolved_attributes(Option<ResolvedAttributes>)
:Contains
ProblemType
,AutoMLJobObjective
, andCompletionCriteria
. If you do not provide these values, they are inferred.model_deploy_config(Option<ModelDeployConfig>)
:Indicates whether the model was deployed automatically to an endpoint and the name of that endpoint if deployed automatically.
model_deploy_result(Option<ModelDeployResult>)
:Provides information about endpoint for the model deployment.
- On failure, responds with
SdkError<DescribeAutoMLJobError>
Source§impl Client
impl Client
Sourcepub fn describe_auto_ml_job_v2(&self) -> DescribeAutoMLJobV2FluentBuilder
pub fn describe_auto_ml_job_v2(&self) -> DescribeAutoMLJobV2FluentBuilder
Constructs a fluent builder for the DescribeAutoMLJobV2
operation.
- The fluent builder is configurable:
auto_ml_job_name(impl Into<String>)
/set_auto_ml_job_name(Option<String>)
:
required: trueRequests information about an AutoML job V2 using its unique name.
- On success, responds with
DescribeAutoMlJobV2Output
with field(s):auto_ml_job_name(Option<String>)
:Returns the name of the AutoML job V2.
auto_ml_job_arn(Option<String>)
:Returns the Amazon Resource Name (ARN) of the AutoML job V2.
auto_ml_job_input_data_config(Option<Vec::<AutoMlJobChannel>>)
:Returns an array of channel objects describing the input data and their location.
output_data_config(Option<AutoMlOutputDataConfig>)
:Returns the job’s output data config.
role_arn(Option<String>)
:The ARN of the IAM role that has read permission to the input data location and write permission to the output data location in Amazon S3.
auto_ml_job_objective(Option<AutoMlJobObjective>)
:Returns the job’s objective.
auto_ml_problem_type_config(Option<AutoMlProblemTypeConfig>)
:Returns the configuration settings of the problem type set for the AutoML job V2.
auto_ml_problem_type_config_name(Option<AutoMlProblemTypeConfigName>)
:Returns the name of the problem type configuration set for the AutoML job V2.
creation_time(Option<DateTime>)
:Returns the creation time of the AutoML job V2.
end_time(Option<DateTime>)
:Returns the end time of the AutoML job V2.
last_modified_time(Option<DateTime>)
:Returns the job’s last modified time.
failure_reason(Option<String>)
:Returns the reason for the failure of the AutoML job V2, when applicable.
partial_failure_reasons(Option<Vec::<AutoMlPartialFailureReason>>)
:Returns a list of reasons for partial failures within an AutoML job V2.
best_candidate(Option<AutoMlCandidate>)
:Information about the candidate produced by an AutoML training job V2, including its status, steps, and other properties.
auto_ml_job_status(Option<AutoMlJobStatus>)
:Returns the status of the AutoML job V2.
auto_ml_job_secondary_status(Option<AutoMlJobSecondaryStatus>)
:Returns the secondary status of the AutoML job V2.
auto_ml_job_artifacts(Option<AutoMlJobArtifacts>)
:The artifacts that are generated during an AutoML job.
resolved_attributes(Option<AutoMlResolvedAttributes>)
:Returns the resolved attributes used by the AutoML job V2.
model_deploy_config(Option<ModelDeployConfig>)
:Indicates whether the model was deployed automatically to an endpoint and the name of that endpoint if deployed automatically.
model_deploy_result(Option<ModelDeployResult>)
:Provides information about endpoint for the model deployment.
data_split_config(Option<AutoMlDataSplitConfig>)
:Returns the configuration settings of how the data are split into train and validation datasets.
security_config(Option<AutoMlSecurityConfig>)
:Returns the security configuration for traffic encryption or Amazon VPC settings.
auto_ml_compute_config(Option<AutoMlComputeConfig>)
:The compute configuration used for the AutoML job V2.
- On failure, responds with
SdkError<DescribeAutoMLJobV2Error>
Source§impl Client
impl Client
Sourcepub fn describe_cluster(&self) -> DescribeClusterFluentBuilder
pub fn describe_cluster(&self) -> DescribeClusterFluentBuilder
Constructs a fluent builder for the DescribeCluster
operation.
- The fluent builder is configurable:
cluster_name(impl Into<String>)
/set_cluster_name(Option<String>)
:
required: trueThe string name or the Amazon Resource Name (ARN) of the SageMaker HyperPod cluster.
- On success, responds with
DescribeClusterOutput
with field(s):cluster_arn(Option<String>)
:The Amazon Resource Name (ARN) of the SageMaker HyperPod cluster.
cluster_name(Option<String>)
:The name of the SageMaker HyperPod cluster.
cluster_status(Option<ClusterStatus>)
:The status of the SageMaker HyperPod cluster.
creation_time(Option<DateTime>)
:The time when the SageMaker Cluster is created.
failure_message(Option<String>)
:The failure message of the SageMaker HyperPod cluster.
instance_groups(Option<Vec::<ClusterInstanceGroupDetails>>)
:The instance groups of the SageMaker HyperPod cluster.
vpc_config(Option<VpcConfig>)
:Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs, hosted models, and compute resources have access to. You can control access to and from your resources by configuring a VPC. For more information, see Give SageMaker Access to Resources in your Amazon VPC.
orchestrator(Option<ClusterOrchestrator>)
:The type of orchestrator used for the SageMaker HyperPod cluster.
node_recovery(Option<ClusterNodeRecovery>)
:The node recovery mode configured for the SageMaker HyperPod cluster.
- On failure, responds with
SdkError<DescribeClusterError>
Source§impl Client
impl Client
Sourcepub fn describe_cluster_node(&self) -> DescribeClusterNodeFluentBuilder
pub fn describe_cluster_node(&self) -> DescribeClusterNodeFluentBuilder
Constructs a fluent builder for the DescribeClusterNode
operation.
- The fluent builder is configurable:
cluster_name(impl Into<String>)
/set_cluster_name(Option<String>)
:
required: trueThe string name or the Amazon Resource Name (ARN) of the SageMaker HyperPod cluster in which the node is.
node_id(impl Into<String>)
/set_node_id(Option<String>)
:
required: trueThe ID of the SageMaker HyperPod cluster node.
- On success, responds with
DescribeClusterNodeOutput
with field(s):node_details(Option<ClusterNodeDetails>)
:The details of the SageMaker HyperPod cluster node.
- On failure, responds with
SdkError<DescribeClusterNodeError>
Source§impl Client
impl Client
Sourcepub fn describe_cluster_scheduler_config(
&self,
) -> DescribeClusterSchedulerConfigFluentBuilder
pub fn describe_cluster_scheduler_config( &self, ) -> DescribeClusterSchedulerConfigFluentBuilder
Constructs a fluent builder for the DescribeClusterSchedulerConfig
operation.
- The fluent builder is configurable:
cluster_scheduler_config_id(impl Into<String>)
/set_cluster_scheduler_config_id(Option<String>)
:
required: trueID of the cluster policy.
cluster_scheduler_config_version(i32)
/set_cluster_scheduler_config_version(Option<i32>)
:
required: falseVersion of the cluster policy.
- On success, responds with
DescribeClusterSchedulerConfigOutput
with field(s):cluster_scheduler_config_arn(Option<String>)
:ARN of the cluster policy.
cluster_scheduler_config_id(Option<String>)
:ID of the cluster policy.
name(Option<String>)
:Name of the cluster policy.
cluster_scheduler_config_version(Option<i32>)
:Version of the cluster policy.
status(Option<SchedulerResourceStatus>)
:Status of the cluster policy.
failure_reason(Option<String>)
:Failure reason of the cluster policy.
cluster_arn(Option<String>)
:ARN of the cluster where the cluster policy is applied.
scheduler_config(Option<SchedulerConfig>)
:Cluster policy configuration. This policy is used for task prioritization and fair-share allocation. This helps prioritize critical workloads and distributes idle compute across entities.
description(Option<String>)
:Description of the cluster policy.
creation_time(Option<DateTime>)
:Creation time of the cluster policy.
created_by(Option<UserContext>)
:Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
last_modified_time(Option<DateTime>)
:Last modified time of the cluster policy.
last_modified_by(Option<UserContext>)
:Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
- On failure, responds with
SdkError<DescribeClusterSchedulerConfigError>
Source§impl Client
impl Client
Sourcepub fn describe_code_repository(&self) -> DescribeCodeRepositoryFluentBuilder
pub fn describe_code_repository(&self) -> DescribeCodeRepositoryFluentBuilder
Constructs a fluent builder for the DescribeCodeRepository
operation.
- The fluent builder is configurable:
code_repository_name(impl Into<String>)
/set_code_repository_name(Option<String>)
:
required: trueThe name of the Git repository to describe.
- On success, responds with
DescribeCodeRepositoryOutput
with field(s):code_repository_name(Option<String>)
:The name of the Git repository.
code_repository_arn(Option<String>)
:The Amazon Resource Name (ARN) of the Git repository.
creation_time(Option<DateTime>)
:The date and time that the repository was created.
last_modified_time(Option<DateTime>)
:The date and time that the repository was last changed.
git_config(Option<GitConfig>)
:Configuration details about the repository, including the URL where the repository is located, the default branch, and the Amazon Resource Name (ARN) of the Amazon Web Services Secrets Manager secret that contains the credentials used to access the repository.
- On failure, responds with
SdkError<DescribeCodeRepositoryError>
Source§impl Client
impl Client
Sourcepub fn describe_compilation_job(&self) -> DescribeCompilationJobFluentBuilder
pub fn describe_compilation_job(&self) -> DescribeCompilationJobFluentBuilder
Constructs a fluent builder for the DescribeCompilationJob
operation.
- The fluent builder is configurable:
compilation_job_name(impl Into<String>)
/set_compilation_job_name(Option<String>)
:
required: trueThe name of the model compilation job that you want information about.
- On success, responds with
DescribeCompilationJobOutput
with field(s):compilation_job_name(Option<String>)
:The name of the model compilation job.
compilation_job_arn(Option<String>)
:The Amazon Resource Name (ARN) of the model compilation job.
compilation_job_status(Option<CompilationJobStatus>)
:The status of the model compilation job.
compilation_start_time(Option<DateTime>)
:The time when the model compilation job started the
CompilationJob
instances.You are billed for the time between this timestamp and the timestamp in the
CompilationEndTime
field. In Amazon CloudWatch Logs, the start time might be later than this time. That’s because it takes time to download the compilation job, which depends on the size of the compilation job container.compilation_end_time(Option<DateTime>)
:The time when the model compilation job on a compilation job instance ended. For a successful or stopped job, this is when the job’s model artifacts have finished uploading. For a failed job, this is when Amazon SageMaker AI detected that the job failed.
stopping_condition(Option<StoppingCondition>)
:Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker AI ends the compilation job. Use this API to cap model training costs.
inference_image(Option<String>)
:The inference image to use when compiling a model. Specify an image only if the target device is a cloud instance.
model_package_version_arn(Option<String>)
:The Amazon Resource Name (ARN) of the versioned model package that was provided to SageMaker Neo when you initiated a compilation job.
creation_time(Option<DateTime>)
:The time that the model compilation job was created.
last_modified_time(Option<DateTime>)
:The time that the status of the model compilation job was last modified.
failure_reason(Option<String>)
:If a model compilation job failed, the reason it failed.
model_artifacts(Option<ModelArtifacts>)
:Information about the location in Amazon S3 that has been configured for storing the model artifacts used in the compilation job.
model_digests(Option<ModelDigests>)
:Provides a BLAKE2 hash value that identifies the compiled model artifacts in Amazon S3.
role_arn(Option<String>)
:The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI assumes to perform the model compilation job.
input_config(Option<InputConfig>)
:Information about the location in Amazon S3 of the input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.
output_config(Option<OutputConfig>)
:Information about the output location for the compiled model and the target device that the model runs on.
vpc_config(Option<NeoVpcConfig>)
:A VpcConfig object that specifies the VPC that you want your compilation job to connect to. Control access to your models by configuring the VPC. For more information, see Protect Compilation Jobs by Using an Amazon Virtual Private Cloud.
derived_information(Option<DerivedInformation>)
:Information that SageMaker Neo automatically derived about the model.
- On failure, responds with
SdkError<DescribeCompilationJobError>
Source§impl Client
impl Client
Sourcepub fn describe_compute_quota(&self) -> DescribeComputeQuotaFluentBuilder
pub fn describe_compute_quota(&self) -> DescribeComputeQuotaFluentBuilder
Constructs a fluent builder for the DescribeComputeQuota
operation.
- The fluent builder is configurable:
compute_quota_id(impl Into<String>)
/set_compute_quota_id(Option<String>)
:
required: trueID of the compute allocation definition.
compute_quota_version(i32)
/set_compute_quota_version(Option<i32>)
:
required: falseVersion of the compute allocation definition.
- On success, responds with
DescribeComputeQuotaOutput
with field(s):compute_quota_arn(Option<String>)
:ARN of the compute allocation definition.
compute_quota_id(Option<String>)
:ID of the compute allocation definition.
name(Option<String>)
:Name of the compute allocation definition.
description(Option<String>)
:Description of the compute allocation definition.
compute_quota_version(Option<i32>)
:Version of the compute allocation definition.
status(Option<SchedulerResourceStatus>)
:Status of the compute allocation definition.
failure_reason(Option<String>)
:Failure reason of the compute allocation definition.
cluster_arn(Option<String>)
:ARN of the cluster.
compute_quota_config(Option<ComputeQuotaConfig>)
:Configuration of the compute allocation definition. This includes the resource sharing option, and the setting to preempt low priority tasks.
compute_quota_target(Option<ComputeQuotaTarget>)
:The target entity to allocate compute resources to.
activation_state(Option<ActivationState>)
:The state of the compute allocation being described. Use to enable or disable compute allocation.
Default is
Enabled
.creation_time(Option<DateTime>)
:Creation time of the compute allocation configuration.
created_by(Option<UserContext>)
:Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
last_modified_time(Option<DateTime>)
:Last modified time of the compute allocation configuration.
last_modified_by(Option<UserContext>)
:Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
- On failure, responds with
SdkError<DescribeComputeQuotaError>
Source§impl Client
impl Client
Sourcepub fn describe_context(&self) -> DescribeContextFluentBuilder
pub fn describe_context(&self) -> DescribeContextFluentBuilder
Constructs a fluent builder for the DescribeContext
operation.
- The fluent builder is configurable:
context_name(impl Into<String>)
/set_context_name(Option<String>)
:
required: trueThe name of the context to describe.
- On success, responds with
DescribeContextOutput
with field(s):context_name(Option<String>)
:The name of the context.
context_arn(Option<String>)
:The Amazon Resource Name (ARN) of the context.
source(Option<ContextSource>)
:The source of the context.
context_type(Option<String>)
:The type of the context.
description(Option<String>)
:The description of the context.
properties(Option<HashMap::<String, String>>)
:A list of the context’s properties.
creation_time(Option<DateTime>)
:When the context was created.
created_by(Option<UserContext>)
:Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
last_modified_time(Option<DateTime>)
:When the context was last modified.
last_modified_by(Option<UserContext>)
:Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
lineage_group_arn(Option<String>)
:The Amazon Resource Name (ARN) of the lineage group.
- On failure, responds with
SdkError<DescribeContextError>
Source§impl Client
impl Client
Sourcepub fn describe_data_quality_job_definition(
&self,
) -> DescribeDataQualityJobDefinitionFluentBuilder
pub fn describe_data_quality_job_definition( &self, ) -> DescribeDataQualityJobDefinitionFluentBuilder
Constructs a fluent builder for the DescribeDataQualityJobDefinition
operation.
- The fluent builder is configurable:
job_definition_name(impl Into<String>)
/set_job_definition_name(Option<String>)
:
required: trueThe name of the data quality monitoring job definition to describe.
- On success, responds with
DescribeDataQualityJobDefinitionOutput
with field(s):job_definition_arn(Option<String>)
:The Amazon Resource Name (ARN) of the data quality monitoring job definition.
job_definition_name(Option<String>)
:The name of the data quality monitoring job definition.
creation_time(Option<DateTime>)
:The time that the data quality monitoring job definition was created.
data_quality_baseline_config(Option<DataQualityBaselineConfig>)
:The constraints and baselines for the data quality monitoring job definition.
data_quality_app_specification(Option<DataQualityAppSpecification>)
:Information about the container that runs the data quality monitoring job.
data_quality_job_input(Option<DataQualityJobInput>)
:The list of inputs for the data quality monitoring job. Currently endpoints are supported.
data_quality_job_output_config(Option<MonitoringOutputConfig>)
:The output configuration for monitoring jobs.
job_resources(Option<MonitoringResources>)
:Identifies the resources to deploy for a monitoring job.
network_config(Option<MonitoringNetworkConfig>)
:The networking configuration for the data quality monitoring job.
role_arn(Option<String>)
:The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.
stopping_condition(Option<MonitoringStoppingCondition>)
:A time limit for how long the monitoring job is allowed to run before stopping.
- On failure, responds with
SdkError<DescribeDataQualityJobDefinitionError>
Source§impl Client
impl Client
Sourcepub fn describe_device(&self) -> DescribeDeviceFluentBuilder
pub fn describe_device(&self) -> DescribeDeviceFluentBuilder
Constructs a fluent builder for the DescribeDevice
operation.
- The fluent builder is configurable:
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseNext token of device description.
device_name(impl Into<String>)
/set_device_name(Option<String>)
:
required: trueThe unique ID of the device.
device_fleet_name(impl Into<String>)
/set_device_fleet_name(Option<String>)
:
required: trueThe name of the fleet the devices belong to.
- On success, responds with
DescribeDeviceOutput
with field(s):device_arn(Option<String>)
:The Amazon Resource Name (ARN) of the device.
device_name(Option<String>)
:The unique identifier of the device.
description(Option<String>)
:A description of the device.
device_fleet_name(Option<String>)
:The name of the fleet the device belongs to.
iot_thing_name(Option<String>)
:The Amazon Web Services Internet of Things (IoT) object thing name associated with the device.
registration_time(Option<DateTime>)
:The timestamp of the last registration or de-reregistration.
latest_heartbeat(Option<DateTime>)
:The last heartbeat received from the device.
models(Option<Vec::<EdgeModel>>)
:Models on the device.
max_models(Option<i32>)
:The maximum number of models.
next_token(Option<String>)
:The response from the last list when returning a list large enough to need tokening.
agent_version(Option<String>)
:Edge Manager agent version.
- On failure, responds with
SdkError<DescribeDeviceError>
Source§impl Client
impl Client
Sourcepub fn describe_device_fleet(&self) -> DescribeDeviceFleetFluentBuilder
pub fn describe_device_fleet(&self) -> DescribeDeviceFleetFluentBuilder
Constructs a fluent builder for the DescribeDeviceFleet
operation.
- The fluent builder is configurable:
device_fleet_name(impl Into<String>)
/set_device_fleet_name(Option<String>)
:
required: trueThe name of the fleet.
- On success, responds with
DescribeDeviceFleetOutput
with field(s):device_fleet_name(Option<String>)
:The name of the fleet.
device_fleet_arn(Option<String>)
:The The Amazon Resource Name (ARN) of the fleet.
output_config(Option<EdgeOutputConfig>)
:The output configuration for storing sampled data.
description(Option<String>)
:A description of the fleet.
creation_time(Option<DateTime>)
:Timestamp of when the device fleet was created.
last_modified_time(Option<DateTime>)
:Timestamp of when the device fleet was last updated.
role_arn(Option<String>)
:The Amazon Resource Name (ARN) that has access to Amazon Web Services Internet of Things (IoT).
iot_role_alias(Option<String>)
:The Amazon Resource Name (ARN) alias created in Amazon Web Services Internet of Things (IoT).
- On failure, responds with
SdkError<DescribeDeviceFleetError>
Source§impl Client
impl Client
Sourcepub fn describe_domain(&self) -> DescribeDomainFluentBuilder
pub fn describe_domain(&self) -> DescribeDomainFluentBuilder
Constructs a fluent builder for the DescribeDomain
operation.
- The fluent builder is configurable:
domain_id(impl Into<String>)
/set_domain_id(Option<String>)
:
required: trueThe domain ID.
- On success, responds with
DescribeDomainOutput
with field(s):domain_arn(Option<String>)
:The domain’s Amazon Resource Name (ARN).
domain_id(Option<String>)
:The domain ID.
domain_name(Option<String>)
:The domain name.
home_efs_file_system_id(Option<String>)
:The ID of the Amazon Elastic File System managed by this Domain.
single_sign_on_managed_application_instance_id(Option<String>)
:The IAM Identity Center managed application instance ID.
single_sign_on_application_arn(Option<String>)
:The ARN of the application managed by SageMaker AI in IAM Identity Center. This value is only returned for domains created after October 1, 2023.
status(Option<DomainStatus>)
:The status.
creation_time(Option<DateTime>)
:The creation time.
last_modified_time(Option<DateTime>)
:The last modified time.
failure_reason(Option<String>)
:The failure reason.
security_group_id_for_domain_boundary(Option<String>)
:The ID of the security group that authorizes traffic between the
RSessionGateway
apps and theRStudioServerPro
app.auth_mode(Option<AuthMode>)
:The domain’s authentication mode.
default_user_settings(Option<UserSettings>)
:Settings which are applied to UserProfiles in this domain if settings are not explicitly specified in a given UserProfile.
domain_settings(Option<DomainSettings>)
:A collection of
Domain
settings.app_network_access_type(Option<AppNetworkAccessType>)
:Specifies the VPC used for non-EFS traffic. The default value is
PublicInternetOnly
.-
PublicInternetOnly
- Non-EFS traffic is through a VPC managed by Amazon SageMaker AI, which allows direct internet access -
VpcOnly
- All traffic is through the specified VPC and subnets
-
home_efs_file_system_kms_key_id(Option<String>)
:Use
KmsKeyId
.subnet_ids(Option<Vec::<String>>)
:The VPC subnets that the domain uses for communication.
url(Option<String>)
:The domain’s URL.
vpc_id(Option<String>)
:The ID of the Amazon Virtual Private Cloud (VPC) that the domain uses for communication.
kms_key_id(Option<String>)
:The Amazon Web Services KMS customer managed key used to encrypt the EFS volume attached to the domain.
app_security_group_management(Option<AppSecurityGroupManagement>)
:The entity that creates and manages the required security groups for inter-app communication in
VPCOnly
mode. Required whenCreateDomain.AppNetworkAccessType
isVPCOnly
andDomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn
is provided.tag_propagation(Option<TagPropagation>)
:Indicates whether custom tag propagation is supported for the domain.
default_space_settings(Option<DefaultSpaceSettings>)
:The default settings for shared spaces that users create in the domain.
- On failure, responds with
SdkError<DescribeDomainError>
Source§impl Client
impl Client
Sourcepub fn describe_edge_deployment_plan(
&self,
) -> DescribeEdgeDeploymentPlanFluentBuilder
pub fn describe_edge_deployment_plan( &self, ) -> DescribeEdgeDeploymentPlanFluentBuilder
Constructs a fluent builder for the DescribeEdgeDeploymentPlan
operation.
- The fluent builder is configurable:
edge_deployment_plan_name(impl Into<String>)
/set_edge_deployment_plan_name(Option<String>)
:
required: trueThe name of the deployment plan to describe.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the edge deployment plan has enough stages to require tokening, then this is the response from the last list of stages returned.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of results to select (50 by default).
- On success, responds with
DescribeEdgeDeploymentPlanOutput
with field(s):edge_deployment_plan_arn(Option<String>)
:The ARN of edge deployment plan.
edge_deployment_plan_name(Option<String>)
:The name of the edge deployment plan.
model_configs(Option<Vec::<EdgeDeploymentModelConfig>>)
:List of models associated with the edge deployment plan.
device_fleet_name(Option<String>)
:The device fleet used for this edge deployment plan.
edge_deployment_success(Option<i32>)
:The number of edge devices with the successful deployment.
edge_deployment_pending(Option<i32>)
:The number of edge devices yet to pick up deployment, or in progress.
edge_deployment_failed(Option<i32>)
:The number of edge devices that failed the deployment.
stages(Option<Vec::<DeploymentStageStatusSummary>>)
:List of stages in the edge deployment plan.
next_token(Option<String>)
:Token to use when calling the next set of stages in the edge deployment plan.
creation_time(Option<DateTime>)
:The time when the edge deployment plan was created.
last_modified_time(Option<DateTime>)
:The time when the edge deployment plan was last updated.
- On failure, responds with
SdkError<DescribeEdgeDeploymentPlanError>
Source§impl Client
impl Client
Sourcepub fn describe_edge_packaging_job(
&self,
) -> DescribeEdgePackagingJobFluentBuilder
pub fn describe_edge_packaging_job( &self, ) -> DescribeEdgePackagingJobFluentBuilder
Constructs a fluent builder for the DescribeEdgePackagingJob
operation.
- The fluent builder is configurable:
edge_packaging_job_name(impl Into<String>)
/set_edge_packaging_job_name(Option<String>)
:
required: trueThe name of the edge packaging job.
- On success, responds with
DescribeEdgePackagingJobOutput
with field(s):edge_packaging_job_arn(Option<String>)
:The Amazon Resource Name (ARN) of the edge packaging job.
edge_packaging_job_name(Option<String>)
:The name of the edge packaging job.
compilation_job_name(Option<String>)
:The name of the SageMaker Neo compilation job that is used to locate model artifacts that are being packaged.
model_name(Option<String>)
:The name of the model.
model_version(Option<String>)
:The version of the model.
role_arn(Option<String>)
:The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to download and upload the model, and to contact Neo.
output_config(Option<EdgeOutputConfig>)
:The output configuration for the edge packaging job.
resource_key(Option<String>)
:The Amazon Web Services KMS key to use when encrypting the EBS volume the job run on.
edge_packaging_job_status(Option<EdgePackagingJobStatus>)
:The current status of the packaging job.
edge_packaging_job_status_message(Option<String>)
:Returns a message describing the job status and error messages.
creation_time(Option<DateTime>)
:The timestamp of when the packaging job was created.
last_modified_time(Option<DateTime>)
:The timestamp of when the job was last updated.
model_artifact(Option<String>)
:The Amazon Simple Storage (S3) URI where model artifacts ares stored.
model_signature(Option<String>)
:The signature document of files in the model artifact.
preset_deployment_output(Option<EdgePresetDeploymentOutput>)
:The output of a SageMaker Edge Manager deployable resource.
- On failure, responds with
SdkError<DescribeEdgePackagingJobError>
Source§impl Client
impl Client
Sourcepub fn describe_endpoint(&self) -> DescribeEndpointFluentBuilder
pub fn describe_endpoint(&self) -> DescribeEndpointFluentBuilder
Constructs a fluent builder for the DescribeEndpoint
operation.
- The fluent builder is configurable:
endpoint_name(impl Into<String>)
/set_endpoint_name(Option<String>)
:
required: trueThe name of the endpoint.
- On success, responds with
DescribeEndpointOutput
with field(s):endpoint_name(Option<String>)
:Name of the endpoint.
endpoint_arn(Option<String>)
:The Amazon Resource Name (ARN) of the endpoint.
endpoint_config_name(Option<String>)
:The name of the endpoint configuration associated with this endpoint.
production_variants(Option<Vec::<ProductionVariantSummary>>)
:An array of ProductionVariantSummary objects, one for each model hosted behind this endpoint.
data_capture_config(Option<DataCaptureConfigSummary>)
:The currently active data capture configuration used by your Endpoint.
endpoint_status(Option<EndpointStatus>)
:The status of the endpoint.
-
OutOfService
: Endpoint is not available to take incoming requests. -
Creating
: CreateEndpoint is executing. -
Updating
: UpdateEndpoint or UpdateEndpointWeightsAndCapacities is executing. -
SystemUpdating
: Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count. -
RollingBack
: Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to anInService
status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an UpdateEndpointWeightsAndCapacities call or when the UpdateEndpointWeightsAndCapacities operation is called explicitly. -
InService
: Endpoint is available to process incoming requests. -
Deleting
: DeleteEndpoint is executing. -
Failed
: Endpoint could not be created, updated, or re-scaled. Use theFailureReason
value returned by DescribeEndpoint for information about the failure. DeleteEndpoint is the only operation that can be performed on a failed endpoint. -
UpdateRollbackFailed
: Both the rolling deployment and auto-rollback failed. Your endpoint is in service with a mix of the old and new endpoint configurations. For information about how to remedy this issue and restore the endpoint’s status toInService
, see Rolling Deployments.
-
failure_reason(Option<String>)
:If the status of the endpoint is
Failed
, the reason why it failed.creation_time(Option<DateTime>)
:A timestamp that shows when the endpoint was created.
last_modified_time(Option<DateTime>)
:A timestamp that shows when the endpoint was last modified.
last_deployment_config(Option<DeploymentConfig>)
:The most recent deployment configuration for the endpoint.
async_inference_config(Option<AsyncInferenceConfig>)
:Returns the description of an endpoint configuration created using the
CreateEndpointConfig
API.pending_deployment_summary(Option<PendingDeploymentSummary>)
:Returns the summary of an in-progress deployment. This field is only returned when the endpoint is creating or updating with a new endpoint configuration.
explainer_config(Option<ExplainerConfig>)
:The configuration parameters for an explainer.
shadow_production_variants(Option<Vec::<ProductionVariantSummary>>)
:An array of ProductionVariantSummary objects, one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on
ProductionVariants
.
- On failure, responds with
SdkError<DescribeEndpointError>
Source§impl Client
impl Client
Sourcepub fn describe_endpoint_config(&self) -> DescribeEndpointConfigFluentBuilder
pub fn describe_endpoint_config(&self) -> DescribeEndpointConfigFluentBuilder
Constructs a fluent builder for the DescribeEndpointConfig
operation.
- The fluent builder is configurable:
endpoint_config_name(impl Into<String>)
/set_endpoint_config_name(Option<String>)
:
required: trueThe name of the endpoint configuration.
- On success, responds with
DescribeEndpointConfigOutput
with field(s):endpoint_config_name(Option<String>)
:Name of the SageMaker endpoint configuration.
endpoint_config_arn(Option<String>)
:The Amazon Resource Name (ARN) of the endpoint configuration.
production_variants(Option<Vec::<ProductionVariant>>)
:An array of
ProductionVariant
objects, one for each model that you want to host at this endpoint.data_capture_config(Option<DataCaptureConfig>)
:Configuration to control how SageMaker AI captures inference data.
kms_key_id(Option<String>)
:Amazon Web Services KMS key ID Amazon SageMaker uses to encrypt data when storing it on the ML storage volume attached to the instance.
creation_time(Option<DateTime>)
:A timestamp that shows when the endpoint configuration was created.
async_inference_config(Option<AsyncInferenceConfig>)
:Returns the description of an endpoint configuration created using the
CreateEndpointConfig
API.explainer_config(Option<ExplainerConfig>)
:The configuration parameters for an explainer.
shadow_production_variants(Option<Vec::<ProductionVariant>>)
:An array of
ProductionVariant
objects, one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified onProductionVariants
.execution_role_arn(Option<String>)
:The Amazon Resource Name (ARN) of the IAM role that you assigned to the endpoint configuration.
vpc_config(Option<VpcConfig>)
:Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs, hosted models, and compute resources have access to. You can control access to and from your resources by configuring a VPC. For more information, see Give SageMaker Access to Resources in your Amazon VPC.
enable_network_isolation(Option<bool>)
:Indicates whether all model containers deployed to the endpoint are isolated. If they are, no inbound or outbound network calls can be made to or from the model containers.
- On failure, responds with
SdkError<DescribeEndpointConfigError>
Source§impl Client
impl Client
Sourcepub fn describe_experiment(&self) -> DescribeExperimentFluentBuilder
pub fn describe_experiment(&self) -> DescribeExperimentFluentBuilder
Constructs a fluent builder for the DescribeExperiment
operation.
- The fluent builder is configurable:
experiment_name(impl Into<String>)
/set_experiment_name(Option<String>)
:
required: trueThe name of the experiment to describe.
- On success, responds with
DescribeExperimentOutput
with field(s):experiment_name(Option<String>)
:The name of the experiment.
experiment_arn(Option<String>)
:The Amazon Resource Name (ARN) of the experiment.
display_name(Option<String>)
:The name of the experiment as displayed. If
DisplayName
isn’t specified,ExperimentName
is displayed.source(Option<ExperimentSource>)
:The Amazon Resource Name (ARN) of the source and, optionally, the type.
description(Option<String>)
:The description of the experiment.
creation_time(Option<DateTime>)
:When the experiment was created.
created_by(Option<UserContext>)
:Who created the experiment.
last_modified_time(Option<DateTime>)
:When the experiment was last modified.
last_modified_by(Option<UserContext>)
:Who last modified the experiment.
- On failure, responds with
SdkError<DescribeExperimentError>
Source§impl Client
impl Client
Sourcepub fn describe_feature_group(&self) -> DescribeFeatureGroupFluentBuilder
pub fn describe_feature_group(&self) -> DescribeFeatureGroupFluentBuilder
Constructs a fluent builder for the DescribeFeatureGroup
operation.
- The fluent builder is configurable:
feature_group_name(impl Into<String>)
/set_feature_group_name(Option<String>)
:
required: trueThe name or Amazon Resource Name (ARN) of the
FeatureGroup
you want described.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseA token to resume pagination of the list of
Features
(FeatureDefinitions
). 2,500Features
are returned by default.
- On success, responds with
DescribeFeatureGroupOutput
with field(s):feature_group_arn(Option<String>)
:The Amazon Resource Name (ARN) of the
FeatureGroup
.feature_group_name(Option<String>)
:he name of the
FeatureGroup
.record_identifier_feature_name(Option<String>)
:The name of the
Feature
used forRecordIdentifier
, whose value uniquely identifies a record stored in the feature store.event_time_feature_name(Option<String>)
:The name of the feature that stores the
EventTime
of a Record in aFeatureGroup
.An
EventTime
is a point in time when a new event occurs that corresponds to the creation or update of aRecord
in aFeatureGroup
. AllRecords
in theFeatureGroup
have a correspondingEventTime
.feature_definitions(Option<Vec::<FeatureDefinition>>)
:A list of the
Features
in theFeatureGroup
. Each feature is defined by aFeatureName
andFeatureType
.creation_time(Option<DateTime>)
:A timestamp indicating when SageMaker created the
FeatureGroup
.last_modified_time(Option<DateTime>)
:A timestamp indicating when the feature group was last updated.
online_store_config(Option<OnlineStoreConfig>)
:The configuration for the
OnlineStore
.offline_store_config(Option<OfflineStoreConfig>)
:The configuration of the offline store. It includes the following configurations:
-
Amazon S3 location of the offline store.
-
Configuration of the Glue data catalog.
-
Table format of the offline store.
-
Option to disable the automatic creation of a Glue table for the offline store.
-
Encryption configuration.
-
throughput_config(Option<ThroughputConfigDescription>)
:Active throughput configuration of the feature group. There are two modes:
ON_DEMAND
andPROVISIONED
. With on-demand mode, you are charged for data reads and writes that your application performs on your feature group. You do not need to specify read and write throughput because Feature Store accommodates your workloads as they ramp up and down. You can switch a feature group to on-demand only once in a 24 hour period. With provisioned throughput mode, you specify the read and write capacity per second that you expect your application to require, and you are billed based on those limits. Exceeding provisioned throughput will result in your requests being throttled.Note:
PROVISIONED
throughput mode is supported only for feature groups that are offline-only, or use theStandard
tier online store.role_arn(Option<String>)
:The Amazon Resource Name (ARN) of the IAM execution role used to persist data into the OfflineStore if an OfflineStoreConfig is provided.
feature_group_status(Option<FeatureGroupStatus>)
:The status of the feature group.
offline_store_status(Option<OfflineStoreStatus>)
:The status of the
OfflineStore
. Notifies you if replicating data into theOfflineStore
has failed. Returns either:Active
orBlocked
last_update_status(Option<LastUpdateStatus>)
:A value indicating whether the update made to the feature group was successful.
failure_reason(Option<String>)
:The reason that the
FeatureGroup
failed to be replicated in theOfflineStore
. This is failure can occur because:-
The
FeatureGroup
could not be created in theOfflineStore
. -
The
FeatureGroup
could not be deleted from theOfflineStore
.
-
description(Option<String>)
:A free form description of the feature group.
next_token(Option<String>)
:A token to resume pagination of the list of
Features
(FeatureDefinitions
).online_store_total_size_bytes(Option<i64>)
:The size of the
OnlineStore
in bytes.
- On failure, responds with
SdkError<DescribeFeatureGroupError>
Source§impl Client
impl Client
Sourcepub fn describe_feature_metadata(&self) -> DescribeFeatureMetadataFluentBuilder
pub fn describe_feature_metadata(&self) -> DescribeFeatureMetadataFluentBuilder
Constructs a fluent builder for the DescribeFeatureMetadata
operation.
- The fluent builder is configurable:
feature_group_name(impl Into<String>)
/set_feature_group_name(Option<String>)
:
required: trueThe name or Amazon Resource Name (ARN) of the feature group containing the feature.
feature_name(impl Into<String>)
/set_feature_name(Option<String>)
:
required: trueThe name of the feature.
- On success, responds with
DescribeFeatureMetadataOutput
with field(s):feature_group_arn(Option<String>)
:The Amazon Resource Number (ARN) of the feature group that contains the feature.
feature_group_name(Option<String>)
:The name of the feature group that you’ve specified.
feature_name(Option<String>)
:The name of the feature that you’ve specified.
feature_type(Option<FeatureType>)
:The data type of the feature.
creation_time(Option<DateTime>)
:A timestamp indicating when the feature was created.
last_modified_time(Option<DateTime>)
:A timestamp indicating when the metadata for the feature group was modified. For example, if you add a parameter describing the feature, the timestamp changes to reflect the last time you
description(Option<String>)
:The description you added to describe the feature.
parameters(Option<Vec::<FeatureParameter>>)
:The key-value pairs that you added to describe the feature.
- On failure, responds with
SdkError<DescribeFeatureMetadataError>
Source§impl Client
impl Client
Sourcepub fn describe_flow_definition(&self) -> DescribeFlowDefinitionFluentBuilder
pub fn describe_flow_definition(&self) -> DescribeFlowDefinitionFluentBuilder
Constructs a fluent builder for the DescribeFlowDefinition
operation.
- The fluent builder is configurable:
flow_definition_name(impl Into<String>)
/set_flow_definition_name(Option<String>)
:
required: trueThe name of the flow definition.
- On success, responds with
DescribeFlowDefinitionOutput
with field(s):flow_definition_arn(Option<String>)
:The Amazon Resource Name (ARN) of the flow defintion.
flow_definition_name(Option<String>)
:The Amazon Resource Name (ARN) of the flow definition.
flow_definition_status(Option<FlowDefinitionStatus>)
:The status of the flow definition. Valid values are listed below.
creation_time(Option<DateTime>)
:The timestamp when the flow definition was created.
human_loop_request_source(Option<HumanLoopRequestSource>)
:Container for configuring the source of human task requests. Used to specify if Amazon Rekognition or Amazon Textract is used as an integration source.
human_loop_activation_config(Option<HumanLoopActivationConfig>)
:An object containing information about what triggers a human review workflow.
human_loop_config(Option<HumanLoopConfig>)
:An object containing information about who works on the task, the workforce task price, and other task details.
output_config(Option<FlowDefinitionOutputConfig>)
:An object containing information about the output file.
role_arn(Option<String>)
:The Amazon Resource Name (ARN) of the Amazon Web Services Identity and Access Management (IAM) execution role for the flow definition.
failure_reason(Option<String>)
:The reason your flow definition failed.
- On failure, responds with
SdkError<DescribeFlowDefinitionError>
Source§impl Client
impl Client
Sourcepub fn describe_hub(&self) -> DescribeHubFluentBuilder
pub fn describe_hub(&self) -> DescribeHubFluentBuilder
Constructs a fluent builder for the DescribeHub
operation.
- The fluent builder is configurable:
hub_name(impl Into<String>)
/set_hub_name(Option<String>)
:
required: trueThe name of the hub to describe.
- On success, responds with
DescribeHubOutput
with field(s):hub_name(Option<String>)
:The name of the hub.
hub_arn(Option<String>)
:The Amazon Resource Name (ARN) of the hub.
hub_display_name(Option<String>)
:The display name of the hub.
hub_description(Option<String>)
:A description of the hub.
hub_search_keywords(Option<Vec::<String>>)
:The searchable keywords for the hub.
s3_storage_config(Option<HubS3StorageConfig>)
:The Amazon S3 storage configuration for the hub.
hub_status(Option<HubStatus>)
:The status of the hub.
failure_reason(Option<String>)
:The failure reason if importing hub content failed.
creation_time(Option<DateTime>)
:The date and time that the hub was created.
last_modified_time(Option<DateTime>)
:The date and time that the hub was last modified.
- On failure, responds with
SdkError<DescribeHubError>
Source§impl Client
impl Client
Sourcepub fn describe_hub_content(&self) -> DescribeHubContentFluentBuilder
pub fn describe_hub_content(&self) -> DescribeHubContentFluentBuilder
Constructs a fluent builder for the DescribeHubContent
operation.
- The fluent builder is configurable:
hub_name(impl Into<String>)
/set_hub_name(Option<String>)
:
required: trueThe name of the hub that contains the content to describe.
hub_content_type(HubContentType)
/set_hub_content_type(Option<HubContentType>)
:
required: trueThe type of content in the hub.
hub_content_name(impl Into<String>)
/set_hub_content_name(Option<String>)
:
required: trueThe name of the content to describe.
hub_content_version(impl Into<String>)
/set_hub_content_version(Option<String>)
:
required: falseThe version of the content to describe.
- On success, responds with
DescribeHubContentOutput
with field(s):hub_content_name(Option<String>)
:The name of the hub content.
hub_content_arn(Option<String>)
:The Amazon Resource Name (ARN) of the hub content.
hub_content_version(Option<String>)
:The version of the hub content.
hub_content_type(Option<HubContentType>)
:The type of hub content.
document_schema_version(Option<String>)
:The document schema version for the hub content.
hub_name(Option<String>)
:The name of the hub that contains the content.
hub_arn(Option<String>)
:The Amazon Resource Name (ARN) of the hub that contains the content.
hub_content_display_name(Option<String>)
:The display name of the hub content.
hub_content_description(Option<String>)
:A description of the hub content.
hub_content_markdown(Option<String>)
:A string that provides a description of the hub content. This string can include links, tables, and standard markdown formating.
hub_content_document(Option<String>)
:The hub content document that describes information about the hub content such as type, associated containers, scripts, and more.
sage_maker_public_hub_content_arn(Option<String>)
:The ARN of the public hub content.
reference_min_version(Option<String>)
:The minimum version of the hub content.
support_status(Option<HubContentSupportStatus>)
:The support status of the hub content.
hub_content_search_keywords(Option<Vec::<String>>)
:The searchable keywords for the hub content.
hub_content_dependencies(Option<Vec::<HubContentDependency>>)
:The location of any dependencies that the hub content has, such as scripts, model artifacts, datasets, or notebooks.
hub_content_status(Option<HubContentStatus>)
:The status of the hub content.
failure_reason(Option<String>)
:The failure reason if importing hub content failed.
creation_time(Option<DateTime>)
:The date and time that hub content was created.
last_modified_time(Option<DateTime>)
:The last modified time of the hub content.
- On failure, responds with
SdkError<DescribeHubContentError>
Source§impl Client
impl Client
Sourcepub fn describe_human_task_ui(&self) -> DescribeHumanTaskUiFluentBuilder
pub fn describe_human_task_ui(&self) -> DescribeHumanTaskUiFluentBuilder
Constructs a fluent builder for the DescribeHumanTaskUi
operation.
- The fluent builder is configurable:
human_task_ui_name(impl Into<String>)
/set_human_task_ui_name(Option<String>)
:
required: trueThe name of the human task user interface (worker task template) you want information about.
- On success, responds with
DescribeHumanTaskUiOutput
with field(s):human_task_ui_arn(Option<String>)
:The Amazon Resource Name (ARN) of the human task user interface (worker task template).
human_task_ui_name(Option<String>)
:The name of the human task user interface (worker task template).
human_task_ui_status(Option<HumanTaskUiStatus>)
:The status of the human task user interface (worker task template). Valid values are listed below.
creation_time(Option<DateTime>)
:The timestamp when the human task user interface was created.
ui_template(Option<UiTemplateInfo>)
:Container for user interface template information.
- On failure, responds with
SdkError<DescribeHumanTaskUiError>
Source§impl Client
impl Client
Sourcepub fn describe_hyper_parameter_tuning_job(
&self,
) -> DescribeHyperParameterTuningJobFluentBuilder
pub fn describe_hyper_parameter_tuning_job( &self, ) -> DescribeHyperParameterTuningJobFluentBuilder
Constructs a fluent builder for the DescribeHyperParameterTuningJob
operation.
- The fluent builder is configurable:
hyper_parameter_tuning_job_name(impl Into<String>)
/set_hyper_parameter_tuning_job_name(Option<String>)
:
required: trueThe name of the tuning job.
- On success, responds with
DescribeHyperParameterTuningJobOutput
with field(s):hyper_parameter_tuning_job_name(Option<String>)
:The name of the hyperparameter tuning job.
hyper_parameter_tuning_job_arn(Option<String>)
:The Amazon Resource Name (ARN) of the tuning job.
hyper_parameter_tuning_job_config(Option<HyperParameterTuningJobConfig>)
:The HyperParameterTuningJobConfig object that specifies the configuration of the tuning job.
training_job_definition(Option<HyperParameterTrainingJobDefinition>)
:The HyperParameterTrainingJobDefinition object that specifies the definition of the training jobs that this tuning job launches.
training_job_definitions(Option<Vec::<HyperParameterTrainingJobDefinition>>)
:A list of the HyperParameterTrainingJobDefinition objects launched for this tuning job.
hyper_parameter_tuning_job_status(Option<HyperParameterTuningJobStatus>)
:The status of the tuning job.
creation_time(Option<DateTime>)
:The date and time that the tuning job started.
hyper_parameter_tuning_end_time(Option<DateTime>)
:The date and time that the tuning job ended.
last_modified_time(Option<DateTime>)
:The date and time that the status of the tuning job was modified.
training_job_status_counters(Option<TrainingJobStatusCounters>)
:The TrainingJobStatusCounters object that specifies the number of training jobs, categorized by status, that this tuning job launched.
objective_status_counters(Option<ObjectiveStatusCounters>)
:The ObjectiveStatusCounters object that specifies the number of training jobs, categorized by the status of their final objective metric, that this tuning job launched.
best_training_job(Option<HyperParameterTrainingJobSummary>)
:A TrainingJobSummary object that describes the training job that completed with the best current HyperParameterTuningJobObjective.
overall_best_training_job(Option<HyperParameterTrainingJobSummary>)
:If the hyperparameter tuning job is an warm start tuning job with a
WarmStartType
ofIDENTICAL_DATA_AND_ALGORITHM
, this is the TrainingJobSummary for the training job with the best objective metric value of all training jobs launched by this tuning job and all parent jobs specified for the warm start tuning job.warm_start_config(Option<HyperParameterTuningJobWarmStartConfig>)
:The configuration for starting the hyperparameter parameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.
autotune(Option<Autotune>)
:A flag to indicate if autotune is enabled for the hyperparameter tuning job.
failure_reason(Option<String>)
:If the tuning job failed, the reason it failed.
tuning_job_completion_details(Option<HyperParameterTuningJobCompletionDetails>)
:Tuning job completion information returned as the response from a hyperparameter tuning job. This information tells if your tuning job has or has not converged. It also includes the number of training jobs that have not improved model performance as evaluated against the objective function.
consumed_resources(Option<HyperParameterTuningJobConsumedResources>)
:The total resources consumed by your hyperparameter tuning job.
- On failure, responds with
SdkError<DescribeHyperParameterTuningJobError>
Source§impl Client
impl Client
Sourcepub fn describe_image(&self) -> DescribeImageFluentBuilder
pub fn describe_image(&self) -> DescribeImageFluentBuilder
Constructs a fluent builder for the DescribeImage
operation.
- The fluent builder is configurable:
image_name(impl Into<String>)
/set_image_name(Option<String>)
:
required: trueThe name of the image to describe.
- On success, responds with
DescribeImageOutput
with field(s):creation_time(Option<DateTime>)
:When the image was created.
description(Option<String>)
:The description of the image.
display_name(Option<String>)
:The name of the image as displayed.
failure_reason(Option<String>)
:When a create, update, or delete operation fails, the reason for the failure.
image_arn(Option<String>)
:The ARN of the image.
image_name(Option<String>)
:The name of the image.
image_status(Option<ImageStatus>)
:The status of the image.
last_modified_time(Option<DateTime>)
:When the image was last modified.
role_arn(Option<String>)
:The ARN of the IAM role that enables Amazon SageMaker AI to perform tasks on your behalf.
- On failure, responds with
SdkError<DescribeImageError>
Source§impl Client
impl Client
Sourcepub fn describe_image_version(&self) -> DescribeImageVersionFluentBuilder
pub fn describe_image_version(&self) -> DescribeImageVersionFluentBuilder
Constructs a fluent builder for the DescribeImageVersion
operation.
- The fluent builder is configurable:
image_name(impl Into<String>)
/set_image_name(Option<String>)
:
required: trueThe name of the image.
version(i32)
/set_version(Option<i32>)
:
required: falseThe version of the image. If not specified, the latest version is described.
alias(impl Into<String>)
/set_alias(Option<String>)
:
required: falseThe alias of the image version.
- On success, responds with
DescribeImageVersionOutput
with field(s):base_image(Option<String>)
:The registry path of the container image on which this image version is based.
container_image(Option<String>)
:The registry path of the container image that contains this image version.
creation_time(Option<DateTime>)
:When the version was created.
failure_reason(Option<String>)
:When a create or delete operation fails, the reason for the failure.
image_arn(Option<String>)
:The ARN of the image the version is based on.
image_version_arn(Option<String>)
:The ARN of the version.
image_version_status(Option<ImageVersionStatus>)
:The status of the version.
last_modified_time(Option<DateTime>)
:When the version was last modified.
version(Option<i32>)
:The version number.
vendor_guidance(Option<VendorGuidance>)
:The stability of the image version specified by the maintainer.
-
NOT_PROVIDED
: The maintainers did not provide a status for image version stability. -
STABLE
: The image version is stable. -
TO_BE_ARCHIVED
: The image version is set to be archived. Custom image versions that are set to be archived are automatically archived after three months. -
ARCHIVED
: The image version is archived. Archived image versions are not searchable and are no longer actively supported.
-
job_type(Option<JobType>)
:Indicates SageMaker AI job type compatibility.
-
TRAINING
: The image version is compatible with SageMaker AI training jobs. -
INFERENCE
: The image version is compatible with SageMaker AI inference jobs. -
NOTEBOOK_KERNEL
: The image version is compatible with SageMaker AI notebook kernels.
-
ml_framework(Option<String>)
:The machine learning framework vended in the image version.
programming_lang(Option<String>)
:The supported programming language and its version.
processor(Option<Processor>)
:Indicates CPU or GPU compatibility.
-
CPU
: The image version is compatible with CPU. -
GPU
: The image version is compatible with GPU.
-
horovod(Option<bool>)
:Indicates Horovod compatibility.
release_notes(Option<String>)
:The maintainer description of the image version.
- On failure, responds with
SdkError<DescribeImageVersionError>
Source§impl Client
impl Client
Sourcepub fn describe_inference_component(
&self,
) -> DescribeInferenceComponentFluentBuilder
pub fn describe_inference_component( &self, ) -> DescribeInferenceComponentFluentBuilder
Constructs a fluent builder for the DescribeInferenceComponent
operation.
- The fluent builder is configurable:
inference_component_name(impl Into<String>)
/set_inference_component_name(Option<String>)
:
required: trueThe name of the inference component.
- On success, responds with
DescribeInferenceComponentOutput
with field(s):inference_component_name(Option<String>)
:The name of the inference component.
inference_component_arn(Option<String>)
:The Amazon Resource Name (ARN) of the inference component.
endpoint_name(Option<String>)
:The name of the endpoint that hosts the inference component.
endpoint_arn(Option<String>)
:The Amazon Resource Name (ARN) of the endpoint that hosts the inference component.
variant_name(Option<String>)
:The name of the production variant that hosts the inference component.
failure_reason(Option<String>)
:If the inference component status is
Failed
, the reason for the failure.specification(Option<InferenceComponentSpecificationSummary>)
:Details about the resources that are deployed with this inference component.
runtime_config(Option<InferenceComponentRuntimeConfigSummary>)
:Details about the runtime settings for the model that is deployed with the inference component.
creation_time(Option<DateTime>)
:The time when the inference component was created.
last_modified_time(Option<DateTime>)
:The time when the inference component was last updated.
inference_component_status(Option<InferenceComponentStatus>)
:The status of the inference component.
last_deployment_config(Option<InferenceComponentDeploymentConfig>)
:The deployment and rollback settings that you assigned to the inference component.
- On failure, responds with
SdkError<DescribeInferenceComponentError>
Source§impl Client
impl Client
Sourcepub fn describe_inference_experiment(
&self,
) -> DescribeInferenceExperimentFluentBuilder
pub fn describe_inference_experiment( &self, ) -> DescribeInferenceExperimentFluentBuilder
Constructs a fluent builder for the DescribeInferenceExperiment
operation.
- The fluent builder is configurable:
name(impl Into<String>)
/set_name(Option<String>)
:
required: trueThe name of the inference experiment to describe.
- On success, responds with
DescribeInferenceExperimentOutput
with field(s):arn(Option<String>)
:The ARN of the inference experiment being described.
name(Option<String>)
:The name of the inference experiment.
r#type(Option<InferenceExperimentType>)
:The type of the inference experiment.
schedule(Option<InferenceExperimentSchedule>)
:The duration for which the inference experiment ran or will run.
status(Option<InferenceExperimentStatus>)
:The status of the inference experiment. The following are the possible statuses for an inference experiment:
-
Creating
- Amazon SageMaker is creating your experiment. -
Created
- Amazon SageMaker has finished the creation of your experiment and will begin the experiment at the scheduled time. -
Updating
- When you make changes to your experiment, your experiment shows as updating. -
Starting
- Amazon SageMaker is beginning your experiment. -
Running
- Your experiment is in progress. -
Stopping
- Amazon SageMaker is stopping your experiment. -
Completed
- Your experiment has completed. -
Cancelled
- When you conclude your experiment early using the StopInferenceExperiment API, or if any operation fails with an unexpected error, it shows as cancelled.
-
status_reason(Option<String>)
:The error message or client-specified
Reason
from the StopInferenceExperiment API, that explains the status of the inference experiment.description(Option<String>)
:The description of the inference experiment.
creation_time(Option<DateTime>)
:The timestamp at which you created the inference experiment.
completion_time(Option<DateTime>)
:The timestamp at which the inference experiment was completed.
last_modified_time(Option<DateTime>)
:The timestamp at which you last modified the inference experiment.
role_arn(Option<String>)
:The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images, and manage Amazon SageMaker Inference endpoints for model deployment.
endpoint_metadata(Option<EndpointMetadata>)
:The metadata of the endpoint on which the inference experiment ran.
model_variants(Option<Vec::<ModelVariantConfigSummary>>)
:An array of
ModelVariantConfigSummary
objects. There is one for each variant in the inference experiment. EachModelVariantConfigSummary
object in the array describes the infrastructure configuration for deploying the corresponding variant.data_storage_config(Option<InferenceExperimentDataStorageConfig>)
:The Amazon S3 location and configuration for storing inference request and response data.
shadow_mode_config(Option<ShadowModeConfig>)
:The configuration of
ShadowMode
inference experiment type, which shows the production variant that takes all the inference requests, and the shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant it also shows the percentage of requests that Amazon SageMaker replicates.kms_key(Option<String>)
:The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. For more information, see CreateInferenceExperiment.
- On failure, responds with
SdkError<DescribeInferenceExperimentError>
Source§impl Client
impl Client
Sourcepub fn describe_inference_recommendations_job(
&self,
) -> DescribeInferenceRecommendationsJobFluentBuilder
pub fn describe_inference_recommendations_job( &self, ) -> DescribeInferenceRecommendationsJobFluentBuilder
Constructs a fluent builder for the DescribeInferenceRecommendationsJob
operation.
- The fluent builder is configurable:
job_name(impl Into<String>)
/set_job_name(Option<String>)
:
required: trueThe name of the job. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.
- On success, responds with
DescribeInferenceRecommendationsJobOutput
with field(s):job_name(Option<String>)
:The name of the job. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.
job_description(Option<String>)
:The job description that you provided when you initiated the job.
job_type(Option<RecommendationJobType>)
:The job type that you provided when you initiated the job.
job_arn(Option<String>)
:The Amazon Resource Name (ARN) of the job.
role_arn(Option<String>)
:The Amazon Resource Name (ARN) of the Amazon Web Services Identity and Access Management (IAM) role you provided when you initiated the job.
status(Option<RecommendationJobStatus>)
:The status of the job.
creation_time(Option<DateTime>)
:A timestamp that shows when the job was created.
completion_time(Option<DateTime>)
:A timestamp that shows when the job completed.
last_modified_time(Option<DateTime>)
:A timestamp that shows when the job was last modified.
failure_reason(Option<String>)
:If the job fails, provides information why the job failed.
input_config(Option<RecommendationJobInputConfig>)
:Returns information about the versioned model package Amazon Resource Name (ARN), the traffic pattern, and endpoint configurations you provided when you initiated the job.
stopping_conditions(Option<RecommendationJobStoppingConditions>)
:The stopping conditions that you provided when you initiated the job.
inference_recommendations(Option<Vec::<InferenceRecommendation>>)
:The recommendations made by Inference Recommender.
endpoint_performances(Option<Vec::<EndpointPerformance>>)
:The performance results from running an Inference Recommender job on an existing endpoint.
- On failure, responds with
SdkError<DescribeInferenceRecommendationsJobError>
Source§impl Client
impl Client
Sourcepub fn describe_labeling_job(&self) -> DescribeLabelingJobFluentBuilder
pub fn describe_labeling_job(&self) -> DescribeLabelingJobFluentBuilder
Constructs a fluent builder for the DescribeLabelingJob
operation.
- The fluent builder is configurable:
labeling_job_name(impl Into<String>)
/set_labeling_job_name(Option<String>)
:
required: trueThe name of the labeling job to return information for.
- On success, responds with
DescribeLabelingJobOutput
with field(s):labeling_job_status(Option<LabelingJobStatus>)
:The processing status of the labeling job.
label_counters(Option<LabelCounters>)
:Provides a breakdown of the number of data objects labeled by humans, the number of objects labeled by machine, the number of objects than couldn’t be labeled, and the total number of objects labeled.
failure_reason(Option<String>)
:If the job failed, the reason that it failed.
creation_time(Option<DateTime>)
:The date and time that the labeling job was created.
last_modified_time(Option<DateTime>)
:The date and time that the labeling job was last updated.
job_reference_code(Option<String>)
:A unique identifier for work done as part of a labeling job.
labeling_job_name(Option<String>)
:The name assigned to the labeling job when it was created.
labeling_job_arn(Option<String>)
:The Amazon Resource Name (ARN) of the labeling job.
label_attribute_name(Option<String>)
:The attribute used as the label in the output manifest file.
input_config(Option<LabelingJobInputConfig>)
:Input configuration information for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.
output_config(Option<LabelingJobOutputConfig>)
:The location of the job’s output data and the Amazon Web Services Key Management Service key ID for the key used to encrypt the output data, if any.
role_arn(Option<String>)
:The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on your behalf during data labeling.
label_category_config_s3_uri(Option<String>)
:The S3 location of the JSON file that defines the categories used to label data objects. Please note the following label-category limits:
-
Semantic segmentation labeling jobs using automated labeling: 20 labels
-
Box bounding labeling jobs (all): 10 labels
The file is a JSON structure in the following format:
{
“document-version”: “2018-11-28”
“labels”: [
{
“label”: “label 1”
},
{
“label”: “label 2”
},
…
{
“label”: “label n”
}
]
}
-
stopping_conditions(Option<LabelingJobStoppingConditions>)
:A set of conditions for stopping a labeling job. If any of the conditions are met, the job is automatically stopped.
labeling_job_algorithms_config(Option<LabelingJobAlgorithmsConfig>)
:Configuration information for automated data labeling.
human_task_config(Option<HumanTaskConfig>)
:Configuration information required for human workers to complete a labeling task.
tags(Option<Vec::<Tag>>)
:An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
labeling_job_output(Option<LabelingJobOutput>)
:The location of the output produced by the labeling job.
- On failure, responds with
SdkError<DescribeLabelingJobError>
Source§impl Client
impl Client
Sourcepub fn describe_lineage_group(&self) -> DescribeLineageGroupFluentBuilder
pub fn describe_lineage_group(&self) -> DescribeLineageGroupFluentBuilder
Constructs a fluent builder for the DescribeLineageGroup
operation.
- The fluent builder is configurable:
lineage_group_name(impl Into<String>)
/set_lineage_group_name(Option<String>)
:
required: trueThe name of the lineage group.
- On success, responds with
DescribeLineageGroupOutput
with field(s):lineage_group_name(Option<String>)
:The name of the lineage group.
lineage_group_arn(Option<String>)
:The Amazon Resource Name (ARN) of the lineage group.
display_name(Option<String>)
:The display name of the lineage group.
description(Option<String>)
:The description of the lineage group.
creation_time(Option<DateTime>)
:The creation time of lineage group.
created_by(Option<UserContext>)
:Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
last_modified_time(Option<DateTime>)
:The last modified time of the lineage group.
last_modified_by(Option<UserContext>)
:Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
- On failure, responds with
SdkError<DescribeLineageGroupError>
Source§impl Client
impl Client
Sourcepub fn describe_mlflow_tracking_server(
&self,
) -> DescribeMlflowTrackingServerFluentBuilder
pub fn describe_mlflow_tracking_server( &self, ) -> DescribeMlflowTrackingServerFluentBuilder
Constructs a fluent builder for the DescribeMlflowTrackingServer
operation.
- The fluent builder is configurable:
tracking_server_name(impl Into<String>)
/set_tracking_server_name(Option<String>)
:
required: trueThe name of the MLflow Tracking Server to describe.
- On success, responds with
DescribeMlflowTrackingServerOutput
with field(s):tracking_server_arn(Option<String>)
:The ARN of the described tracking server.
tracking_server_name(Option<String>)
:The name of the described tracking server.
artifact_store_uri(Option<String>)
:The S3 URI of the general purpose bucket used as the MLflow Tracking Server artifact store.
tracking_server_size(Option<TrackingServerSize>)
:The size of the described tracking server.
mlflow_version(Option<String>)
:The MLflow version used for the described tracking server.
role_arn(Option<String>)
:The Amazon Resource Name (ARN) for an IAM role in your account that the described MLflow Tracking Server uses to access the artifact store in Amazon S3.
tracking_server_status(Option<TrackingServerStatus>)
:The current creation status of the described MLflow Tracking Server.
is_active(Option<IsTrackingServerActive>)
:Whether the described MLflow Tracking Server is currently active.
tracking_server_url(Option<String>)
:The URL to connect to the MLflow user interface for the described tracking server.
weekly_maintenance_window_start(Option<String>)
:The day and time of the week when weekly maintenance occurs on the described tracking server.
automatic_model_registration(Option<bool>)
:Whether automatic registration of new MLflow models to the SageMaker Model Registry is enabled.
creation_time(Option<DateTime>)
:The timestamp of when the described MLflow Tracking Server was created.
created_by(Option<UserContext>)
:Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
last_modified_time(Option<DateTime>)
:The timestamp of when the described MLflow Tracking Server was last modified.
last_modified_by(Option<UserContext>)
:Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
- On failure, responds with
SdkError<DescribeMlflowTrackingServerError>
Source§impl Client
impl Client
Sourcepub fn describe_model(&self) -> DescribeModelFluentBuilder
pub fn describe_model(&self) -> DescribeModelFluentBuilder
Constructs a fluent builder for the DescribeModel
operation.
- The fluent builder is configurable:
model_name(impl Into<String>)
/set_model_name(Option<String>)
:
required: trueThe name of the model.
- On success, responds with
DescribeModelOutput
with field(s):model_name(Option<String>)
:Name of the SageMaker model.
primary_container(Option<ContainerDefinition>)
:The location of the primary inference code, associated artifacts, and custom environment map that the inference code uses when it is deployed in production.
containers(Option<Vec::<ContainerDefinition>>)
:The containers in the inference pipeline.
inference_execution_config(Option<InferenceExecutionConfig>)
:Specifies details of how containers in a multi-container endpoint are called.
execution_role_arn(Option<String>)
:The Amazon Resource Name (ARN) of the IAM role that you specified for the model.
vpc_config(Option<VpcConfig>)
:A VpcConfig object that specifies the VPC that this model has access to. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud
creation_time(Option<DateTime>)
:A timestamp that shows when the model was created.
model_arn(Option<String>)
:The Amazon Resource Name (ARN) of the model.
enable_network_isolation(Option<bool>)
:If
True
, no inbound or outbound network calls can be made to or from the model container.deployment_recommendation(Option<DeploymentRecommendation>)
:A set of recommended deployment configurations for the model.
- On failure, responds with
SdkError<DescribeModelError>
Source§impl Client
impl Client
Sourcepub fn describe_model_bias_job_definition(
&self,
) -> DescribeModelBiasJobDefinitionFluentBuilder
pub fn describe_model_bias_job_definition( &self, ) -> DescribeModelBiasJobDefinitionFluentBuilder
Constructs a fluent builder for the DescribeModelBiasJobDefinition
operation.
- The fluent builder is configurable:
job_definition_name(impl Into<String>)
/set_job_definition_name(Option<String>)
:
required: trueThe name of the model bias job definition. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.
- On success, responds with
DescribeModelBiasJobDefinitionOutput
with field(s):job_definition_arn(Option<String>)
:The Amazon Resource Name (ARN) of the model bias job.
job_definition_name(Option<String>)
:The name of the bias job definition. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.
creation_time(Option<DateTime>)
:The time at which the model bias job was created.
model_bias_baseline_config(Option<ModelBiasBaselineConfig>)
:The baseline configuration for a model bias job.
model_bias_app_specification(Option<ModelBiasAppSpecification>)
:Configures the model bias job to run a specified Docker container image.
model_bias_job_input(Option<ModelBiasJobInput>)
:Inputs for the model bias job.
model_bias_job_output_config(Option<MonitoringOutputConfig>)
:The output configuration for monitoring jobs.
job_resources(Option<MonitoringResources>)
:Identifies the resources to deploy for a monitoring job.
network_config(Option<MonitoringNetworkConfig>)
:Networking options for a model bias job.
role_arn(Option<String>)
:The Amazon Resource Name (ARN) of the IAM role that has read permission to the input data location and write permission to the output data location in Amazon S3.
stopping_condition(Option<MonitoringStoppingCondition>)
:A time limit for how long the monitoring job is allowed to run before stopping.
- On failure, responds with
SdkError<DescribeModelBiasJobDefinitionError>
Source§impl Client
impl Client
Sourcepub fn describe_model_card(&self) -> DescribeModelCardFluentBuilder
pub fn describe_model_card(&self) -> DescribeModelCardFluentBuilder
Constructs a fluent builder for the DescribeModelCard
operation.
- The fluent builder is configurable:
model_card_name(impl Into<String>)
/set_model_card_name(Option<String>)
:
required: trueThe name or Amazon Resource Name (ARN) of the model card to describe.
model_card_version(i32)
/set_model_card_version(Option<i32>)
:
required: falseThe version of the model card to describe. If a version is not provided, then the latest version of the model card is described.
- On success, responds with
DescribeModelCardOutput
with field(s):model_card_arn(Option<String>)
:The Amazon Resource Name (ARN) of the model card.
model_card_name(Option<String>)
:The name of the model card.
model_card_version(Option<i32>)
:The version of the model card.
content(Option<String>)
:The content of the model card.
model_card_status(Option<ModelCardStatus>)
:The approval status of the model card within your organization. Different organizations might have different criteria for model card review and approval.
-
Draft
: The model card is a work in progress. -
PendingReview
: The model card is pending review. -
Approved
: The model card is approved. -
Archived
: The model card is archived. No more updates should be made to the model card, but it can still be exported.
-
security_config(Option<ModelCardSecurityConfig>)
:The security configuration used to protect model card content.
creation_time(Option<DateTime>)
:The date and time the model card was created.
created_by(Option<UserContext>)
:Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
last_modified_time(Option<DateTime>)
:The date and time the model card was last modified.
last_modified_by(Option<UserContext>)
:Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
model_card_processing_status(Option<ModelCardProcessingStatus>)
:The processing status of model card deletion. The
ModelCardProcessingStatus
updates throughout the different deletion steps.-
DeletePending
: Model card deletion request received. -
DeleteInProgress
: Model card deletion is in progress. -
ContentDeleted
: Deleted model card content. -
ExportJobsDeleted
: Deleted all export jobs associated with the model card. -
DeleteCompleted
: Successfully deleted the model card. -
DeleteFailed
: The model card failed to delete.
-
- On failure, responds with
SdkError<DescribeModelCardError>
Source§impl Client
impl Client
Sourcepub fn describe_model_card_export_job(
&self,
) -> DescribeModelCardExportJobFluentBuilder
pub fn describe_model_card_export_job( &self, ) -> DescribeModelCardExportJobFluentBuilder
Constructs a fluent builder for the DescribeModelCardExportJob
operation.
- The fluent builder is configurable:
model_card_export_job_arn(impl Into<String>)
/set_model_card_export_job_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of the model card export job to describe.
- On success, responds with
DescribeModelCardExportJobOutput
with field(s):model_card_export_job_name(Option<String>)
:The name of the model card export job to describe.
model_card_export_job_arn(Option<String>)
:The Amazon Resource Name (ARN) of the model card export job.
status(Option<ModelCardExportJobStatus>)
:The completion status of the model card export job.
-
InProgress
: The model card export job is in progress. -
Completed
: The model card export job is complete. -
Failed
: The model card export job failed. To see the reason for the failure, see theFailureReason
field in the response to aDescribeModelCardExportJob
call.
-
model_card_name(Option<String>)
:The name or Amazon Resource Name (ARN) of the model card that the model export job exports.
model_card_version(Option<i32>)
:The version of the model card that the model export job exports.
output_config(Option<ModelCardExportOutputConfig>)
:The export output details for the model card.
created_at(Option<DateTime>)
:The date and time that the model export job was created.
last_modified_at(Option<DateTime>)
:The date and time that the model export job was last modified.
failure_reason(Option<String>)
:The failure reason if the model export job fails.
export_artifacts(Option<ModelCardExportArtifacts>)
:The exported model card artifacts.
- On failure, responds with
SdkError<DescribeModelCardExportJobError>
Source§impl Client
impl Client
Sourcepub fn describe_model_explainability_job_definition(
&self,
) -> DescribeModelExplainabilityJobDefinitionFluentBuilder
pub fn describe_model_explainability_job_definition( &self, ) -> DescribeModelExplainabilityJobDefinitionFluentBuilder
Constructs a fluent builder for the DescribeModelExplainabilityJobDefinition
operation.
- The fluent builder is configurable:
job_definition_name(impl Into<String>)
/set_job_definition_name(Option<String>)
:
required: trueThe name of the model explainability job definition. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.
- On success, responds with
DescribeModelExplainabilityJobDefinitionOutput
with field(s):job_definition_arn(Option<String>)
:The Amazon Resource Name (ARN) of the model explainability job.
job_definition_name(Option<String>)
:The name of the explainability job definition. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.
creation_time(Option<DateTime>)
:The time at which the model explainability job was created.
model_explainability_baseline_config(Option<ModelExplainabilityBaselineConfig>)
:The baseline configuration for a model explainability job.
model_explainability_app_specification(Option<ModelExplainabilityAppSpecification>)
:Configures the model explainability job to run a specified Docker container image.
model_explainability_job_input(Option<ModelExplainabilityJobInput>)
:Inputs for the model explainability job.
model_explainability_job_output_config(Option<MonitoringOutputConfig>)
:The output configuration for monitoring jobs.
job_resources(Option<MonitoringResources>)
:Identifies the resources to deploy for a monitoring job.
network_config(Option<MonitoringNetworkConfig>)
:Networking options for a model explainability job.
role_arn(Option<String>)
:The Amazon Resource Name (ARN) of the IAM role that has read permission to the input data location and write permission to the output data location in Amazon S3.
stopping_condition(Option<MonitoringStoppingCondition>)
:A time limit for how long the monitoring job is allowed to run before stopping.
- On failure, responds with
SdkError<DescribeModelExplainabilityJobDefinitionError>
Source§impl Client
impl Client
Sourcepub fn describe_model_package(&self) -> DescribeModelPackageFluentBuilder
pub fn describe_model_package(&self) -> DescribeModelPackageFluentBuilder
Constructs a fluent builder for the DescribeModelPackage
operation.
- The fluent builder is configurable:
model_package_name(impl Into<String>)
/set_model_package_name(Option<String>)
:
required: trueThe name or Amazon Resource Name (ARN) of the model package to describe.
When you specify a name, the name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
- On success, responds with
DescribeModelPackageOutput
with field(s):model_package_name(Option<String>)
:The name of the model package being described.
model_package_group_name(Option<String>)
:If the model is a versioned model, the name of the model group that the versioned model belongs to.
model_package_version(Option<i32>)
:The version of the model package.
model_package_arn(Option<String>)
:The Amazon Resource Name (ARN) of the model package.
model_package_description(Option<String>)
:A brief summary of the model package.
creation_time(Option<DateTime>)
:A timestamp specifying when the model package was created.
inference_specification(Option<InferenceSpecification>)
:Details about inference jobs that you can run with models based on this model package.
source_algorithm_specification(Option<SourceAlgorithmSpecification>)
:Details about the algorithm that was used to create the model package.
validation_specification(Option<ModelPackageValidationSpecification>)
:Configurations for one or more transform jobs that SageMaker runs to test the model package.
model_package_status(Option<ModelPackageStatus>)
:The current status of the model package.
model_package_status_details(Option<ModelPackageStatusDetails>)
:Details about the current status of the model package.
certify_for_marketplace(Option<bool>)
:Whether the model package is certified for listing on Amazon Web Services Marketplace.
model_approval_status(Option<ModelApprovalStatus>)
:The approval status of the model package.
created_by(Option<UserContext>)
:Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
metadata_properties(Option<MetadataProperties>)
:Metadata properties of the tracking entity, trial, or trial component.
model_metrics(Option<ModelMetrics>)
:Metrics for the model.
last_modified_time(Option<DateTime>)
:The last time that the model package was modified.
last_modified_by(Option<UserContext>)
:Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
approval_description(Option<String>)
:A description provided for the model approval.
domain(Option<String>)
:The machine learning domain of the model package you specified. Common machine learning domains include computer vision and natural language processing.
task(Option<String>)
:The machine learning task you specified that your model package accomplishes. Common machine learning tasks include object detection and image classification.
sample_payload_url(Option<String>)
:The Amazon Simple Storage Service (Amazon S3) path where the sample payload are stored. This path points to a single gzip compressed tar archive (.tar.gz suffix).
customer_metadata_properties(Option<HashMap::<String, String>>)
:The metadata properties associated with the model package versions.
drift_check_baselines(Option<DriftCheckBaselines>)
:Represents the drift check baselines that can be used when the model monitor is set using the model package. For more information, see the topic on Drift Detection against Previous Baselines in SageMaker Pipelines in the Amazon SageMaker Developer Guide.
additional_inference_specifications(Option<Vec::<AdditionalInferenceSpecificationDefinition>>)
:An array of additional Inference Specification objects. Each additional Inference Specification specifies artifacts based on this model package that can be used on inference endpoints. Generally used with SageMaker Neo to store the compiled artifacts.
skip_model_validation(Option<SkipModelValidation>)
:Indicates if you want to skip model validation.
source_uri(Option<String>)
:The URI of the source for the model package.
security_config(Option<ModelPackageSecurityConfig>)
:The KMS Key ID (
KMSKeyId
) used for encryption of model package information.model_card(Option<ModelPackageModelCard>)
:The model card associated with the model package. Since
ModelPackageModelCard
is tied to a model package, it is a specific usage of a model card and its schema is simplified compared to the schema ofModelCard
. TheModelPackageModelCard
schema does not includemodel_package_details
, andmodel_overview
is composed of themodel_creator
andmodel_artifact
properties. For more information about the model package model card schema, see Model package model card schema. For more information about the model card associated with the model package, see View the Details of a Model Version.model_life_cycle(Option<ModelLifeCycle>)
:A structure describing the current state of the model in its life cycle.
- On failure, responds with
SdkError<DescribeModelPackageError>
Source§impl Client
impl Client
Sourcepub fn describe_model_package_group(
&self,
) -> DescribeModelPackageGroupFluentBuilder
pub fn describe_model_package_group( &self, ) -> DescribeModelPackageGroupFluentBuilder
Constructs a fluent builder for the DescribeModelPackageGroup
operation.
- The fluent builder is configurable:
model_package_group_name(impl Into<String>)
/set_model_package_group_name(Option<String>)
:
required: trueThe name of the model group to describe.
- On success, responds with
DescribeModelPackageGroupOutput
with field(s):model_package_group_name(Option<String>)
:The name of the model group.
model_package_group_arn(Option<String>)
:The Amazon Resource Name (ARN) of the model group.
model_package_group_description(Option<String>)
:A description of the model group.
creation_time(Option<DateTime>)
:The time that the model group was created.
created_by(Option<UserContext>)
:Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
model_package_group_status(Option<ModelPackageGroupStatus>)
:The status of the model group.
- On failure, responds with
SdkError<DescribeModelPackageGroupError>
Source§impl Client
impl Client
Sourcepub fn describe_model_quality_job_definition(
&self,
) -> DescribeModelQualityJobDefinitionFluentBuilder
pub fn describe_model_quality_job_definition( &self, ) -> DescribeModelQualityJobDefinitionFluentBuilder
Constructs a fluent builder for the DescribeModelQualityJobDefinition
operation.
- The fluent builder is configurable:
job_definition_name(impl Into<String>)
/set_job_definition_name(Option<String>)
:
required: trueThe name of the model quality job. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.
- On success, responds with
DescribeModelQualityJobDefinitionOutput
with field(s):job_definition_arn(Option<String>)
:The Amazon Resource Name (ARN) of the model quality job.
job_definition_name(Option<String>)
:The name of the quality job definition. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.
creation_time(Option<DateTime>)
:The time at which the model quality job was created.
model_quality_baseline_config(Option<ModelQualityBaselineConfig>)
:The baseline configuration for a model quality job.
model_quality_app_specification(Option<ModelQualityAppSpecification>)
:Configures the model quality job to run a specified Docker container image.
model_quality_job_input(Option<ModelQualityJobInput>)
:Inputs for the model quality job.
model_quality_job_output_config(Option<MonitoringOutputConfig>)
:The output configuration for monitoring jobs.
job_resources(Option<MonitoringResources>)
:Identifies the resources to deploy for a monitoring job.
network_config(Option<MonitoringNetworkConfig>)
:Networking options for a model quality job.
role_arn(Option<String>)
:The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.
stopping_condition(Option<MonitoringStoppingCondition>)
:A time limit for how long the monitoring job is allowed to run before stopping.
- On failure, responds with
SdkError<DescribeModelQualityJobDefinitionError>
Source§impl Client
impl Client
Sourcepub fn describe_monitoring_schedule(
&self,
) -> DescribeMonitoringScheduleFluentBuilder
pub fn describe_monitoring_schedule( &self, ) -> DescribeMonitoringScheduleFluentBuilder
Constructs a fluent builder for the DescribeMonitoringSchedule
operation.
- The fluent builder is configurable:
monitoring_schedule_name(impl Into<String>)
/set_monitoring_schedule_name(Option<String>)
:
required: trueName of a previously created monitoring schedule.
- On success, responds with
DescribeMonitoringScheduleOutput
with field(s):monitoring_schedule_arn(Option<String>)
:The Amazon Resource Name (ARN) of the monitoring schedule.
monitoring_schedule_name(Option<String>)
:Name of the monitoring schedule.
monitoring_schedule_status(Option<ScheduleStatus>)
:The status of an monitoring job.
monitoring_type(Option<MonitoringType>)
:The type of the monitoring job that this schedule runs. This is one of the following values.
-
DATA_QUALITY
- The schedule is for a data quality monitoring job. -
MODEL_QUALITY
- The schedule is for a model quality monitoring job. -
MODEL_BIAS
- The schedule is for a bias monitoring job. -
MODEL_EXPLAINABILITY
- The schedule is for an explainability monitoring job.
-
failure_reason(Option<String>)
:A string, up to one KB in size, that contains the reason a monitoring job failed, if it failed.
creation_time(Option<DateTime>)
:The time at which the monitoring job was created.
last_modified_time(Option<DateTime>)
:The time at which the monitoring job was last modified.
monitoring_schedule_config(Option<MonitoringScheduleConfig>)
:The configuration object that specifies the monitoring schedule and defines the monitoring job.
endpoint_name(Option<String>)
:The name of the endpoint for the monitoring job.
last_monitoring_execution_summary(Option<MonitoringExecutionSummary>)
:Describes metadata on the last execution to run, if there was one.
- On failure, responds with
SdkError<DescribeMonitoringScheduleError>
Source§impl Client
impl Client
Sourcepub fn describe_notebook_instance(
&self,
) -> DescribeNotebookInstanceFluentBuilder
pub fn describe_notebook_instance( &self, ) -> DescribeNotebookInstanceFluentBuilder
Constructs a fluent builder for the DescribeNotebookInstance
operation.
- The fluent builder is configurable:
notebook_instance_name(impl Into<String>)
/set_notebook_instance_name(Option<String>)
:
required: trueThe name of the notebook instance that you want information about.
- On success, responds with
DescribeNotebookInstanceOutput
with field(s):notebook_instance_arn(Option<String>)
:The Amazon Resource Name (ARN) of the notebook instance.
notebook_instance_name(Option<String>)
:The name of the SageMaker AI notebook instance.
notebook_instance_status(Option<NotebookInstanceStatus>)
:The status of the notebook instance.
failure_reason(Option<String>)
:If status is
Failed
, the reason it failed.url(Option<String>)
:The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
instance_type(Option<InstanceType>)
:The type of ML compute instance running on the notebook instance.
subnet_id(Option<String>)
:The ID of the VPC subnet.
security_groups(Option<Vec::<String>>)
:The IDs of the VPC security groups.
role_arn(Option<String>)
:The Amazon Resource Name (ARN) of the IAM role associated with the instance.
kms_key_id(Option<String>)
:The Amazon Web Services KMS key ID SageMaker AI uses to encrypt data when storing it on the ML storage volume attached to the instance.
network_interface_id(Option<String>)
:The network interface IDs that SageMaker AI created at the time of creating the instance.
last_modified_time(Option<DateTime>)
:A timestamp. Use this parameter to retrieve the time when the notebook instance was last modified.
creation_time(Option<DateTime>)
:A timestamp. Use this parameter to return the time when the notebook instance was created
notebook_instance_lifecycle_config_name(Option<String>)
:Returns the name of a notebook instance lifecycle configuration.
For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance
direct_internet_access(Option<DirectInternetAccess>)
:Describes whether SageMaker AI provides internet access to the notebook instance. If this value is set to Disabled, the notebook instance does not have internet access, and cannot connect to SageMaker AI training and endpoint services.
For more information, see Notebook Instances Are Internet-Enabled by Default.
volume_size_in_gb(Option<i32>)
:The size, in GB, of the ML storage volume attached to the notebook instance.
accelerator_types(Option<Vec::<NotebookInstanceAcceleratorType>>)
:This parameter is no longer supported. Elastic Inference (EI) is no longer available.
This parameter was used to specify a list of the EI instance types associated with this notebook instance.
default_code_repository(Option<String>)
:The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.
additional_code_repositories(Option<Vec::<String>>)
:An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.
root_access(Option<RootAccess>)
:Whether root access is enabled or disabled for users of the notebook instance.
Lifecycle configurations need root access to be able to set up a notebook instance. Because of this, lifecycle configurations associated with a notebook instance always run with root access even if you disable root access for users.
platform_identifier(Option<String>)
:The platform identifier of the notebook instance runtime environment.
instance_metadata_service_configuration(Option<InstanceMetadataServiceConfiguration>)
:Information on the IMDS configuration of the notebook instance
- On failure, responds with
SdkError<DescribeNotebookInstanceError>
Source§impl Client
impl Client
Sourcepub fn describe_notebook_instance_lifecycle_config(
&self,
) -> DescribeNotebookInstanceLifecycleConfigFluentBuilder
pub fn describe_notebook_instance_lifecycle_config( &self, ) -> DescribeNotebookInstanceLifecycleConfigFluentBuilder
Constructs a fluent builder for the DescribeNotebookInstanceLifecycleConfig
operation.
- The fluent builder is configurable:
notebook_instance_lifecycle_config_name(impl Into<String>)
/set_notebook_instance_lifecycle_config_name(Option<String>)
:
required: trueThe name of the lifecycle configuration to describe.
- On success, responds with
DescribeNotebookInstanceLifecycleConfigOutput
with field(s):notebook_instance_lifecycle_config_arn(Option<String>)
:The Amazon Resource Name (ARN) of the lifecycle configuration.
notebook_instance_lifecycle_config_name(Option<String>)
:The name of the lifecycle configuration.
on_create(Option<Vec::<NotebookInstanceLifecycleHook>>)
:The shell script that runs only once, when you create a notebook instance.
on_start(Option<Vec::<NotebookInstanceLifecycleHook>>)
:The shell script that runs every time you start a notebook instance, including when you create the notebook instance.
last_modified_time(Option<DateTime>)
:A timestamp that tells when the lifecycle configuration was last modified.
creation_time(Option<DateTime>)
:A timestamp that tells when the lifecycle configuration was created.
- On failure, responds with
SdkError<DescribeNotebookInstanceLifecycleConfigError>
Source§impl Client
impl Client
Sourcepub fn describe_optimization_job(&self) -> DescribeOptimizationJobFluentBuilder
pub fn describe_optimization_job(&self) -> DescribeOptimizationJobFluentBuilder
Constructs a fluent builder for the DescribeOptimizationJob
operation.
- The fluent builder is configurable:
optimization_job_name(impl Into<String>)
/set_optimization_job_name(Option<String>)
:
required: trueThe name that you assigned to the optimization job.
- On success, responds with
DescribeOptimizationJobOutput
with field(s):optimization_job_arn(Option<String>)
:The Amazon Resource Name (ARN) of the optimization job.
optimization_job_status(Option<OptimizationJobStatus>)
:The current status of the optimization job.
optimization_start_time(Option<DateTime>)
:The time when the optimization job started.
optimization_end_time(Option<DateTime>)
:The time when the optimization job finished processing.
creation_time(Option<DateTime>)
:The time when you created the optimization job.
last_modified_time(Option<DateTime>)
:The time when the optimization job was last updated.
failure_reason(Option<String>)
:If the optimization job status is
FAILED
, the reason for the failure.optimization_job_name(Option<String>)
:The name that you assigned to the optimization job.
model_source(Option<OptimizationJobModelSource>)
:The location of the source model to optimize with an optimization job.
optimization_environment(Option<HashMap::<String, String>>)
:The environment variables to set in the model container.
deployment_instance_type(Option<OptimizationJobDeploymentInstanceType>)
:The type of instance that hosts the optimized model that you create with the optimization job.
optimization_configs(Option<Vec::<OptimizationConfig>>)
:Settings for each of the optimization techniques that the job applies.
output_config(Option<OptimizationJobOutputConfig>)
:Details for where to store the optimized model that you create with the optimization job.
optimization_output(Option<OptimizationOutput>)
:Output values produced by an optimization job.
role_arn(Option<String>)
:The ARN of the IAM role that you assigned to the optimization job.
stopping_condition(Option<StoppingCondition>)
:Specifies a limit to how long a job can run. When the job reaches the time limit, SageMaker ends the job. Use this API to cap costs.
To stop a training job, SageMaker sends the algorithm the
SIGTERM
signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.The training algorithms provided by SageMaker automatically save the intermediate results of a model training job when possible. This attempt to save artifacts is only a best effort case as model might not be in a state from which it can be saved. For example, if training has just started, the model might not be ready to save. When saved, this intermediate data is a valid model artifact. You can use it to create a model with
CreateModel
.The Neural Topic Model (NTM) currently does not support saving intermediate model artifacts. When training NTMs, make sure that the maximum runtime is sufficient for the training job to complete.
vpc_config(Option<OptimizationVpcConfig>)
:A VPC in Amazon VPC that your optimized model has access to.
- On failure, responds with
SdkError<DescribeOptimizationJobError>
Source§impl Client
impl Client
Sourcepub fn describe_partner_app(&self) -> DescribePartnerAppFluentBuilder
pub fn describe_partner_app(&self) -> DescribePartnerAppFluentBuilder
Constructs a fluent builder for the DescribePartnerApp
operation.
- The fluent builder is configurable:
arn(impl Into<String>)
/set_arn(Option<String>)
:
required: trueThe ARN of the SageMaker Partner AI App to describe.
- On success, responds with
DescribePartnerAppOutput
with field(s):arn(Option<String>)
:The ARN of the SageMaker Partner AI App that was described.
name(Option<String>)
:The name of the SageMaker Partner AI App.
r#type(Option<PartnerAppType>)
:The type of SageMaker Partner AI App. Must be one of the following:
lakera-guard
,comet
,deepchecks-llm-evaluation
, orfiddler
.status(Option<PartnerAppStatus>)
:The status of the SageMaker Partner AI App.
creation_time(Option<DateTime>)
:The time that the SageMaker Partner AI App was created.
last_modified_time(Option<DateTime>)
:The time that the SageMaker Partner AI App was last modified.
execution_role_arn(Option<String>)
:The ARN of the IAM role associated with the SageMaker Partner AI App.
kms_key_id(Option<String>)
:The Amazon Web Services KMS customer managed key used to encrypt the data at rest associated with SageMaker Partner AI Apps.
base_url(Option<String>)
:The URL of the SageMaker Partner AI App that the Application SDK uses to support in-app calls for the user.
maintenance_config(Option<PartnerAppMaintenanceConfig>)
:Maintenance configuration settings for the SageMaker Partner AI App.
tier(Option<String>)
:The instance type and size of the cluster attached to the SageMaker Partner AI App.
version(Option<String>)
:The version of the SageMaker Partner AI App.
application_config(Option<PartnerAppConfig>)
:Configuration settings for the SageMaker Partner AI App.
auth_type(Option<PartnerAppAuthType>)
:The authorization type that users use to access the SageMaker Partner AI App.
enable_iam_session_based_identity(Option<bool>)
:When set to
TRUE
, the SageMaker Partner AI App sets the Amazon Web Services IAM session name or the authenticated IAM user as the identity of the SageMaker Partner AI App user.error(Option<ErrorInfo>)
:This is an error field object that contains the error code and the reason for an operation failure.
- On failure, responds with
SdkError<DescribePartnerAppError>
Source§impl Client
impl Client
Sourcepub fn describe_pipeline(&self) -> DescribePipelineFluentBuilder
pub fn describe_pipeline(&self) -> DescribePipelineFluentBuilder
Constructs a fluent builder for the DescribePipeline
operation.
- The fluent builder is configurable:
pipeline_name(impl Into<String>)
/set_pipeline_name(Option<String>)
:
required: trueThe name or Amazon Resource Name (ARN) of the pipeline to describe.
- On success, responds with
DescribePipelineOutput
with field(s):pipeline_arn(Option<String>)
:The Amazon Resource Name (ARN) of the pipeline.
pipeline_name(Option<String>)
:The name of the pipeline.
pipeline_display_name(Option<String>)
:The display name of the pipeline.
pipeline_definition(Option<String>)
:The JSON pipeline definition.
pipeline_description(Option<String>)
:The description of the pipeline.
role_arn(Option<String>)
:The Amazon Resource Name (ARN) that the pipeline uses to execute.
pipeline_status(Option<PipelineStatus>)
:The status of the pipeline execution.
creation_time(Option<DateTime>)
:The time when the pipeline was created.
last_modified_time(Option<DateTime>)
:The time when the pipeline was last modified.
last_run_time(Option<DateTime>)
:The time when the pipeline was last run.
created_by(Option<UserContext>)
:Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
last_modified_by(Option<UserContext>)
:Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
parallelism_configuration(Option<ParallelismConfiguration>)
:Lists the parallelism configuration applied to the pipeline.
- On failure, responds with
SdkError<DescribePipelineError>
Source§impl Client
impl Client
Sourcepub fn describe_pipeline_definition_for_execution(
&self,
) -> DescribePipelineDefinitionForExecutionFluentBuilder
pub fn describe_pipeline_definition_for_execution( &self, ) -> DescribePipelineDefinitionForExecutionFluentBuilder
Constructs a fluent builder for the DescribePipelineDefinitionForExecution
operation.
- The fluent builder is configurable:
pipeline_execution_arn(impl Into<String>)
/set_pipeline_execution_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of the pipeline execution.
- On success, responds with
DescribePipelineDefinitionForExecutionOutput
with field(s):pipeline_definition(Option<String>)
:The JSON pipeline definition.
creation_time(Option<DateTime>)
:The time when the pipeline was created.
- On failure, responds with
SdkError<DescribePipelineDefinitionForExecutionError>
Source§impl Client
impl Client
Sourcepub fn describe_pipeline_execution(
&self,
) -> DescribePipelineExecutionFluentBuilder
pub fn describe_pipeline_execution( &self, ) -> DescribePipelineExecutionFluentBuilder
Constructs a fluent builder for the DescribePipelineExecution
operation.
- The fluent builder is configurable:
pipeline_execution_arn(impl Into<String>)
/set_pipeline_execution_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of the pipeline execution.
- On success, responds with
DescribePipelineExecutionOutput
with field(s):pipeline_arn(Option<String>)
:The Amazon Resource Name (ARN) of the pipeline.
pipeline_execution_arn(Option<String>)
:The Amazon Resource Name (ARN) of the pipeline execution.
pipeline_execution_display_name(Option<String>)
:The display name of the pipeline execution.
pipeline_execution_status(Option<PipelineExecutionStatus>)
:The status of the pipeline execution.
pipeline_execution_description(Option<String>)
:The description of the pipeline execution.
pipeline_experiment_config(Option<PipelineExperimentConfig>)
:Specifies the names of the experiment and trial created by a pipeline.
failure_reason(Option<String>)
:If the execution failed, a message describing why.
creation_time(Option<DateTime>)
:The time when the pipeline execution was created.
last_modified_time(Option<DateTime>)
:The time when the pipeline execution was modified last.
created_by(Option<UserContext>)
:Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
last_modified_by(Option<UserContext>)
:Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
parallelism_configuration(Option<ParallelismConfiguration>)
:The parallelism configuration applied to the pipeline.
selective_execution_config(Option<SelectiveExecutionConfig>)
:The selective execution configuration applied to the pipeline run.
- On failure, responds with
SdkError<DescribePipelineExecutionError>
Source§impl Client
impl Client
Sourcepub fn describe_processing_job(&self) -> DescribeProcessingJobFluentBuilder
pub fn describe_processing_job(&self) -> DescribeProcessingJobFluentBuilder
Constructs a fluent builder for the DescribeProcessingJob
operation.
- The fluent builder is configurable:
processing_job_name(impl Into<String>)
/set_processing_job_name(Option<String>)
:
required: trueThe name of the processing job. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.
- On success, responds with
DescribeProcessingJobOutput
with field(s):processing_inputs(Option<Vec::<ProcessingInput>>)
:The inputs for a processing job.
processing_output_config(Option<ProcessingOutputConfig>)
:Output configuration for the processing job.
processing_job_name(Option<String>)
:The name of the processing job. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.
processing_resources(Option<ProcessingResources>)
:Identifies the resources, ML compute instances, and ML storage volumes to deploy for a processing job. In distributed training, you specify more than one instance.
stopping_condition(Option<ProcessingStoppingCondition>)
:The time limit for how long the processing job is allowed to run.
app_specification(Option<AppSpecification>)
:Configures the processing job to run a specified container image.
environment(Option<HashMap::<String, String>>)
:The environment variables set in the Docker container.
network_config(Option<NetworkConfig>)
:Networking options for a processing job.
role_arn(Option<String>)
:The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
experiment_config(Option<ExperimentConfig>)
:The configuration information used to create an experiment.
processing_job_arn(Option<String>)
:The Amazon Resource Name (ARN) of the processing job.
processing_job_status(Option<ProcessingJobStatus>)
:Provides the status of a processing job.
exit_message(Option<String>)
:An optional string, up to one KB in size, that contains metadata from the processing container when the processing job exits.
failure_reason(Option<String>)
:A string, up to one KB in size, that contains the reason a processing job failed, if it failed.
processing_end_time(Option<DateTime>)
:The time at which the processing job completed.
processing_start_time(Option<DateTime>)
:The time at which the processing job started.
last_modified_time(Option<DateTime>)
:The time at which the processing job was last modified.
creation_time(Option<DateTime>)
:The time at which the processing job was created.
monitoring_schedule_arn(Option<String>)
:The ARN of a monitoring schedule for an endpoint associated with this processing job.
auto_ml_job_arn(Option<String>)
:The ARN of an AutoML job associated with this processing job.
training_job_arn(Option<String>)
:The ARN of a training job associated with this processing job.
- On failure, responds with
SdkError<DescribeProcessingJobError>
Source§impl Client
impl Client
Sourcepub fn describe_project(&self) -> DescribeProjectFluentBuilder
pub fn describe_project(&self) -> DescribeProjectFluentBuilder
Constructs a fluent builder for the DescribeProject
operation.
- The fluent builder is configurable:
project_name(impl Into<String>)
/set_project_name(Option<String>)
:
required: trueThe name of the project to describe.
- On success, responds with
DescribeProjectOutput
with field(s):project_arn(Option<String>)
:The Amazon Resource Name (ARN) of the project.
project_name(Option<String>)
:The name of the project.
project_id(Option<String>)
:The ID of the project.
project_description(Option<String>)
:The description of the project.
service_catalog_provisioning_details(Option<ServiceCatalogProvisioningDetails>)
:Information used to provision a service catalog product. For information, see What is Amazon Web Services Service Catalog.
service_catalog_provisioned_product_details(Option<ServiceCatalogProvisionedProductDetails>)
:Information about a provisioned service catalog product.
project_status(Option<ProjectStatus>)
:The status of the project.
created_by(Option<UserContext>)
:Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
creation_time(Option<DateTime>)
:The time when the project was created.
last_modified_time(Option<DateTime>)
:The timestamp when project was last modified.
last_modified_by(Option<UserContext>)
:Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
- On failure, responds with
SdkError<DescribeProjectError>
Source§impl Client
impl Client
Sourcepub fn describe_space(&self) -> DescribeSpaceFluentBuilder
pub fn describe_space(&self) -> DescribeSpaceFluentBuilder
Constructs a fluent builder for the DescribeSpace
operation.
- The fluent builder is configurable:
domain_id(impl Into<String>)
/set_domain_id(Option<String>)
:
required: trueThe ID of the associated domain.
space_name(impl Into<String>)
/set_space_name(Option<String>)
:
required: trueThe name of the space.
- On success, responds with
DescribeSpaceOutput
with field(s):domain_id(Option<String>)
:The ID of the associated domain.
space_arn(Option<String>)
:The space’s Amazon Resource Name (ARN).
space_name(Option<String>)
:The name of the space.
home_efs_file_system_uid(Option<String>)
:The ID of the space’s profile in the Amazon EFS volume.
status(Option<SpaceStatus>)
:The status.
last_modified_time(Option<DateTime>)
:The last modified time.
creation_time(Option<DateTime>)
:The creation time.
failure_reason(Option<String>)
:The failure reason.
space_settings(Option<SpaceSettings>)
:A collection of space settings.
ownership_settings(Option<OwnershipSettings>)
:The collection of ownership settings for a space.
space_sharing_settings(Option<SpaceSharingSettings>)
:The collection of space sharing settings for a space.
space_display_name(Option<String>)
:The name of the space that appears in the Amazon SageMaker Studio UI.
url(Option<String>)
:Returns the URL of the space. If the space is created with Amazon Web Services IAM Identity Center (Successor to Amazon Web Services Single Sign-On) authentication, users can navigate to the URL after appending the respective redirect parameter for the application type to be federated through Amazon Web Services IAM Identity Center.
The following application types are supported:
-
Studio Classic:
&redirect=JupyterServer
-
JupyterLab:
&redirect=JupyterLab
-
Code Editor, based on Code-OSS, Visual Studio Code - Open Source:
&redirect=CodeEditor
-
- On failure, responds with
SdkError<DescribeSpaceError>
Source§impl Client
impl Client
Sourcepub fn describe_studio_lifecycle_config(
&self,
) -> DescribeStudioLifecycleConfigFluentBuilder
pub fn describe_studio_lifecycle_config( &self, ) -> DescribeStudioLifecycleConfigFluentBuilder
Constructs a fluent builder for the DescribeStudioLifecycleConfig
operation.
- The fluent builder is configurable:
studio_lifecycle_config_name(impl Into<String>)
/set_studio_lifecycle_config_name(Option<String>)
:
required: trueThe name of the Amazon SageMaker AI Studio Lifecycle Configuration to describe.
- On success, responds with
DescribeStudioLifecycleConfigOutput
with field(s):studio_lifecycle_config_arn(Option<String>)
:The ARN of the Lifecycle Configuration to describe.
studio_lifecycle_config_name(Option<String>)
:The name of the Amazon SageMaker AI Studio Lifecycle Configuration that is described.
creation_time(Option<DateTime>)
:The creation time of the Amazon SageMaker AI Studio Lifecycle Configuration.
last_modified_time(Option<DateTime>)
:This value is equivalent to CreationTime because Amazon SageMaker AI Studio Lifecycle Configurations are immutable.
studio_lifecycle_config_content(Option<String>)
:The content of your Amazon SageMaker AI Studio Lifecycle Configuration script.
studio_lifecycle_config_app_type(Option<StudioLifecycleConfigAppType>)
:The App type that the Lifecycle Configuration is attached to.
- On failure, responds with
SdkError<DescribeStudioLifecycleConfigError>
Source§impl Client
impl Client
Sourcepub fn describe_subscribed_workteam(
&self,
) -> DescribeSubscribedWorkteamFluentBuilder
pub fn describe_subscribed_workteam( &self, ) -> DescribeSubscribedWorkteamFluentBuilder
Constructs a fluent builder for the DescribeSubscribedWorkteam
operation.
- The fluent builder is configurable:
workteam_arn(impl Into<String>)
/set_workteam_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of the subscribed work team to describe.
- On success, responds with
DescribeSubscribedWorkteamOutput
with field(s):subscribed_workteam(Option<SubscribedWorkteam>)
:A
Workteam
instance that contains information about the work team.
- On failure, responds with
SdkError<DescribeSubscribedWorkteamError>
Source§impl Client
impl Client
Sourcepub fn describe_training_job(&self) -> DescribeTrainingJobFluentBuilder
pub fn describe_training_job(&self) -> DescribeTrainingJobFluentBuilder
Constructs a fluent builder for the DescribeTrainingJob
operation.
- The fluent builder is configurable:
training_job_name(impl Into<String>)
/set_training_job_name(Option<String>)
:
required: trueThe name of the training job.
- On success, responds with
DescribeTrainingJobOutput
with field(s):training_job_name(Option<String>)
:Name of the model training job.
training_job_arn(Option<String>)
:The Amazon Resource Name (ARN) of the training job.
tuning_job_arn(Option<String>)
:The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.
labeling_job_arn(Option<String>)
:The Amazon Resource Name (ARN) of the SageMaker Ground Truth labeling job that created the transform or training job.
auto_ml_job_arn(Option<String>)
:The Amazon Resource Name (ARN) of an AutoML job.
model_artifacts(Option<ModelArtifacts>)
:Information about the Amazon S3 location that is configured for storing model artifacts.
training_job_status(Option<TrainingJobStatus>)
:The status of the training job.
SageMaker provides the following training job statuses:
-
InProgress
- The training is in progress. -
Completed
- The training job has completed. -
Failed
- The training job has failed. To see the reason for the failure, see theFailureReason
field in the response to aDescribeTrainingJobResponse
call. -
Stopping
- The training job is stopping. -
Stopped
- The training job has stopped.
For more detailed information, see
SecondaryStatus
.-
secondary_status(Option<SecondaryStatus>)
:Provides detailed information about the state of the training job. For detailed information on the secondary status of the training job, see
StatusMessage
under SecondaryStatusTransition.SageMaker provides primary statuses and secondary statuses that apply to each of them:
- InProgress
-
-
Starting
- Starting the training job. -
Downloading
- An optional stage for algorithms that supportFile
training input mode. It indicates that data is being downloaded to the ML storage volumes. -
Training
- Training is in progress. -
Interrupted
- The job stopped because the managed spot training instances were interrupted. -
Uploading
- Training is complete and the model artifacts are being uploaded to the S3 location.
-
- Completed
-
-
Completed
- The training job has completed.
-
- Failed
-
-
Failed
- The training job has failed. The reason for the failure is returned in theFailureReason
field ofDescribeTrainingJobResponse
.
-
- Stopped
-
-
MaxRuntimeExceeded
- The job stopped because it exceeded the maximum allowed runtime. -
MaxWaitTimeExceeded
- The job stopped because it exceeded the maximum allowed wait time. -
Stopped
- The training job has stopped.
-
- Stopping
-
-
Stopping
- Stopping the training job.
-
Valid values for
SecondaryStatus
are subject to change.We no longer support the following secondary statuses:
-
LaunchingMLInstances
-
PreparingTraining
-
DownloadingTrainingImage
failure_reason(Option<String>)
:If the training job failed, the reason it failed.
hyper_parameters(Option<HashMap::<String, String>>)
:Algorithm-specific parameters.
algorithm_specification(Option<AlgorithmSpecification>)
:Information about the algorithm used for training, and algorithm metadata.
role_arn(Option<String>)
:The Amazon Web Services Identity and Access Management (IAM) role configured for the training job.
input_data_config(Option<Vec::<Channel>>)
:An array of
Channel
objects that describes each data input channel.output_data_config(Option<OutputDataConfig>)
:The S3 path where model artifacts that you configured when creating the job are stored. SageMaker creates subfolders for model artifacts.
resource_config(Option<ResourceConfig>)
:Resources, including ML compute instances and ML storage volumes, that are configured for model training.
warm_pool_status(Option<WarmPoolStatus>)
:The status of the warm pool associated with the training job.
vpc_config(Option<VpcConfig>)
:A VpcConfig object that specifies the VPC that this training job has access to. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
stopping_condition(Option<StoppingCondition>)
:Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.
To stop a job, SageMaker sends the algorithm the
SIGTERM
signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.creation_time(Option<DateTime>)
:A timestamp that indicates when the training job was created.
training_start_time(Option<DateTime>)
:Indicates the time when the training job starts on training instances. You are billed for the time interval between this time and the value of
TrainingEndTime
. The start time in CloudWatch Logs might be later than this time. The difference is due to the time it takes to download the training data and to the size of the training container.training_end_time(Option<DateTime>)
:Indicates the time when the training job ends on training instances. You are billed for the time interval between the value of
TrainingStartTime
and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when SageMaker detects a job failure.last_modified_time(Option<DateTime>)
:A timestamp that indicates when the status of the training job was last modified.
secondary_status_transitions(Option<Vec::<SecondaryStatusTransition>>)
:A history of all of the secondary statuses that the training job has transitioned through.
final_metric_data_list(Option<Vec::<MetricData>>)
:A collection of
MetricData
objects that specify the names, values, and dates and times that the training algorithm emitted to Amazon CloudWatch.enable_network_isolation(Option<bool>)
:If you want to allow inbound or outbound network calls, except for calls between peers within a training cluster for distributed training, choose
True
. If you enable network isolation for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.enable_inter_container_traffic_encryption(Option<bool>)
:To encrypt all communications between ML compute instances in distributed training, choose
True
. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithms in distributed training.enable_managed_spot_training(Option<bool>)
:A Boolean indicating whether managed spot training is enabled (
True
) or not (False
).checkpoint_config(Option<CheckpointConfig>)
:Contains information about the output location for managed spot training checkpoint data.
training_time_in_seconds(Option<i32>)
:The training time in seconds.
billable_time_in_seconds(Option<i32>)
:The billable time in seconds. Billable time refers to the absolute wall-clock time.
Multiply
BillableTimeInSeconds
by the number of instances (InstanceCount
) in your training cluster to get the total compute time SageMaker bills you if you run distributed training. The formula is as follows:BillableTimeInSeconds * InstanceCount
.You can calculate the savings from using managed spot training using the formula
(1 - BillableTimeInSeconds / TrainingTimeInSeconds) * 100
. For example, ifBillableTimeInSeconds
is 100 andTrainingTimeInSeconds
is 500, the savings is 80%.debug_hook_config(Option<DebugHookConfig>)
:Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the
DebugHookConfig
parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.experiment_config(Option<ExperimentConfig>)
:Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:
debug_rule_configurations(Option<Vec::<DebugRuleConfiguration>>)
:Configuration information for Amazon SageMaker Debugger rules for debugging output tensors.
tensor_board_output_config(Option<TensorBoardOutputConfig>)
:Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.
debug_rule_evaluation_statuses(Option<Vec::<DebugRuleEvaluationStatus>>)
:Evaluation status of Amazon SageMaker Debugger rules for debugging on a training job.
profiler_config(Option<ProfilerConfig>)
:Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.
profiler_rule_configurations(Option<Vec::<ProfilerRuleConfiguration>>)
:Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.
profiler_rule_evaluation_statuses(Option<Vec::<ProfilerRuleEvaluationStatus>>)
:Evaluation status of Amazon SageMaker Debugger rules for profiling on a training job.
profiling_status(Option<ProfilingStatus>)
:Profiling status of a training job.
environment(Option<HashMap::<String, String>>)
:The environment variables to set in the Docker container.
Do not include any security-sensitive information including account access IDs, secrets, or tokens in any environment fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by security-sensitive information included in the request environment variable or plain text fields.
retry_strategy(Option<RetryStrategy>)
:The number of times to retry the job when the job fails due to an
InternalServerError
.remote_debug_config(Option<RemoteDebugConfig>)
:Configuration for remote debugging. To learn more about the remote debugging functionality of SageMaker, see Access a training container through Amazon Web Services Systems Manager (SSM) for remote debugging.
infra_check_config(Option<InfraCheckConfig>)
:Contains information about the infrastructure health check configuration for the training job.
- On failure, responds with
SdkError<DescribeTrainingJobError>
Source§impl Client
impl Client
Sourcepub fn describe_training_plan(&self) -> DescribeTrainingPlanFluentBuilder
pub fn describe_training_plan(&self) -> DescribeTrainingPlanFluentBuilder
Constructs a fluent builder for the DescribeTrainingPlan
operation.
- The fluent builder is configurable:
training_plan_name(impl Into<String>)
/set_training_plan_name(Option<String>)
:
required: trueThe name of the training plan to describe.
- On success, responds with
DescribeTrainingPlanOutput
with field(s):training_plan_arn(Option<String>)
:The Amazon Resource Name (ARN); of the training plan.
training_plan_name(Option<String>)
:The name of the training plan.
status(Option<TrainingPlanStatus>)
:The current status of the training plan (e.g., Pending, Active, Expired). To see the complete list of status values available for a training plan, refer to the
Status
attribute within theTrainingPlanSummary
object.status_message(Option<String>)
:A message providing additional information about the current status of the training plan.
duration_hours(Option<i64>)
:The number of whole hours in the total duration for this training plan.
duration_minutes(Option<i64>)
:The additional minutes beyond whole hours in the total duration for this training plan.
start_time(Option<DateTime>)
:The start time of the training plan.
end_time(Option<DateTime>)
:The end time of the training plan.
upfront_fee(Option<String>)
:The upfront fee for the training plan.
currency_code(Option<String>)
:The currency code for the upfront fee (e.g., USD).
total_instance_count(Option<i32>)
:The total number of instances reserved in this training plan.
available_instance_count(Option<i32>)
:The number of instances currently available for use in this training plan.
in_use_instance_count(Option<i32>)
:The number of instances currently in use from this training plan.
target_resources(Option<Vec::<SageMakerResourceName>>)
:The target resources (e.g., SageMaker Training Jobs, SageMaker HyperPod) that can use this training plan.
Training plans are specific to their target resource.
-
A training plan designed for SageMaker training jobs can only be used to schedule and run training jobs.
-
A training plan for HyperPod clusters can be used exclusively to provide compute resources to a cluster’s instance group.
-
reserved_capacity_summaries(Option<Vec::<ReservedCapacitySummary>>)
:The list of Reserved Capacity providing the underlying compute resources of the plan.
- On failure, responds with
SdkError<DescribeTrainingPlanError>
Source§impl Client
impl Client
Sourcepub fn describe_transform_job(&self) -> DescribeTransformJobFluentBuilder
pub fn describe_transform_job(&self) -> DescribeTransformJobFluentBuilder
Constructs a fluent builder for the DescribeTransformJob
operation.
- The fluent builder is configurable:
transform_job_name(impl Into<String>)
/set_transform_job_name(Option<String>)
:
required: trueThe name of the transform job that you want to view details of.
- On success, responds with
DescribeTransformJobOutput
with field(s):transform_job_name(Option<String>)
:The name of the transform job.
transform_job_arn(Option<String>)
:The Amazon Resource Name (ARN) of the transform job.
transform_job_status(Option<TransformJobStatus>)
:The status of the transform job. If the transform job failed, the reason is returned in the
FailureReason
field.failure_reason(Option<String>)
:If the transform job failed,
FailureReason
describes why it failed. A transform job creates a log file, which includes error messages, and stores it as an Amazon S3 object. For more information, see Log Amazon SageMaker Events with Amazon CloudWatch.model_name(Option<String>)
:The name of the model used in the transform job.
max_concurrent_transforms(Option<i32>)
:The maximum number of parallel requests on each instance node that can be launched in a transform job. The default value is 1.
model_client_config(Option<ModelClientConfig>)
:The timeout and maximum number of retries for processing a transform job invocation.
max_payload_in_mb(Option<i32>)
:The maximum payload size, in MB, used in the transform job.
batch_strategy(Option<BatchStrategy>)
:Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.
To enable the batch strategy, you must set
SplitType
toLine
,RecordIO
, orTFRecord
.environment(Option<HashMap::<String, String>>)
:The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
transform_input(Option<TransformInput>)
:Describes the dataset to be transformed and the Amazon S3 location where it is stored.
transform_output(Option<TransformOutput>)
:Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.
data_capture_config(Option<BatchDataCaptureConfig>)
:Configuration to control how SageMaker captures inference data.
transform_resources(Option<TransformResources>)
:Describes the resources, including ML instance types and ML instance count, to use for the transform job.
creation_time(Option<DateTime>)
:A timestamp that shows when the transform Job was created.
transform_start_time(Option<DateTime>)
:Indicates when the transform job starts on ML instances. You are billed for the time interval between this time and the value of
TransformEndTime
.transform_end_time(Option<DateTime>)
:Indicates when the transform job has been completed, or has stopped or failed. You are billed for the time interval between this time and the value of
TransformStartTime
.labeling_job_arn(Option<String>)
:The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the transform or training job.
auto_ml_job_arn(Option<String>)
:The Amazon Resource Name (ARN) of the AutoML transform job.
data_processing(Option<DataProcessing>)
:The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records.
experiment_config(Option<ExperimentConfig>)
:Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:
- On failure, responds with
SdkError<DescribeTransformJobError>
Source§impl Client
impl Client
Sourcepub fn describe_trial(&self) -> DescribeTrialFluentBuilder
pub fn describe_trial(&self) -> DescribeTrialFluentBuilder
Constructs a fluent builder for the DescribeTrial
operation.
- The fluent builder is configurable:
trial_name(impl Into<String>)
/set_trial_name(Option<String>)
:
required: trueThe name of the trial to describe.
- On success, responds with
DescribeTrialOutput
with field(s):trial_name(Option<String>)
:The name of the trial.
trial_arn(Option<String>)
:The Amazon Resource Name (ARN) of the trial.
display_name(Option<String>)
:The name of the trial as displayed. If
DisplayName
isn’t specified,TrialName
is displayed.experiment_name(Option<String>)
:The name of the experiment the trial is part of.
source(Option<TrialSource>)
:The Amazon Resource Name (ARN) of the source and, optionally, the job type.
creation_time(Option<DateTime>)
:When the trial was created.
created_by(Option<UserContext>)
:Who created the trial.
last_modified_time(Option<DateTime>)
:When the trial was last modified.
last_modified_by(Option<UserContext>)
:Who last modified the trial.
metadata_properties(Option<MetadataProperties>)
:Metadata properties of the tracking entity, trial, or trial component.
- On failure, responds with
SdkError<DescribeTrialError>
Source§impl Client
impl Client
Sourcepub fn describe_trial_component(&self) -> DescribeTrialComponentFluentBuilder
pub fn describe_trial_component(&self) -> DescribeTrialComponentFluentBuilder
Constructs a fluent builder for the DescribeTrialComponent
operation.
- The fluent builder is configurable:
trial_component_name(impl Into<String>)
/set_trial_component_name(Option<String>)
:
required: trueThe name of the trial component to describe.
- On success, responds with
DescribeTrialComponentOutput
with field(s):trial_component_name(Option<String>)
:The name of the trial component.
trial_component_arn(Option<String>)
:The Amazon Resource Name (ARN) of the trial component.
display_name(Option<String>)
:The name of the component as displayed. If
DisplayName
isn’t specified,TrialComponentName
is displayed.source(Option<TrialComponentSource>)
:The Amazon Resource Name (ARN) of the source and, optionally, the job type.
status(Option<TrialComponentStatus>)
:The status of the component. States include:
-
InProgress
-
Completed
-
Failed
-
start_time(Option<DateTime>)
:When the component started.
end_time(Option<DateTime>)
:When the component ended.
creation_time(Option<DateTime>)
:When the component was created.
created_by(Option<UserContext>)
:Who created the trial component.
last_modified_time(Option<DateTime>)
:When the component was last modified.
last_modified_by(Option<UserContext>)
:Who last modified the component.
parameters(Option<HashMap::<String, TrialComponentParameterValue>>)
:The hyperparameters of the component.
input_artifacts(Option<HashMap::<String, TrialComponentArtifact>>)
:The input artifacts of the component.
output_artifacts(Option<HashMap::<String, TrialComponentArtifact>>)
:The output artifacts of the component.
metadata_properties(Option<MetadataProperties>)
:Metadata properties of the tracking entity, trial, or trial component.
metrics(Option<Vec::<TrialComponentMetricSummary>>)
:The metrics for the component.
lineage_group_arn(Option<String>)
:The Amazon Resource Name (ARN) of the lineage group.
sources(Option<Vec::<TrialComponentSource>>)
:A list of ARNs and, if applicable, job types for multiple sources of an experiment run.
- On failure, responds with
SdkError<DescribeTrialComponentError>
Source§impl Client
impl Client
Sourcepub fn describe_user_profile(&self) -> DescribeUserProfileFluentBuilder
pub fn describe_user_profile(&self) -> DescribeUserProfileFluentBuilder
Constructs a fluent builder for the DescribeUserProfile
operation.
- The fluent builder is configurable:
domain_id(impl Into<String>)
/set_domain_id(Option<String>)
:
required: trueThe domain ID.
user_profile_name(impl Into<String>)
/set_user_profile_name(Option<String>)
:
required: trueThe user profile name. This value is not case sensitive.
- On success, responds with
DescribeUserProfileOutput
with field(s):domain_id(Option<String>)
:The ID of the domain that contains the profile.
user_profile_arn(Option<String>)
:The user profile Amazon Resource Name (ARN).
user_profile_name(Option<String>)
:The user profile name.
home_efs_file_system_uid(Option<String>)
:The ID of the user’s profile in the Amazon Elastic File System volume.
status(Option<UserProfileStatus>)
:The status.
last_modified_time(Option<DateTime>)
:The last modified time.
creation_time(Option<DateTime>)
:The creation time.
failure_reason(Option<String>)
:The failure reason.
single_sign_on_user_identifier(Option<String>)
:The IAM Identity Center user identifier.
single_sign_on_user_value(Option<String>)
:The IAM Identity Center user value.
user_settings(Option<UserSettings>)
:A collection of settings.
- On failure, responds with
SdkError<DescribeUserProfileError>
Source§impl Client
impl Client
Sourcepub fn describe_workforce(&self) -> DescribeWorkforceFluentBuilder
pub fn describe_workforce(&self) -> DescribeWorkforceFluentBuilder
Constructs a fluent builder for the DescribeWorkforce
operation.
- The fluent builder is configurable:
workforce_name(impl Into<String>)
/set_workforce_name(Option<String>)
:
required: trueThe name of the private workforce whose access you want to restrict.
WorkforceName
is automatically set todefault
when a workforce is created and cannot be modified.
- On success, responds with
DescribeWorkforceOutput
with field(s):workforce(Option<Workforce>)
:A single private workforce, which is automatically created when you create your first private work team. You can create one private work force in each Amazon Web Services Region. By default, any workforce-related API operation used in a specific region will apply to the workforce created in that region. To learn how to create a private workforce, see Create a Private Workforce.
- On failure, responds with
SdkError<DescribeWorkforceError>
Source§impl Client
impl Client
Sourcepub fn describe_workteam(&self) -> DescribeWorkteamFluentBuilder
pub fn describe_workteam(&self) -> DescribeWorkteamFluentBuilder
Constructs a fluent builder for the DescribeWorkteam
operation.
- The fluent builder is configurable:
workteam_name(impl Into<String>)
/set_workteam_name(Option<String>)
:
required: trueThe name of the work team to return a description of.
- On success, responds with
DescribeWorkteamOutput
with field(s):workteam(Option<Workteam>)
:A
Workteam
instance that contains information about the work team.
- On failure, responds with
SdkError<DescribeWorkteamError>
Source§impl Client
impl Client
Sourcepub fn disable_sagemaker_servicecatalog_portfolio(
&self,
) -> DisableSagemakerServicecatalogPortfolioFluentBuilder
pub fn disable_sagemaker_servicecatalog_portfolio( &self, ) -> DisableSagemakerServicecatalogPortfolioFluentBuilder
Constructs a fluent builder for the DisableSagemakerServicecatalogPortfolio
operation.
- The fluent builder takes no input, just
send
it. - On success, responds with
DisableSagemakerServicecatalogPortfolioOutput
- On failure, responds with
SdkError<DisableSagemakerServicecatalogPortfolioError>
Source§impl Client
impl Client
Sourcepub fn disassociate_trial_component(
&self,
) -> DisassociateTrialComponentFluentBuilder
pub fn disassociate_trial_component( &self, ) -> DisassociateTrialComponentFluentBuilder
Constructs a fluent builder for the DisassociateTrialComponent
operation.
- The fluent builder is configurable:
trial_component_name(impl Into<String>)
/set_trial_component_name(Option<String>)
:
required: trueThe name of the component to disassociate from the trial.
trial_name(impl Into<String>)
/set_trial_name(Option<String>)
:
required: trueThe name of the trial to disassociate from.
- On success, responds with
DisassociateTrialComponentOutput
with field(s):trial_component_arn(Option<String>)
:The Amazon Resource Name (ARN) of the trial component.
trial_arn(Option<String>)
:The Amazon Resource Name (ARN) of the trial.
- On failure, responds with
SdkError<DisassociateTrialComponentError>
Source§impl Client
impl Client
Sourcepub fn enable_sagemaker_servicecatalog_portfolio(
&self,
) -> EnableSagemakerServicecatalogPortfolioFluentBuilder
pub fn enable_sagemaker_servicecatalog_portfolio( &self, ) -> EnableSagemakerServicecatalogPortfolioFluentBuilder
Constructs a fluent builder for the EnableSagemakerServicecatalogPortfolio
operation.
- The fluent builder takes no input, just
send
it. - On success, responds with
EnableSagemakerServicecatalogPortfolioOutput
- On failure, responds with
SdkError<EnableSagemakerServicecatalogPortfolioError>
Source§impl Client
impl Client
Sourcepub fn get_device_fleet_report(&self) -> GetDeviceFleetReportFluentBuilder
pub fn get_device_fleet_report(&self) -> GetDeviceFleetReportFluentBuilder
Constructs a fluent builder for the GetDeviceFleetReport
operation.
- The fluent builder is configurable:
device_fleet_name(impl Into<String>)
/set_device_fleet_name(Option<String>)
:
required: trueThe name of the fleet.
- On success, responds with
GetDeviceFleetReportOutput
with field(s):device_fleet_arn(Option<String>)
:The Amazon Resource Name (ARN) of the device.
device_fleet_name(Option<String>)
:The name of the fleet.
output_config(Option<EdgeOutputConfig>)
:The output configuration for storing sample data collected by the fleet.
description(Option<String>)
:Description of the fleet.
report_generated(Option<DateTime>)
:Timestamp of when the report was generated.
device_stats(Option<DeviceStats>)
:Status of devices.
agent_versions(Option<Vec::<AgentVersion>>)
:The versions of Edge Manager agent deployed on the fleet.
model_stats(Option<Vec::<EdgeModelStat>>)
:Status of model on device.
- On failure, responds with
SdkError<GetDeviceFleetReportError>
Source§impl Client
impl Client
Sourcepub fn get_lineage_group_policy(&self) -> GetLineageGroupPolicyFluentBuilder
pub fn get_lineage_group_policy(&self) -> GetLineageGroupPolicyFluentBuilder
Constructs a fluent builder for the GetLineageGroupPolicy
operation.
- The fluent builder is configurable:
lineage_group_name(impl Into<String>)
/set_lineage_group_name(Option<String>)
:
required: trueThe name or Amazon Resource Name (ARN) of the lineage group.
- On success, responds with
GetLineageGroupPolicyOutput
with field(s):lineage_group_arn(Option<String>)
:The Amazon Resource Name (ARN) of the lineage group.
resource_policy(Option<String>)
:The resource policy that gives access to the lineage group in another account.
- On failure, responds with
SdkError<GetLineageGroupPolicyError>
Source§impl Client
impl Client
Sourcepub fn get_model_package_group_policy(
&self,
) -> GetModelPackageGroupPolicyFluentBuilder
pub fn get_model_package_group_policy( &self, ) -> GetModelPackageGroupPolicyFluentBuilder
Constructs a fluent builder for the GetModelPackageGroupPolicy
operation.
- The fluent builder is configurable:
model_package_group_name(impl Into<String>)
/set_model_package_group_name(Option<String>)
:
required: trueThe name of the model group for which to get the resource policy.
- On success, responds with
GetModelPackageGroupPolicyOutput
with field(s):resource_policy(Option<String>)
:The resource policy for the model group.
- On failure, responds with
SdkError<GetModelPackageGroupPolicyError>
Source§impl Client
impl Client
Sourcepub fn get_sagemaker_servicecatalog_portfolio_status(
&self,
) -> GetSagemakerServicecatalogPortfolioStatusFluentBuilder
pub fn get_sagemaker_servicecatalog_portfolio_status( &self, ) -> GetSagemakerServicecatalogPortfolioStatusFluentBuilder
Constructs a fluent builder for the GetSagemakerServicecatalogPortfolioStatus
operation.
- The fluent builder takes no input, just
send
it. - On success, responds with
GetSagemakerServicecatalogPortfolioStatusOutput
with field(s):status(Option<SagemakerServicecatalogStatus>)
:Whether Service Catalog is enabled or disabled in SageMaker.
- On failure, responds with
SdkError<GetSagemakerServicecatalogPortfolioStatusError>
Source§impl Client
impl Client
Sourcepub fn get_scaling_configuration_recommendation(
&self,
) -> GetScalingConfigurationRecommendationFluentBuilder
pub fn get_scaling_configuration_recommendation( &self, ) -> GetScalingConfigurationRecommendationFluentBuilder
Constructs a fluent builder for the GetScalingConfigurationRecommendation
operation.
- The fluent builder is configurable:
inference_recommendations_job_name(impl Into<String>)
/set_inference_recommendations_job_name(Option<String>)
:
required: trueThe name of a previously completed Inference Recommender job.
recommendation_id(impl Into<String>)
/set_recommendation_id(Option<String>)
:
required: falseThe recommendation ID of a previously completed inference recommendation. This ID should come from one of the recommendations returned by the job specified in the
InferenceRecommendationsJobName
field.Specify either this field or the
EndpointName
field.endpoint_name(impl Into<String>)
/set_endpoint_name(Option<String>)
:
required: falseThe name of an endpoint benchmarked during a previously completed inference recommendation job. This name should come from one of the recommendations returned by the job specified in the
InferenceRecommendationsJobName
field.Specify either this field or the
RecommendationId
field.target_cpu_utilization_per_core(i32)
/set_target_cpu_utilization_per_core(Option<i32>)
:
required: falseThe percentage of how much utilization you want an instance to use before autoscaling. The default value is 50%.
scaling_policy_objective(ScalingPolicyObjective)
/set_scaling_policy_objective(Option<ScalingPolicyObjective>)
:
required: falseAn object where you specify the anticipated traffic pattern for an endpoint.
- On success, responds with
GetScalingConfigurationRecommendationOutput
with field(s):inference_recommendations_job_name(Option<String>)
:The name of a previously completed Inference Recommender job.
recommendation_id(Option<String>)
:The recommendation ID of a previously completed inference recommendation.
endpoint_name(Option<String>)
:The name of an endpoint benchmarked during a previously completed Inference Recommender job.
target_cpu_utilization_per_core(Option<i32>)
:The percentage of how much utilization you want an instance to use before autoscaling, which you specified in the request. The default value is 50%.
scaling_policy_objective(Option<ScalingPolicyObjective>)
:An object representing the anticipated traffic pattern for an endpoint that you specified in the request.
metric(Option<ScalingPolicyMetric>)
:An object with a list of metrics that were benchmarked during the previously completed Inference Recommender job.
dynamic_scaling_configuration(Option<DynamicScalingConfiguration>)
:An object with the recommended values for you to specify when creating an autoscaling policy.
- On failure, responds with
SdkError<GetScalingConfigurationRecommendationError>
Source§impl Client
impl Client
Sourcepub fn get_search_suggestions(&self) -> GetSearchSuggestionsFluentBuilder
pub fn get_search_suggestions(&self) -> GetSearchSuggestionsFluentBuilder
Constructs a fluent builder for the GetSearchSuggestions
operation.
- The fluent builder is configurable:
resource(ResourceType)
/set_resource(Option<ResourceType>)
:
required: trueThe name of the SageMaker resource to search for.
suggestion_query(SuggestionQuery)
/set_suggestion_query(Option<SuggestionQuery>)
:
required: falseLimits the property names that are included in the response.
- On success, responds with
GetSearchSuggestionsOutput
with field(s):property_name_suggestions(Option<Vec::<PropertyNameSuggestion>>)
:A list of property names for a
Resource
that match aSuggestionQuery
.
- On failure, responds with
SdkError<GetSearchSuggestionsError>
Source§impl Client
impl Client
Sourcepub fn import_hub_content(&self) -> ImportHubContentFluentBuilder
pub fn import_hub_content(&self) -> ImportHubContentFluentBuilder
Constructs a fluent builder for the ImportHubContent
operation.
- The fluent builder is configurable:
hub_content_name(impl Into<String>)
/set_hub_content_name(Option<String>)
:
required: trueThe name of the hub content to import.
hub_content_version(impl Into<String>)
/set_hub_content_version(Option<String>)
:
required: falseThe version of the hub content to import.
hub_content_type(HubContentType)
/set_hub_content_type(Option<HubContentType>)
:
required: trueThe type of hub content to import.
document_schema_version(impl Into<String>)
/set_document_schema_version(Option<String>)
:
required: trueThe version of the hub content schema to import.
hub_name(impl Into<String>)
/set_hub_name(Option<String>)
:
required: trueThe name of the hub to import content into.
hub_content_display_name(impl Into<String>)
/set_hub_content_display_name(Option<String>)
:
required: falseThe display name of the hub content to import.
hub_content_description(impl Into<String>)
/set_hub_content_description(Option<String>)
:
required: falseA description of the hub content to import.
hub_content_markdown(impl Into<String>)
/set_hub_content_markdown(Option<String>)
:
required: falseA string that provides a description of the hub content. This string can include links, tables, and standard markdown formating.
hub_content_document(impl Into<String>)
/set_hub_content_document(Option<String>)
:
required: trueThe hub content document that describes information about the hub content such as type, associated containers, scripts, and more.
support_status(HubContentSupportStatus)
/set_support_status(Option<HubContentSupportStatus>)
:
required: falseThe status of the hub content resource.
hub_content_search_keywords(impl Into<String>)
/set_hub_content_search_keywords(Option<Vec::<String>>)
:
required: falseThe searchable keywords of the hub content.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseAny tags associated with the hub content.
- On success, responds with
ImportHubContentOutput
with field(s):hub_arn(Option<String>)
:The ARN of the hub that the content was imported into.
hub_content_arn(Option<String>)
:The ARN of the hub content that was imported.
- On failure, responds with
SdkError<ImportHubContentError>
Source§impl Client
impl Client
Sourcepub fn list_actions(&self) -> ListActionsFluentBuilder
pub fn list_actions(&self) -> ListActionsFluentBuilder
Constructs a fluent builder for the ListActions
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
source_uri(impl Into<String>)
/set_source_uri(Option<String>)
:
required: falseA filter that returns only actions with the specified source URI.
action_type(impl Into<String>)
/set_action_type(Option<String>)
:
required: falseA filter that returns only actions of the specified type.
created_after(DateTime)
/set_created_after(Option<DateTime>)
:
required: falseA filter that returns only actions created on or after the specified time.
created_before(DateTime)
/set_created_before(Option<DateTime>)
:
required: falseA filter that returns only actions created on or before the specified time.
sort_by(SortActionsBy)
/set_sort_by(Option<SortActionsBy>)
:
required: falseThe property used to sort results. The default value is
CreationTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order. The default value is
Descending
.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the previous call to
ListActions
didn’t return the full set of actions, the call returns a token for getting the next set of actions.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of actions to return in the response. The default value is 10.
- On success, responds with
ListActionsOutput
with field(s):action_summaries(Option<Vec::<ActionSummary>>)
:A list of actions and their properties.
next_token(Option<String>)
:A token for getting the next set of actions, if there are any.
- On failure, responds with
SdkError<ListActionsError>
Source§impl Client
impl Client
Sourcepub fn list_algorithms(&self) -> ListAlgorithmsFluentBuilder
pub fn list_algorithms(&self) -> ListAlgorithmsFluentBuilder
Constructs a fluent builder for the ListAlgorithms
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only algorithms created after the specified time (timestamp).
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only algorithms created before the specified time (timestamp).
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of algorithms to return in the response.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA string in the algorithm name. This filter returns only algorithms whose name contains the specified string.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the response to a previous
ListAlgorithms
request was truncated, the response includes aNextToken
. To retrieve the next set of algorithms, use the token in the next request.sort_by(AlgorithmSortBy)
/set_sort_by(Option<AlgorithmSortBy>)
:
required: falseThe parameter by which to sort the results. The default is
CreationTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order for the results. The default is
Ascending
.
- On success, responds with
ListAlgorithmsOutput
with field(s):algorithm_summary_list(Option<Vec::<AlgorithmSummary>>)
:>An array of
AlgorithmSummary
objects, each of which lists an algorithm.next_token(Option<String>)
:If the response is truncated, SageMaker returns this token. To retrieve the next set of algorithms, use it in the subsequent request.
- On failure, responds with
SdkError<ListAlgorithmsError>
Source§impl Client
impl Client
Sourcepub fn list_aliases(&self) -> ListAliasesFluentBuilder
pub fn list_aliases(&self) -> ListAliasesFluentBuilder
Constructs a fluent builder for the ListAliases
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
image_name(impl Into<String>)
/set_image_name(Option<String>)
:
required: trueThe name of the image.
alias(impl Into<String>)
/set_alias(Option<String>)
:
required: falseThe alias of the image version.
version(i32)
/set_version(Option<i32>)
:
required: falseThe version of the image. If image version is not specified, the aliases of all versions of the image are listed.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of aliases to return.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the previous call to
ListAliases
didn’t return the full set of aliases, the call returns a token for retrieving the next set of aliases.
- On success, responds with
ListAliasesOutput
with field(s):sage_maker_image_version_aliases(Option<Vec::<String>>)
:A list of SageMaker AI image version aliases.
next_token(Option<String>)
:A token for getting the next set of aliases, if more aliases exist.
- On failure, responds with
SdkError<ListAliasesError>
Source§impl Client
impl Client
Sourcepub fn list_app_image_configs(&self) -> ListAppImageConfigsFluentBuilder
pub fn list_app_image_configs(&self) -> ListAppImageConfigsFluentBuilder
Constructs a fluent builder for the ListAppImageConfigs
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe total number of items to return in the response. If the total number of items available is more than the value specified, a
NextToken
is provided in the response. To resume pagination, provide theNextToken
value in the as part of a subsequent call. The default value is 10.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the previous call to
ListImages
didn’t return the full set of AppImageConfigs, the call returns a token for getting the next set of AppImageConfigs.name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA filter that returns only AppImageConfigs whose name contains the specified string.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only AppImageConfigs created on or before the specified time.
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only AppImageConfigs created on or after the specified time.
modified_time_before(DateTime)
/set_modified_time_before(Option<DateTime>)
:
required: falseA filter that returns only AppImageConfigs modified on or before the specified time.
modified_time_after(DateTime)
/set_modified_time_after(Option<DateTime>)
:
required: falseA filter that returns only AppImageConfigs modified on or after the specified time.
sort_by(AppImageConfigSortKey)
/set_sort_by(Option<AppImageConfigSortKey>)
:
required: falseThe property used to sort results. The default value is
CreationTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order. The default value is
Descending
.
- On success, responds with
ListAppImageConfigsOutput
with field(s):next_token(Option<String>)
:A token for getting the next set of AppImageConfigs, if there are any.
app_image_configs(Option<Vec::<AppImageConfigDetails>>)
:A list of AppImageConfigs and their properties.
- On failure, responds with
SdkError<ListAppImageConfigsError>
Source§impl Client
impl Client
Sourcepub fn list_apps(&self) -> ListAppsFluentBuilder
pub fn list_apps(&self) -> ListAppsFluentBuilder
Constructs a fluent builder for the ListApps
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThis parameter defines the maximum number of results that can be return in a single response. The
MaxResults
parameter is an upper bound, not a target. If there are more results available than the value specified, aNextToken
is provided in the response. TheNextToken
indicates that the user should get the next set of results by providing this token as a part of a subsequent call. The default value forMaxResults
is 10.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order for the results. The default is Ascending.
sort_by(AppSortKey)
/set_sort_by(Option<AppSortKey>)
:
required: falseThe parameter by which to sort the results. The default is CreationTime.
domain_id_equals(impl Into<String>)
/set_domain_id_equals(Option<String>)
:
required: falseA parameter to search for the domain ID.
user_profile_name_equals(impl Into<String>)
/set_user_profile_name_equals(Option<String>)
:
required: falseA parameter to search by user profile name. If
SpaceNameEquals
is set, then this value cannot be set.space_name_equals(impl Into<String>)
/set_space_name_equals(Option<String>)
:
required: falseA parameter to search by space name. If
UserProfileNameEquals
is set, then this value cannot be set.
- On success, responds with
ListAppsOutput
with field(s):apps(Option<Vec::<AppDetails>>)
:The list of apps.
next_token(Option<String>)
:If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
- On failure, responds with
SdkError<ListAppsError>
Source§impl Client
impl Client
Sourcepub fn list_artifacts(&self) -> ListArtifactsFluentBuilder
pub fn list_artifacts(&self) -> ListArtifactsFluentBuilder
Constructs a fluent builder for the ListArtifacts
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
source_uri(impl Into<String>)
/set_source_uri(Option<String>)
:
required: falseA filter that returns only artifacts with the specified source URI.
artifact_type(impl Into<String>)
/set_artifact_type(Option<String>)
:
required: falseA filter that returns only artifacts of the specified type.
created_after(DateTime)
/set_created_after(Option<DateTime>)
:
required: falseA filter that returns only artifacts created on or after the specified time.
created_before(DateTime)
/set_created_before(Option<DateTime>)
:
required: falseA filter that returns only artifacts created on or before the specified time.
sort_by(SortArtifactsBy)
/set_sort_by(Option<SortArtifactsBy>)
:
required: falseThe property used to sort results. The default value is
CreationTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order. The default value is
Descending
.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the previous call to
ListArtifacts
didn’t return the full set of artifacts, the call returns a token for getting the next set of artifacts.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of artifacts to return in the response. The default value is 10.
- On success, responds with
ListArtifactsOutput
with field(s):artifact_summaries(Option<Vec::<ArtifactSummary>>)
:A list of artifacts and their properties.
next_token(Option<String>)
:A token for getting the next set of artifacts, if there are any.
- On failure, responds with
SdkError<ListArtifactsError>
Source§impl Client
impl Client
Sourcepub fn list_associations(&self) -> ListAssociationsFluentBuilder
pub fn list_associations(&self) -> ListAssociationsFluentBuilder
Constructs a fluent builder for the ListAssociations
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
source_arn(impl Into<String>)
/set_source_arn(Option<String>)
:
required: falseA filter that returns only associations with the specified source ARN.
destination_arn(impl Into<String>)
/set_destination_arn(Option<String>)
:
required: falseA filter that returns only associations with the specified destination Amazon Resource Name (ARN).
source_type(impl Into<String>)
/set_source_type(Option<String>)
:
required: falseA filter that returns only associations with the specified source type.
destination_type(impl Into<String>)
/set_destination_type(Option<String>)
:
required: falseA filter that returns only associations with the specified destination type.
association_type(AssociationEdgeType)
/set_association_type(Option<AssociationEdgeType>)
:
required: falseA filter that returns only associations of the specified type.
created_after(DateTime)
/set_created_after(Option<DateTime>)
:
required: falseA filter that returns only associations created on or after the specified time.
created_before(DateTime)
/set_created_before(Option<DateTime>)
:
required: falseA filter that returns only associations created on or before the specified time.
sort_by(SortAssociationsBy)
/set_sort_by(Option<SortAssociationsBy>)
:
required: falseThe property used to sort results. The default value is
CreationTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order. The default value is
Descending
.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the previous call to
ListAssociations
didn’t return the full set of associations, the call returns a token for getting the next set of associations.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of associations to return in the response. The default value is 10.
- On success, responds with
ListAssociationsOutput
with field(s):association_summaries(Option<Vec::<AssociationSummary>>)
:A list of associations and their properties.
next_token(Option<String>)
:A token for getting the next set of associations, if there are any.
- On failure, responds with
SdkError<ListAssociationsError>
Source§impl Client
impl Client
Sourcepub fn list_auto_ml_jobs(&self) -> ListAutoMLJobsFluentBuilder
pub fn list_auto_ml_jobs(&self) -> ListAutoMLJobsFluentBuilder
Constructs a fluent builder for the ListAutoMLJobs
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseRequest a list of jobs, using a filter for time.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseRequest a list of jobs, using a filter for time.
last_modified_time_after(DateTime)
/set_last_modified_time_after(Option<DateTime>)
:
required: falseRequest a list of jobs, using a filter for time.
last_modified_time_before(DateTime)
/set_last_modified_time_before(Option<DateTime>)
:
required: falseRequest a list of jobs, using a filter for time.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseRequest a list of jobs, using a search filter for name.
status_equals(AutoMlJobStatus)
/set_status_equals(Option<AutoMlJobStatus>)
:
required: falseRequest a list of jobs, using a filter for status.
sort_order(AutoMlSortOrder)
/set_sort_order(Option<AutoMlSortOrder>)
:
required: falseThe sort order for the results. The default is
Descending
.sort_by(AutoMlSortBy)
/set_sort_by(Option<AutoMlSortBy>)
:
required: falseThe parameter by which to sort the results. The default is
Name
.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseRequest a list of jobs up to a specified limit.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the previous response was truncated, you receive this token. Use it in your next request to receive the next set of results.
- On success, responds with
ListAutoMlJobsOutput
with field(s):auto_ml_job_summaries(Option<Vec::<AutoMlJobSummary>>)
:Returns a summary list of jobs.
next_token(Option<String>)
:If the previous response was truncated, you receive this token. Use it in your next request to receive the next set of results.
- On failure, responds with
SdkError<ListAutoMLJobsError>
Source§impl Client
impl Client
Sourcepub fn list_candidates_for_auto_ml_job(
&self,
) -> ListCandidatesForAutoMLJobFluentBuilder
pub fn list_candidates_for_auto_ml_job( &self, ) -> ListCandidatesForAutoMLJobFluentBuilder
Constructs a fluent builder for the ListCandidatesForAutoMLJob
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
auto_ml_job_name(impl Into<String>)
/set_auto_ml_job_name(Option<String>)
:
required: trueList the candidates created for the job by providing the job’s name.
status_equals(CandidateStatus)
/set_status_equals(Option<CandidateStatus>)
:
required: falseList the candidates for the job and filter by status.
candidate_name_equals(impl Into<String>)
/set_candidate_name_equals(Option<String>)
:
required: falseList the candidates for the job and filter by candidate name.
sort_order(AutoMlSortOrder)
/set_sort_order(Option<AutoMlSortOrder>)
:
required: falseThe sort order for the results. The default is
Ascending
.sort_by(CandidateSortBy)
/set_sort_by(Option<CandidateSortBy>)
:
required: falseThe parameter by which to sort the results. The default is
Descending
.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseList the job’s candidates up to a specified limit.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the previous response was truncated, you receive this token. Use it in your next request to receive the next set of results.
- On success, responds with
ListCandidatesForAutoMlJobOutput
with field(s):candidates(Option<Vec::<AutoMlCandidate>>)
:Summaries about the
AutoMLCandidates
.next_token(Option<String>)
:If the previous response was truncated, you receive this token. Use it in your next request to receive the next set of results.
- On failure, responds with
SdkError<ListCandidatesForAutoMLJobError>
Source§impl Client
impl Client
Sourcepub fn list_cluster_nodes(&self) -> ListClusterNodesFluentBuilder
pub fn list_cluster_nodes(&self) -> ListClusterNodesFluentBuilder
Constructs a fluent builder for the ListClusterNodes
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
cluster_name(impl Into<String>)
/set_cluster_name(Option<String>)
:
required: trueThe string name or the Amazon Resource Name (ARN) of the SageMaker HyperPod cluster in which you want to retrieve the list of nodes.
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns nodes in a SageMaker HyperPod cluster created after the specified time. Timestamps are formatted according to the ISO 8601 standard.
Acceptable formats include:
-
YYYY-MM-DDThh:mm:ss.sssTZD
(UTC), for example,2014-10-01T20:30:00.000Z
-
YYYY-MM-DDThh:mm:ss.sssTZD
(with offset), for example,2014-10-01T12:30:00.000-08:00
-
YYYY-MM-DD
, for example,2014-10-01
-
Unix time in seconds, for example,
1412195400
. This is also referred to as Unix Epoch time and represents the number of seconds since midnight, January 1, 1970 UTC.
For more information about the timestamp format, see Timestamp in the Amazon Web Services Command Line Interface User Guide.
-
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns nodes in a SageMaker HyperPod cluster created before the specified time. The acceptable formats are the same as the timestamp formats for
CreationTimeAfter
. For more information about the timestamp format, see Timestamp in the Amazon Web Services Command Line Interface User Guide.instance_group_name_contains(impl Into<String>)
/set_instance_group_name_contains(Option<String>)
:
required: falseA filter that returns the instance groups whose name contain a specified string.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of nodes to return in the response.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the result of the previous
ListClusterNodes
request was truncated, the response includes aNextToken
. To retrieve the next set of cluster nodes, use the token in the next request.sort_by(ClusterSortBy)
/set_sort_by(Option<ClusterSortBy>)
:
required: falseThe field by which to sort results. The default value is
CREATION_TIME
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order for results. The default value is
Ascending
.
- On success, responds with
ListClusterNodesOutput
with field(s):next_token(Option<String>)
:The next token specified for listing instances in a SageMaker HyperPod cluster.
cluster_node_summaries(Option<Vec::<ClusterNodeSummary>>)
:The summaries of listed instances in a SageMaker HyperPod cluster
- On failure, responds with
SdkError<ListClusterNodesError>
Source§impl Client
impl Client
Sourcepub fn list_cluster_scheduler_configs(
&self,
) -> ListClusterSchedulerConfigsFluentBuilder
pub fn list_cluster_scheduler_configs( &self, ) -> ListClusterSchedulerConfigsFluentBuilder
Constructs a fluent builder for the ListClusterSchedulerConfigs
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
created_after(DateTime)
/set_created_after(Option<DateTime>)
:
required: falseFilter for after this creation time. The input for this parameter is a Unix timestamp. To convert a date and time into a Unix timestamp, see EpochConverter.
created_before(DateTime)
/set_created_before(Option<DateTime>)
:
required: falseFilter for before this creation time. The input for this parameter is a Unix timestamp. To convert a date and time into a Unix timestamp, see EpochConverter.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseFilter for name containing this string.
cluster_arn(impl Into<String>)
/set_cluster_arn(Option<String>)
:
required: falseFilter for ARN of the cluster.
status(SchedulerResourceStatus)
/set_status(Option<SchedulerResourceStatus>)
:
required: falseFilter for status.
sort_by(SortClusterSchedulerConfigBy)
/set_sort_by(Option<SortClusterSchedulerConfigBy>)
:
required: falseFilter for sorting the list by a given value. For example, sort by name, creation time, or status.
sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe order of the list. By default, listed in
Descending
order according to bySortBy
. To change the list order, you can specifySortOrder
to beAscending
.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of cluster policies to list.
- On success, responds with
ListClusterSchedulerConfigsOutput
with field(s):cluster_scheduler_config_summaries(Option<Vec::<ClusterSchedulerConfigSummary>>)
:Summaries of the cluster policies.
next_token(Option<String>)
:If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
- On failure, responds with
SdkError<ListClusterSchedulerConfigsError>
Source§impl Client
impl Client
Sourcepub fn list_clusters(&self) -> ListClustersFluentBuilder
pub fn list_clusters(&self) -> ListClustersFluentBuilder
Constructs a fluent builder for the ListClusters
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseSet a start time for the time range during which you want to list SageMaker HyperPod clusters. Timestamps are formatted according to the ISO 8601 standard.
Acceptable formats include:
-
YYYY-MM-DDThh:mm:ss.sssTZD
(UTC), for example,2014-10-01T20:30:00.000Z
-
YYYY-MM-DDThh:mm:ss.sssTZD
(with offset), for example,2014-10-01T12:30:00.000-08:00
-
YYYY-MM-DD
, for example,2014-10-01
-
Unix time in seconds, for example,
1412195400
. This is also referred to as Unix Epoch time and represents the number of seconds since midnight, January 1, 1970 UTC.
For more information about the timestamp format, see Timestamp in the Amazon Web Services Command Line Interface User Guide.
-
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseSet an end time for the time range during which you want to list SageMaker HyperPod clusters. A filter that returns nodes in a SageMaker HyperPod cluster created before the specified time. The acceptable formats are the same as the timestamp formats for
CreationTimeAfter
. For more information about the timestamp format, see Timestamp in the Amazon Web Services Command Line Interface User Guide.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseSet the maximum number of SageMaker HyperPod clusters to list.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseSet the maximum number of instances to print in the list.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseSet the next token to retrieve the list of SageMaker HyperPod clusters.
sort_by(ClusterSortBy)
/set_sort_by(Option<ClusterSortBy>)
:
required: falseThe field by which to sort results. The default value is
CREATION_TIME
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order for results. The default value is
Ascending
.training_plan_arn(impl Into<String>)
/set_training_plan_arn(Option<String>)
:
required: falseThe Amazon Resource Name (ARN); of the training plan to filter clusters by. For more information about reserving GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see
CreateTrainingPlan
.
- On success, responds with
ListClustersOutput
with field(s):next_token(Option<String>)
:If the result of the previous
ListClusters
request was truncated, the response includes aNextToken
. To retrieve the next set of clusters, use the token in the next request.cluster_summaries(Option<Vec::<ClusterSummary>>)
:The summaries of listed SageMaker HyperPod clusters.
- On failure, responds with
SdkError<ListClustersError>
Source§impl Client
impl Client
Sourcepub fn list_code_repositories(&self) -> ListCodeRepositoriesFluentBuilder
pub fn list_code_repositories(&self) -> ListCodeRepositoriesFluentBuilder
Constructs a fluent builder for the ListCodeRepositories
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only Git repositories that were created after the specified time.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only Git repositories that were created before the specified time.
last_modified_time_after(DateTime)
/set_last_modified_time_after(Option<DateTime>)
:
required: falseA filter that returns only Git repositories that were last modified after the specified time.
last_modified_time_before(DateTime)
/set_last_modified_time_before(Option<DateTime>)
:
required: falseA filter that returns only Git repositories that were last modified before the specified time.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of Git repositories to return in the response.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA string in the Git repositories name. This filter returns only repositories whose name contains the specified string.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the result of a
ListCodeRepositoriesOutput
request was truncated, the response includes aNextToken
. To get the next set of Git repositories, use the token in the next request.sort_by(CodeRepositorySortBy)
/set_sort_by(Option<CodeRepositorySortBy>)
:
required: falseThe field to sort results by. The default is
Name
.sort_order(CodeRepositorySortOrder)
/set_sort_order(Option<CodeRepositorySortOrder>)
:
required: falseThe sort order for results. The default is
Ascending
.
- On success, responds with
ListCodeRepositoriesOutput
with field(s):code_repository_summary_list(Option<Vec::<CodeRepositorySummary>>)
:Gets a list of summaries of the Git repositories. Each summary specifies the following values for the repository:
-
Name
-
Amazon Resource Name (ARN)
-
Creation time
-
Last modified time
-
Configuration information, including the URL location of the repository and the ARN of the Amazon Web Services Secrets Manager secret that contains the credentials used to access the repository.
-
next_token(Option<String>)
:If the result of a
ListCodeRepositoriesOutput
request was truncated, the response includes aNextToken
. To get the next set of Git repositories, use the token in the next request.
- On failure, responds with
SdkError<ListCodeRepositoriesError>
Source§impl Client
impl Client
Sourcepub fn list_compilation_jobs(&self) -> ListCompilationJobsFluentBuilder
pub fn list_compilation_jobs(&self) -> ListCompilationJobsFluentBuilder
Constructs a fluent builder for the ListCompilationJobs
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the result of the previous
ListCompilationJobs
request was truncated, the response includes aNextToken
. To retrieve the next set of model compilation jobs, use the token in the next request.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of model compilation jobs to return in the response.
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns the model compilation jobs that were created after a specified time.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns the model compilation jobs that were created before a specified time.
last_modified_time_after(DateTime)
/set_last_modified_time_after(Option<DateTime>)
:
required: falseA filter that returns the model compilation jobs that were modified after a specified time.
last_modified_time_before(DateTime)
/set_last_modified_time_before(Option<DateTime>)
:
required: falseA filter that returns the model compilation jobs that were modified before a specified time.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA filter that returns the model compilation jobs whose name contains a specified string.
status_equals(CompilationJobStatus)
/set_status_equals(Option<CompilationJobStatus>)
:
required: falseA filter that retrieves model compilation jobs with a specific
CompilationJobStatus
status.sort_by(ListCompilationJobsSortBy)
/set_sort_by(Option<ListCompilationJobsSortBy>)
:
required: falseThe field by which to sort results. The default is
CreationTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order for results. The default is
Ascending
.
- On success, responds with
ListCompilationJobsOutput
with field(s):compilation_job_summaries(Option<Vec::<CompilationJobSummary>>)
:An array of CompilationJobSummary objects, each describing a model compilation job.
next_token(Option<String>)
:If the response is truncated, Amazon SageMaker AI returns this
NextToken
. To retrieve the next set of model compilation jobs, use this token in the next request.
- On failure, responds with
SdkError<ListCompilationJobsError>
Source§impl Client
impl Client
Sourcepub fn list_compute_quotas(&self) -> ListComputeQuotasFluentBuilder
pub fn list_compute_quotas(&self) -> ListComputeQuotasFluentBuilder
Constructs a fluent builder for the ListComputeQuotas
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
created_after(DateTime)
/set_created_after(Option<DateTime>)
:
required: falseFilter for after this creation time. The input for this parameter is a Unix timestamp. To convert a date and time into a Unix timestamp, see EpochConverter.
created_before(DateTime)
/set_created_before(Option<DateTime>)
:
required: falseFilter for before this creation time. The input for this parameter is a Unix timestamp. To convert a date and time into a Unix timestamp, see EpochConverter.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseFilter for name containing this string.
status(SchedulerResourceStatus)
/set_status(Option<SchedulerResourceStatus>)
:
required: falseFilter for status.
cluster_arn(impl Into<String>)
/set_cluster_arn(Option<String>)
:
required: falseFilter for ARN of the cluster.
sort_by(SortQuotaBy)
/set_sort_by(Option<SortQuotaBy>)
:
required: falseFilter for sorting the list by a given value. For example, sort by name, creation time, or status.
sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe order of the list. By default, listed in
Descending
order according to bySortBy
. To change the list order, you can specifySortOrder
to beAscending
.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of compute allocation definitions to list.
- On success, responds with
ListComputeQuotasOutput
with field(s):compute_quota_summaries(Option<Vec::<ComputeQuotaSummary>>)
:Summaries of the compute allocation definitions.
next_token(Option<String>)
:If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
- On failure, responds with
SdkError<ListComputeQuotasError>
Source§impl Client
impl Client
Sourcepub fn list_contexts(&self) -> ListContextsFluentBuilder
pub fn list_contexts(&self) -> ListContextsFluentBuilder
Constructs a fluent builder for the ListContexts
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
source_uri(impl Into<String>)
/set_source_uri(Option<String>)
:
required: falseA filter that returns only contexts with the specified source URI.
context_type(impl Into<String>)
/set_context_type(Option<String>)
:
required: falseA filter that returns only contexts of the specified type.
created_after(DateTime)
/set_created_after(Option<DateTime>)
:
required: falseA filter that returns only contexts created on or after the specified time.
created_before(DateTime)
/set_created_before(Option<DateTime>)
:
required: falseA filter that returns only contexts created on or before the specified time.
sort_by(SortContextsBy)
/set_sort_by(Option<SortContextsBy>)
:
required: falseThe property used to sort results. The default value is
CreationTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order. The default value is
Descending
.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the previous call to
ListContexts
didn’t return the full set of contexts, the call returns a token for getting the next set of contexts.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of contexts to return in the response. The default value is 10.
- On success, responds with
ListContextsOutput
with field(s):context_summaries(Option<Vec::<ContextSummary>>)
:A list of contexts and their properties.
next_token(Option<String>)
:A token for getting the next set of contexts, if there are any.
- On failure, responds with
SdkError<ListContextsError>
Source§impl Client
impl Client
Sourcepub fn list_data_quality_job_definitions(
&self,
) -> ListDataQualityJobDefinitionsFluentBuilder
pub fn list_data_quality_job_definitions( &self, ) -> ListDataQualityJobDefinitionsFluentBuilder
Constructs a fluent builder for the ListDataQualityJobDefinitions
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
endpoint_name(impl Into<String>)
/set_endpoint_name(Option<String>)
:
required: falseA filter that lists the data quality job definitions associated with the specified endpoint.
sort_by(MonitoringJobDefinitionSortKey)
/set_sort_by(Option<MonitoringJobDefinitionSortKey>)
:
required: falseThe field to sort results by. The default is
CreationTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseWhether to sort the results in
Ascending
orDescending
order. The default isDescending
.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the result of the previous
ListDataQualityJobDefinitions
request was truncated, the response includes aNextToken
. To retrieve the next set of transform jobs, use the token in the next request.>max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of data quality monitoring job definitions to return in the response.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA string in the data quality monitoring job definition name. This filter returns only data quality monitoring job definitions whose name contains the specified string.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only data quality monitoring job definitions created before the specified time.
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only data quality monitoring job definitions created after the specified time.
- On success, responds with
ListDataQualityJobDefinitionsOutput
with field(s):job_definition_summaries(Option<Vec::<MonitoringJobDefinitionSummary>>)
:A list of data quality monitoring job definitions.
next_token(Option<String>)
:If the result of the previous
ListDataQualityJobDefinitions
request was truncated, the response includes aNextToken
. To retrieve the next set of data quality monitoring job definitions, use the token in the next request.
- On failure, responds with
SdkError<ListDataQualityJobDefinitionsError>
Source§impl Client
impl Client
Sourcepub fn list_device_fleets(&self) -> ListDeviceFleetsFluentBuilder
pub fn list_device_fleets(&self) -> ListDeviceFleetsFluentBuilder
Constructs a fluent builder for the ListDeviceFleets
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseThe response from the last list when returning a list large enough to need tokening.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of results to select.
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseFilter fleets where packaging job was created after specified time.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseFilter fleets where the edge packaging job was created before specified time.
last_modified_time_after(DateTime)
/set_last_modified_time_after(Option<DateTime>)
:
required: falseSelect fleets where the job was updated after X
last_modified_time_before(DateTime)
/set_last_modified_time_before(Option<DateTime>)
:
required: falseSelect fleets where the job was updated before X
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseFilter for fleets containing this name in their fleet device name.
sort_by(ListDeviceFleetsSortBy)
/set_sort_by(Option<ListDeviceFleetsSortBy>)
:
required: falseThe column to sort by.
sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseWhat direction to sort in.
- On success, responds with
ListDeviceFleetsOutput
with field(s):device_fleet_summaries(Option<Vec::<DeviceFleetSummary>>)
:Summary of the device fleet.
next_token(Option<String>)
:The response from the last list when returning a list large enough to need tokening.
- On failure, responds with
SdkError<ListDeviceFleetsError>
Source§impl Client
impl Client
Sourcepub fn list_devices(&self) -> ListDevicesFluentBuilder
pub fn list_devices(&self) -> ListDevicesFluentBuilder
Constructs a fluent builder for the ListDevices
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseThe response from the last list when returning a list large enough to need tokening.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseMaximum number of results to select.
latest_heartbeat_after(DateTime)
/set_latest_heartbeat_after(Option<DateTime>)
:
required: falseSelect fleets where the job was updated after X
model_name(impl Into<String>)
/set_model_name(Option<String>)
:
required: falseA filter that searches devices that contains this name in any of their models.
device_fleet_name(impl Into<String>)
/set_device_fleet_name(Option<String>)
:
required: falseFilter for fleets containing this name in their device fleet name.
- On success, responds with
ListDevicesOutput
with field(s):device_summaries(Option<Vec::<DeviceSummary>>)
:Summary of devices.
next_token(Option<String>)
:The response from the last list when returning a list large enough to need tokening.
- On failure, responds with
SdkError<ListDevicesError>
Source§impl Client
impl Client
Sourcepub fn list_domains(&self) -> ListDomainsFluentBuilder
pub fn list_domains(&self) -> ListDomainsFluentBuilder
Constructs a fluent builder for the ListDomains
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThis parameter defines the maximum number of results that can be return in a single response. The
MaxResults
parameter is an upper bound, not a target. If there are more results available than the value specified, aNextToken
is provided in the response. TheNextToken
indicates that the user should get the next set of results by providing this token as a part of a subsequent call. The default value forMaxResults
is 10.
- On success, responds with
ListDomainsOutput
with field(s):domains(Option<Vec::<DomainDetails>>)
:The list of domains.
next_token(Option<String>)
:If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
- On failure, responds with
SdkError<ListDomainsError>
Source§impl Client
impl Client
Sourcepub fn list_edge_deployment_plans(&self) -> ListEdgeDeploymentPlansFluentBuilder
pub fn list_edge_deployment_plans(&self) -> ListEdgeDeploymentPlansFluentBuilder
Constructs a fluent builder for the ListEdgeDeploymentPlans
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseThe response from the last list when returning a list large enough to need tokening.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of results to select (50 by default).
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseSelects edge deployment plans created after this time.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseSelects edge deployment plans created before this time.
last_modified_time_after(DateTime)
/set_last_modified_time_after(Option<DateTime>)
:
required: falseSelects edge deployment plans that were last updated after this time.
last_modified_time_before(DateTime)
/set_last_modified_time_before(Option<DateTime>)
:
required: falseSelects edge deployment plans that were last updated before this time.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseSelects edge deployment plans with names containing this name.
device_fleet_name_contains(impl Into<String>)
/set_device_fleet_name_contains(Option<String>)
:
required: falseSelects edge deployment plans with a device fleet name containing this name.
sort_by(ListEdgeDeploymentPlansSortBy)
/set_sort_by(Option<ListEdgeDeploymentPlansSortBy>)
:
required: falseThe column by which to sort the edge deployment plans. Can be one of
NAME
,DEVICEFLEETNAME
,CREATIONTIME
,LASTMODIFIEDTIME
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe direction of the sorting (ascending or descending).
- On success, responds with
ListEdgeDeploymentPlansOutput
with field(s):edge_deployment_plan_summaries(Option<Vec::<EdgeDeploymentPlanSummary>>)
:List of summaries of edge deployment plans.
next_token(Option<String>)
:The token to use when calling the next page of results.
- On failure, responds with
SdkError<ListEdgeDeploymentPlansError>
Source§impl Client
impl Client
Sourcepub fn list_edge_packaging_jobs(&self) -> ListEdgePackagingJobsFluentBuilder
pub fn list_edge_packaging_jobs(&self) -> ListEdgePackagingJobsFluentBuilder
Constructs a fluent builder for the ListEdgePackagingJobs
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseThe response from the last list when returning a list large enough to need tokening.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseMaximum number of results to select.
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseSelect jobs where the job was created after specified time.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseSelect jobs where the job was created before specified time.
last_modified_time_after(DateTime)
/set_last_modified_time_after(Option<DateTime>)
:
required: falseSelect jobs where the job was updated after specified time.
last_modified_time_before(DateTime)
/set_last_modified_time_before(Option<DateTime>)
:
required: falseSelect jobs where the job was updated before specified time.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseFilter for jobs containing this name in their packaging job name.
model_name_contains(impl Into<String>)
/set_model_name_contains(Option<String>)
:
required: falseFilter for jobs where the model name contains this string.
status_equals(EdgePackagingJobStatus)
/set_status_equals(Option<EdgePackagingJobStatus>)
:
required: falseThe job status to filter for.
sort_by(ListEdgePackagingJobsSortBy)
/set_sort_by(Option<ListEdgePackagingJobsSortBy>)
:
required: falseUse to specify what column to sort by.
sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseWhat direction to sort by.
- On success, responds with
ListEdgePackagingJobsOutput
with field(s):edge_packaging_job_summaries(Option<Vec::<EdgePackagingJobSummary>>)
:Summaries of edge packaging jobs.
next_token(Option<String>)
:Token to use when calling the next page of results.
- On failure, responds with
SdkError<ListEdgePackagingJobsError>
Source§impl Client
impl Client
Sourcepub fn list_endpoint_configs(&self) -> ListEndpointConfigsFluentBuilder
pub fn list_endpoint_configs(&self) -> ListEndpointConfigsFluentBuilder
Constructs a fluent builder for the ListEndpointConfigs
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
sort_by(EndpointConfigSortKey)
/set_sort_by(Option<EndpointConfigSortKey>)
:
required: falseThe field to sort results by. The default is
CreationTime
.sort_order(OrderKey)
/set_sort_order(Option<OrderKey>)
:
required: falseThe sort order for results. The default is
Descending
.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the result of the previous
ListEndpointConfig
request was truncated, the response includes aNextToken
. To retrieve the next set of endpoint configurations, use the token in the next request.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of training jobs to return in the response.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA string in the endpoint configuration name. This filter returns only endpoint configurations whose name contains the specified string.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only endpoint configurations created before the specified time (timestamp).
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only endpoint configurations with a creation time greater than or equal to the specified time (timestamp).
- On success, responds with
ListEndpointConfigsOutput
with field(s):endpoint_configs(Option<Vec::<EndpointConfigSummary>>)
:An array of endpoint configurations.
next_token(Option<String>)
:If the response is truncated, SageMaker returns this token. To retrieve the next set of endpoint configurations, use it in the subsequent request
- On failure, responds with
SdkError<ListEndpointConfigsError>
Source§impl Client
impl Client
Sourcepub fn list_endpoints(&self) -> ListEndpointsFluentBuilder
pub fn list_endpoints(&self) -> ListEndpointsFluentBuilder
Constructs a fluent builder for the ListEndpoints
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
sort_by(EndpointSortKey)
/set_sort_by(Option<EndpointSortKey>)
:
required: falseSorts the list of results. The default is
CreationTime
.sort_order(OrderKey)
/set_sort_order(Option<OrderKey>)
:
required: falseThe sort order for results. The default is
Descending
.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the result of a
ListEndpoints
request was truncated, the response includes aNextToken
. To retrieve the next set of endpoints, use the token in the next request.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of endpoints to return in the response. This value defaults to 10.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA string in endpoint names. This filter returns only endpoints whose name contains the specified string.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only endpoints that were created before the specified time (timestamp).
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only endpoints with a creation time greater than or equal to the specified time (timestamp).
last_modified_time_before(DateTime)
/set_last_modified_time_before(Option<DateTime>)
:
required: falseA filter that returns only endpoints that were modified before the specified timestamp.
last_modified_time_after(DateTime)
/set_last_modified_time_after(Option<DateTime>)
:
required: falseA filter that returns only endpoints that were modified after the specified timestamp.
status_equals(EndpointStatus)
/set_status_equals(Option<EndpointStatus>)
:
required: falseA filter that returns only endpoints with the specified status.
- On success, responds with
ListEndpointsOutput
with field(s):endpoints(Option<Vec::<EndpointSummary>>)
:An array or endpoint objects.
next_token(Option<String>)
:If the response is truncated, SageMaker returns this token. To retrieve the next set of training jobs, use it in the subsequent request.
- On failure, responds with
SdkError<ListEndpointsError>
Source§impl Client
impl Client
Sourcepub fn list_experiments(&self) -> ListExperimentsFluentBuilder
pub fn list_experiments(&self) -> ListExperimentsFluentBuilder
Constructs a fluent builder for the ListExperiments
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
created_after(DateTime)
/set_created_after(Option<DateTime>)
:
required: falseA filter that returns only experiments created after the specified time.
created_before(DateTime)
/set_created_before(Option<DateTime>)
:
required: falseA filter that returns only experiments created before the specified time.
sort_by(SortExperimentsBy)
/set_sort_by(Option<SortExperimentsBy>)
:
required: falseThe property used to sort results. The default value is
CreationTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order. The default value is
Descending
.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the previous call to
ListExperiments
didn’t return the full set of experiments, the call returns a token for getting the next set of experiments.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of experiments to return in the response. The default value is 10.
- On success, responds with
ListExperimentsOutput
with field(s):experiment_summaries(Option<Vec::<ExperimentSummary>>)
:A list of the summaries of your experiments.
next_token(Option<String>)
:A token for getting the next set of experiments, if there are any.
- On failure, responds with
SdkError<ListExperimentsError>
Source§impl Client
impl Client
Sourcepub fn list_feature_groups(&self) -> ListFeatureGroupsFluentBuilder
pub fn list_feature_groups(&self) -> ListFeatureGroupsFluentBuilder
Constructs a fluent builder for the ListFeatureGroups
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA string that partially matches one or more
FeatureGroup
s names. FiltersFeatureGroup
s by name.feature_group_status_equals(FeatureGroupStatus)
/set_feature_group_status_equals(Option<FeatureGroupStatus>)
:
required: falseA
FeatureGroup
status. Filters byFeatureGroup
status.offline_store_status_equals(OfflineStoreStatusValue)
/set_offline_store_status_equals(Option<OfflineStoreStatusValue>)
:
required: falseAn
OfflineStore
status. Filters byOfflineStore
status.creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseUse this parameter to search for
FeatureGroups
s created after a specific date and time.creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseUse this parameter to search for
FeatureGroups
s created before a specific date and time.sort_order(FeatureGroupSortOrder)
/set_sort_order(Option<FeatureGroupSortOrder>)
:
required: falseThe order in which feature groups are listed.
sort_by(FeatureGroupSortBy)
/set_sort_by(Option<FeatureGroupSortBy>)
:
required: falseThe value on which the feature group list is sorted.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of results returned by
ListFeatureGroups
.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseA token to resume pagination of
ListFeatureGroups
results.
- On success, responds with
ListFeatureGroupsOutput
with field(s):feature_group_summaries(Option<Vec::<FeatureGroupSummary>>)
:A summary of feature groups.
next_token(Option<String>)
:A token to resume pagination of
ListFeatureGroups
results.
- On failure, responds with
SdkError<ListFeatureGroupsError>
Source§impl Client
impl Client
Sourcepub fn list_flow_definitions(&self) -> ListFlowDefinitionsFluentBuilder
pub fn list_flow_definitions(&self) -> ListFlowDefinitionsFluentBuilder
Constructs a fluent builder for the ListFlowDefinitions
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only flow definitions with a creation time greater than or equal to the specified timestamp.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only flow definitions that were created before the specified timestamp.
sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseAn optional value that specifies whether you want the results sorted in
Ascending
orDescending
order.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseA token to resume pagination.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe total number of items to return. If the total number of available items is more than the value specified in
MaxResults
, then aNextToken
will be provided in the output that you can use to resume pagination.
- On success, responds with
ListFlowDefinitionsOutput
with field(s):flow_definition_summaries(Option<Vec::<FlowDefinitionSummary>>)
:An array of objects describing the flow definitions.
next_token(Option<String>)
:A token to resume pagination.
- On failure, responds with
SdkError<ListFlowDefinitionsError>
Source§impl Client
impl Client
Sourcepub fn list_hub_content_versions(&self) -> ListHubContentVersionsFluentBuilder
pub fn list_hub_content_versions(&self) -> ListHubContentVersionsFluentBuilder
Constructs a fluent builder for the ListHubContentVersions
operation.
- The fluent builder is configurable:
hub_name(impl Into<String>)
/set_hub_name(Option<String>)
:
required: trueThe name of the hub to list the content versions of.
hub_content_type(HubContentType)
/set_hub_content_type(Option<HubContentType>)
:
required: trueThe type of hub content to list versions of.
hub_content_name(impl Into<String>)
/set_hub_content_name(Option<String>)
:
required: trueThe name of the hub content.
min_version(impl Into<String>)
/set_min_version(Option<String>)
:
required: falseThe lower bound of the hub content versions to list.
max_schema_version(impl Into<String>)
/set_max_schema_version(Option<String>)
:
required: falseThe upper bound of the hub content schema version.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseOnly list hub content versions that were created before the time specified.
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseOnly list hub content versions that were created after the time specified.
sort_by(HubContentSortBy)
/set_sort_by(Option<HubContentSortBy>)
:
required: falseSort hub content versions by either name or creation time.
sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseSort hub content versions by ascending or descending order.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of hub content versions to list.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the response to a previous
ListHubContentVersions
request was truncated, the response includes aNextToken
. To retrieve the next set of hub content versions, use the token in the next request.
- On success, responds with
ListHubContentVersionsOutput
with field(s):hub_content_summaries(Option<Vec::<HubContentInfo>>)
:The summaries of the listed hub content versions.
next_token(Option<String>)
:If the response is truncated, SageMaker returns this token. To retrieve the next set of hub content versions, use it in the subsequent request.
- On failure, responds with
SdkError<ListHubContentVersionsError>
Source§impl Client
impl Client
Sourcepub fn list_hub_contents(&self) -> ListHubContentsFluentBuilder
pub fn list_hub_contents(&self) -> ListHubContentsFluentBuilder
Constructs a fluent builder for the ListHubContents
operation.
- The fluent builder is configurable:
hub_name(impl Into<String>)
/set_hub_name(Option<String>)
:
required: trueThe name of the hub to list the contents of.
hub_content_type(HubContentType)
/set_hub_content_type(Option<HubContentType>)
:
required: trueThe type of hub content to list.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseOnly list hub content if the name contains the specified string.
max_schema_version(impl Into<String>)
/set_max_schema_version(Option<String>)
:
required: falseThe upper bound of the hub content schema verion.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseOnly list hub content that was created before the time specified.
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseOnly list hub content that was created after the time specified.
sort_by(HubContentSortBy)
/set_sort_by(Option<HubContentSortBy>)
:
required: falseSort hub content versions by either name or creation time.
sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseSort hubs by ascending or descending order.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum amount of hub content to list.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the response to a previous
ListHubContents
request was truncated, the response includes aNextToken
. To retrieve the next set of hub content, use the token in the next request.
- On success, responds with
ListHubContentsOutput
with field(s):hub_content_summaries(Option<Vec::<HubContentInfo>>)
:The summaries of the listed hub content.
next_token(Option<String>)
:If the response is truncated, SageMaker returns this token. To retrieve the next set of hub content, use it in the subsequent request.
- On failure, responds with
SdkError<ListHubContentsError>
Source§impl Client
impl Client
Sourcepub fn list_hubs(&self) -> ListHubsFluentBuilder
pub fn list_hubs(&self) -> ListHubsFluentBuilder
Constructs a fluent builder for the ListHubs
operation.
- The fluent builder is configurable:
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseOnly list hubs with names that contain the specified string.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseOnly list hubs that were created before the time specified.
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseOnly list hubs that were created after the time specified.
last_modified_time_before(DateTime)
/set_last_modified_time_before(Option<DateTime>)
:
required: falseOnly list hubs that were last modified before the time specified.
last_modified_time_after(DateTime)
/set_last_modified_time_after(Option<DateTime>)
:
required: falseOnly list hubs that were last modified after the time specified.
sort_by(HubSortBy)
/set_sort_by(Option<HubSortBy>)
:
required: falseSort hubs by either name or creation time.
sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseSort hubs by ascending or descending order.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of hubs to list.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the response to a previous
ListHubs
request was truncated, the response includes aNextToken
. To retrieve the next set of hubs, use the token in the next request.
- On success, responds with
ListHubsOutput
with field(s):hub_summaries(Option<Vec::<HubInfo>>)
:The summaries of the listed hubs.
next_token(Option<String>)
:If the response is truncated, SageMaker returns this token. To retrieve the next set of hubs, use it in the subsequent request.
- On failure, responds with
SdkError<ListHubsError>
Source§impl Client
impl Client
Sourcepub fn list_human_task_uis(&self) -> ListHumanTaskUisFluentBuilder
pub fn list_human_task_uis(&self) -> ListHumanTaskUisFluentBuilder
Constructs a fluent builder for the ListHumanTaskUis
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only human task user interfaces with a creation time greater than or equal to the specified timestamp.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only human task user interfaces that were created before the specified timestamp.
sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseAn optional value that specifies whether you want the results sorted in
Ascending
orDescending
order.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseA token to resume pagination.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe total number of items to return. If the total number of available items is more than the value specified in
MaxResults
, then aNextToken
will be provided in the output that you can use to resume pagination.
- On success, responds with
ListHumanTaskUisOutput
with field(s):human_task_ui_summaries(Option<Vec::<HumanTaskUiSummary>>)
:An array of objects describing the human task user interfaces.
next_token(Option<String>)
:A token to resume pagination.
- On failure, responds with
SdkError<ListHumanTaskUisError>
Source§impl Client
impl Client
Sourcepub fn list_hyper_parameter_tuning_jobs(
&self,
) -> ListHyperParameterTuningJobsFluentBuilder
pub fn list_hyper_parameter_tuning_jobs( &self, ) -> ListHyperParameterTuningJobsFluentBuilder
Constructs a fluent builder for the ListHyperParameterTuningJobs
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the result of the previous
ListHyperParameterTuningJobs
request was truncated, the response includes aNextToken
. To retrieve the next set of tuning jobs, use the token in the next request.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of tuning jobs to return. The default value is 10.
sort_by(HyperParameterTuningJobSortByOptions)
/set_sort_by(Option<HyperParameterTuningJobSortByOptions>)
:
required: falseThe field to sort results by. The default is
Name
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order for results. The default is
Ascending
.name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA string in the tuning job name. This filter returns only tuning jobs whose name contains the specified string.
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only tuning jobs that were created after the specified time.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only tuning jobs that were created before the specified time.
last_modified_time_after(DateTime)
/set_last_modified_time_after(Option<DateTime>)
:
required: falseA filter that returns only tuning jobs that were modified after the specified time.
last_modified_time_before(DateTime)
/set_last_modified_time_before(Option<DateTime>)
:
required: falseA filter that returns only tuning jobs that were modified before the specified time.
status_equals(HyperParameterTuningJobStatus)
/set_status_equals(Option<HyperParameterTuningJobStatus>)
:
required: falseA filter that returns only tuning jobs with the specified status.
- On success, responds with
ListHyperParameterTuningJobsOutput
with field(s):hyper_parameter_tuning_job_summaries(Option<Vec::<HyperParameterTuningJobSummary>>)
:A list of HyperParameterTuningJobSummary objects that describe the tuning jobs that the
ListHyperParameterTuningJobs
request returned.next_token(Option<String>)
:If the result of this
ListHyperParameterTuningJobs
request was truncated, the response includes aNextToken
. To retrieve the next set of tuning jobs, use the token in the next request.
- On failure, responds with
SdkError<ListHyperParameterTuningJobsError>
Source§impl Client
impl Client
Sourcepub fn list_image_versions(&self) -> ListImageVersionsFluentBuilder
pub fn list_image_versions(&self) -> ListImageVersionsFluentBuilder
Constructs a fluent builder for the ListImageVersions
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only versions created on or after the specified time.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only versions created on or before the specified time.
image_name(impl Into<String>)
/set_image_name(Option<String>)
:
required: trueThe name of the image to list the versions of.
last_modified_time_after(DateTime)
/set_last_modified_time_after(Option<DateTime>)
:
required: falseA filter that returns only versions modified on or after the specified time.
last_modified_time_before(DateTime)
/set_last_modified_time_before(Option<DateTime>)
:
required: falseA filter that returns only versions modified on or before the specified time.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of versions to return in the response. The default value is 10.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the previous call to
ListImageVersions
didn’t return the full set of versions, the call returns a token for getting the next set of versions.sort_by(ImageVersionSortBy)
/set_sort_by(Option<ImageVersionSortBy>)
:
required: falseThe property used to sort results. The default value is
CREATION_TIME
.sort_order(ImageVersionSortOrder)
/set_sort_order(Option<ImageVersionSortOrder>)
:
required: falseThe sort order. The default value is
DESCENDING
.
- On success, responds with
ListImageVersionsOutput
with field(s):image_versions(Option<Vec::<ImageVersion>>)
:A list of versions and their properties.
next_token(Option<String>)
:A token for getting the next set of versions, if there are any.
- On failure, responds with
SdkError<ListImageVersionsError>
Source§impl Client
impl Client
Sourcepub fn list_images(&self) -> ListImagesFluentBuilder
pub fn list_images(&self) -> ListImagesFluentBuilder
Constructs a fluent builder for the ListImages
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only images created on or after the specified time.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only images created on or before the specified time.
last_modified_time_after(DateTime)
/set_last_modified_time_after(Option<DateTime>)
:
required: falseA filter that returns only images modified on or after the specified time.
last_modified_time_before(DateTime)
/set_last_modified_time_before(Option<DateTime>)
:
required: falseA filter that returns only images modified on or before the specified time.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of images to return in the response. The default value is 10.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA filter that returns only images whose name contains the specified string.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the previous call to
ListImages
didn’t return the full set of images, the call returns a token for getting the next set of images.sort_by(ImageSortBy)
/set_sort_by(Option<ImageSortBy>)
:
required: falseThe property used to sort results. The default value is
CREATION_TIME
.sort_order(ImageSortOrder)
/set_sort_order(Option<ImageSortOrder>)
:
required: falseThe sort order. The default value is
DESCENDING
.
- On success, responds with
ListImagesOutput
with field(s):images(Option<Vec::<Image>>)
:A list of images and their properties.
next_token(Option<String>)
:A token for getting the next set of images, if there are any.
- On failure, responds with
SdkError<ListImagesError>
Source§impl Client
impl Client
Sourcepub fn list_inference_components(&self) -> ListInferenceComponentsFluentBuilder
pub fn list_inference_components(&self) -> ListInferenceComponentsFluentBuilder
Constructs a fluent builder for the ListInferenceComponents
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
sort_by(InferenceComponentSortKey)
/set_sort_by(Option<InferenceComponentSortKey>)
:
required: falseThe field by which to sort the inference components in the response. The default is
CreationTime
.sort_order(OrderKey)
/set_sort_order(Option<OrderKey>)
:
required: falseThe sort order for results. The default is
Descending
.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseA token that you use to get the next set of results following a truncated response. If the response to the previous request was truncated, that response provides the value for this token.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of inference components to return in the response. This value defaults to 10.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseFilters the results to only those inference components with a name that contains the specified string.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseFilters the results to only those inference components that were created before the specified time.
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseFilters the results to only those inference components that were created after the specified time.
last_modified_time_before(DateTime)
/set_last_modified_time_before(Option<DateTime>)
:
required: falseFilters the results to only those inference components that were updated before the specified time.
last_modified_time_after(DateTime)
/set_last_modified_time_after(Option<DateTime>)
:
required: falseFilters the results to only those inference components that were updated after the specified time.
status_equals(InferenceComponentStatus)
/set_status_equals(Option<InferenceComponentStatus>)
:
required: falseFilters the results to only those inference components with the specified status.
endpoint_name_equals(impl Into<String>)
/set_endpoint_name_equals(Option<String>)
:
required: falseAn endpoint name to filter the listed inference components. The response includes only those inference components that are hosted at the specified endpoint.
variant_name_equals(impl Into<String>)
/set_variant_name_equals(Option<String>)
:
required: falseA production variant name to filter the listed inference components. The response includes only those inference components that are hosted at the specified variant.
- On success, responds with
ListInferenceComponentsOutput
with field(s):inference_components(Option<Vec::<InferenceComponentSummary>>)
:A list of inference components and their properties that matches any of the filters you specified in the request.
next_token(Option<String>)
:The token to use in a subsequent request to get the next set of results following a truncated response.
- On failure, responds with
SdkError<ListInferenceComponentsError>
Source§impl Client
impl Client
Sourcepub fn list_inference_experiments(
&self,
) -> ListInferenceExperimentsFluentBuilder
pub fn list_inference_experiments( &self, ) -> ListInferenceExperimentsFluentBuilder
Constructs a fluent builder for the ListInferenceExperiments
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseSelects inference experiments whose names contain this name.
r#type(InferenceExperimentType)
/set_type(Option<InferenceExperimentType>)
:
required: falseSelects inference experiments of this type. For the possible types of inference experiments, see CreateInferenceExperiment.
status_equals(InferenceExperimentStatus)
/set_status_equals(Option<InferenceExperimentStatus>)
:
required: falseSelects inference experiments which are in this status. For the possible statuses, see DescribeInferenceExperiment.
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseSelects inference experiments which were created after this timestamp.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseSelects inference experiments which were created before this timestamp.
last_modified_time_after(DateTime)
/set_last_modified_time_after(Option<DateTime>)
:
required: falseSelects inference experiments which were last modified after this timestamp.
last_modified_time_before(DateTime)
/set_last_modified_time_before(Option<DateTime>)
:
required: falseSelects inference experiments which were last modified before this timestamp.
sort_by(SortInferenceExperimentsBy)
/set_sort_by(Option<SortInferenceExperimentsBy>)
:
required: falseThe column by which to sort the listed inference experiments.
sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe direction of sorting (ascending or descending).
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseThe response from the last list when returning a list large enough to need tokening.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of results to select.
- On success, responds with
ListInferenceExperimentsOutput
with field(s):inference_experiments(Option<Vec::<InferenceExperimentSummary>>)
:List of inference experiments.
next_token(Option<String>)
:The token to use when calling the next page of results.
- On failure, responds with
SdkError<ListInferenceExperimentsError>
Source§impl Client
impl Client
Sourcepub fn list_inference_recommendations_job_steps(
&self,
) -> ListInferenceRecommendationsJobStepsFluentBuilder
pub fn list_inference_recommendations_job_steps( &self, ) -> ListInferenceRecommendationsJobStepsFluentBuilder
Constructs a fluent builder for the ListInferenceRecommendationsJobSteps
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
job_name(impl Into<String>)
/set_job_name(Option<String>)
:
required: trueThe name for the Inference Recommender job.
status(RecommendationJobStatus)
/set_status(Option<RecommendationJobStatus>)
:
required: falseA filter to return benchmarks of a specified status. If this field is left empty, then all benchmarks are returned.
step_type(RecommendationStepType)
/set_step_type(Option<RecommendationStepType>)
:
required: falseA filter to return details about the specified type of subtask.
BENCHMARK
: Evaluate the performance of your model on different instance types.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of results to return.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseA token that you can specify to return more results from the list. Specify this field if you have a token that was returned from a previous request.
- On success, responds with
ListInferenceRecommendationsJobStepsOutput
with field(s):steps(Option<Vec::<InferenceRecommendationsJobStep>>)
:A list of all subtask details in Inference Recommender.
next_token(Option<String>)
:A token that you can specify in your next request to return more results from the list.
- On failure, responds with
SdkError<ListInferenceRecommendationsJobStepsError>
Source§impl Client
impl Client
Sourcepub fn list_inference_recommendations_jobs(
&self,
) -> ListInferenceRecommendationsJobsFluentBuilder
pub fn list_inference_recommendations_jobs( &self, ) -> ListInferenceRecommendationsJobsFluentBuilder
Constructs a fluent builder for the ListInferenceRecommendationsJobs
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only jobs created after the specified time (timestamp).
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only jobs created before the specified time (timestamp).
last_modified_time_after(DateTime)
/set_last_modified_time_after(Option<DateTime>)
:
required: falseA filter that returns only jobs that were last modified after the specified time (timestamp).
last_modified_time_before(DateTime)
/set_last_modified_time_before(Option<DateTime>)
:
required: falseA filter that returns only jobs that were last modified before the specified time (timestamp).
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA string in the job name. This filter returns only recommendations whose name contains the specified string.
status_equals(RecommendationJobStatus)
/set_status_equals(Option<RecommendationJobStatus>)
:
required: falseA filter that retrieves only inference recommendations jobs with a specific status.
sort_by(ListInferenceRecommendationsJobsSortBy)
/set_sort_by(Option<ListInferenceRecommendationsJobsSortBy>)
:
required: falseThe parameter by which to sort the results.
sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order for the results.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the response to a previous
ListInferenceRecommendationsJobsRequest
request was truncated, the response includes aNextToken
. To retrieve the next set of recommendations, use the token in the next request.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of recommendations to return in the response.
model_name_equals(impl Into<String>)
/set_model_name_equals(Option<String>)
:
required: falseA filter that returns only jobs that were created for this model.
model_package_version_arn_equals(impl Into<String>)
/set_model_package_version_arn_equals(Option<String>)
:
required: falseA filter that returns only jobs that were created for this versioned model package.
- On success, responds with
ListInferenceRecommendationsJobsOutput
with field(s):inference_recommendations_jobs(Option<Vec::<InferenceRecommendationsJob>>)
:The recommendations created from the Amazon SageMaker Inference Recommender job.
next_token(Option<String>)
:A token for getting the next set of recommendations, if there are any.
- On failure, responds with
SdkError<ListInferenceRecommendationsJobsError>
Source§impl Client
impl Client
Sourcepub fn list_labeling_jobs(&self) -> ListLabelingJobsFluentBuilder
pub fn list_labeling_jobs(&self) -> ListLabelingJobsFluentBuilder
Constructs a fluent builder for the ListLabelingJobs
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only labeling jobs created after the specified time (timestamp).
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only labeling jobs created before the specified time (timestamp).
last_modified_time_after(DateTime)
/set_last_modified_time_after(Option<DateTime>)
:
required: falseA filter that returns only labeling jobs modified after the specified time (timestamp).
last_modified_time_before(DateTime)
/set_last_modified_time_before(Option<DateTime>)
:
required: falseA filter that returns only labeling jobs modified before the specified time (timestamp).
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of labeling jobs to return in each page of the response.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the result of the previous
ListLabelingJobs
request was truncated, the response includes aNextToken
. To retrieve the next set of labeling jobs, use the token in the next request.name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA string in the labeling job name. This filter returns only labeling jobs whose name contains the specified string.
sort_by(SortBy)
/set_sort_by(Option<SortBy>)
:
required: falseThe field to sort results by. The default is
CreationTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order for results. The default is
Ascending
.status_equals(LabelingJobStatus)
/set_status_equals(Option<LabelingJobStatus>)
:
required: falseA filter that retrieves only labeling jobs with a specific status.
- On success, responds with
ListLabelingJobsOutput
with field(s):labeling_job_summary_list(Option<Vec::<LabelingJobSummary>>)
:An array of
LabelingJobSummary
objects, each describing a labeling job.next_token(Option<String>)
:If the response is truncated, SageMaker returns this token. To retrieve the next set of labeling jobs, use it in the subsequent request.
- On failure, responds with
SdkError<ListLabelingJobsError>
Source§impl Client
impl Client
Sourcepub fn list_labeling_jobs_for_workteam(
&self,
) -> ListLabelingJobsForWorkteamFluentBuilder
pub fn list_labeling_jobs_for_workteam( &self, ) -> ListLabelingJobsForWorkteamFluentBuilder
Constructs a fluent builder for the ListLabelingJobsForWorkteam
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
workteam_arn(impl Into<String>)
/set_workteam_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of the work team for which you want to see labeling jobs for.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of labeling jobs to return in each page of the response.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the result of the previous
ListLabelingJobsForWorkteam
request was truncated, the response includes aNextToken
. To retrieve the next set of labeling jobs, use the token in the next request.creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only labeling jobs created after the specified time (timestamp).
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only labeling jobs created before the specified time (timestamp).
job_reference_code_contains(impl Into<String>)
/set_job_reference_code_contains(Option<String>)
:
required: falseA filter the limits jobs to only the ones whose job reference code contains the specified string.
sort_by(ListLabelingJobsForWorkteamSortByOptions)
/set_sort_by(Option<ListLabelingJobsForWorkteamSortByOptions>)
:
required: falseThe field to sort results by. The default is
CreationTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order for results. The default is
Ascending
.
- On success, responds with
ListLabelingJobsForWorkteamOutput
with field(s):labeling_job_summary_list(Option<Vec::<LabelingJobForWorkteamSummary>>)
:An array of
LabelingJobSummary
objects, each describing a labeling job.next_token(Option<String>)
:If the response is truncated, SageMaker returns this token. To retrieve the next set of labeling jobs, use it in the subsequent request.
- On failure, responds with
SdkError<ListLabelingJobsForWorkteamError>
Source§impl Client
impl Client
Sourcepub fn list_lineage_groups(&self) -> ListLineageGroupsFluentBuilder
pub fn list_lineage_groups(&self) -> ListLineageGroupsFluentBuilder
Constructs a fluent builder for the ListLineageGroups
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
created_after(DateTime)
/set_created_after(Option<DateTime>)
:
required: falseA timestamp to filter against lineage groups created after a certain point in time.
created_before(DateTime)
/set_created_before(Option<DateTime>)
:
required: falseA timestamp to filter against lineage groups created before a certain point in time.
sort_by(SortLineageGroupsBy)
/set_sort_by(Option<SortLineageGroupsBy>)
:
required: falseThe parameter by which to sort the results. The default is
CreationTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order for the results. The default is
Ascending
.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the response is truncated, SageMaker returns this token. To retrieve the next set of algorithms, use it in the subsequent request.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of endpoints to return in the response. This value defaults to 10.
- On success, responds with
ListLineageGroupsOutput
with field(s):lineage_group_summaries(Option<Vec::<LineageGroupSummary>>)
:A list of lineage groups and their properties.
next_token(Option<String>)
:If the response is truncated, SageMaker returns this token. To retrieve the next set of algorithms, use it in the subsequent request.
- On failure, responds with
SdkError<ListLineageGroupsError>
Source§impl Client
impl Client
Sourcepub fn list_mlflow_tracking_servers(
&self,
) -> ListMlflowTrackingServersFluentBuilder
pub fn list_mlflow_tracking_servers( &self, ) -> ListMlflowTrackingServersFluentBuilder
Constructs a fluent builder for the ListMlflowTrackingServers
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
created_after(DateTime)
/set_created_after(Option<DateTime>)
:
required: falseUse the
CreatedAfter
filter to only list tracking servers created after a specific date and time. Listed tracking servers are shown with a date and time such as“2024-03-16T01:46:56+00:00”
. TheCreatedAfter
parameter takes in a Unix timestamp. To convert a date and time into a Unix timestamp, see EpochConverter.created_before(DateTime)
/set_created_before(Option<DateTime>)
:
required: falseUse the
CreatedBefore
filter to only list tracking servers created before a specific date and time. Listed tracking servers are shown with a date and time such as“2024-03-16T01:46:56+00:00”
. TheCreatedBefore
parameter takes in a Unix timestamp. To convert a date and time into a Unix timestamp, see EpochConverter.tracking_server_status(TrackingServerStatus)
/set_tracking_server_status(Option<TrackingServerStatus>)
:
required: falseFilter for tracking servers with a specified creation status.
mlflow_version(impl Into<String>)
/set_mlflow_version(Option<String>)
:
required: falseFilter for tracking servers using the specified MLflow version.
sort_by(SortTrackingServerBy)
/set_sort_by(Option<SortTrackingServerBy>)
:
required: falseFilter for trackings servers sorting by name, creation time, or creation status.
sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseChange the order of the listed tracking servers. By default, tracking servers are listed in
Descending
order by creation time. To change the list order, you can specifySortOrder
to beAscending
.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of tracking servers to list.
- On success, responds with
ListMlflowTrackingServersOutput
with field(s):tracking_server_summaries(Option<Vec::<TrackingServerSummary>>)
:A list of tracking servers according to chosen filters.
next_token(Option<String>)
:If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
- On failure, responds with
SdkError<ListMlflowTrackingServersError>
Source§impl Client
impl Client
Sourcepub fn list_model_bias_job_definitions(
&self,
) -> ListModelBiasJobDefinitionsFluentBuilder
pub fn list_model_bias_job_definitions( &self, ) -> ListModelBiasJobDefinitionsFluentBuilder
Constructs a fluent builder for the ListModelBiasJobDefinitions
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
endpoint_name(impl Into<String>)
/set_endpoint_name(Option<String>)
:
required: falseName of the endpoint to monitor for model bias.
sort_by(MonitoringJobDefinitionSortKey)
/set_sort_by(Option<MonitoringJobDefinitionSortKey>)
:
required: falseWhether to sort results by the
Name
orCreationTime
field. The default isCreationTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseWhether to sort the results in
Ascending
orDescending
order. The default isDescending
.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseThe token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of model bias jobs to return in the response. The default value is 10.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseFilter for model bias jobs whose name contains a specified string.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only model bias jobs created before a specified time.
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only model bias jobs created after a specified time.
- On success, responds with
ListModelBiasJobDefinitionsOutput
with field(s):job_definition_summaries(Option<Vec::<MonitoringJobDefinitionSummary>>)
:A JSON array in which each element is a summary for a model bias jobs.
next_token(Option<String>)
:The token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.
- On failure, responds with
SdkError<ListModelBiasJobDefinitionsError>
Source§impl Client
impl Client
Sourcepub fn list_model_card_export_jobs(
&self,
) -> ListModelCardExportJobsFluentBuilder
pub fn list_model_card_export_jobs( &self, ) -> ListModelCardExportJobsFluentBuilder
Constructs a fluent builder for the ListModelCardExportJobs
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
model_card_name(impl Into<String>)
/set_model_card_name(Option<String>)
:
required: trueList export jobs for the model card with the specified name.
model_card_version(i32)
/set_model_card_version(Option<i32>)
:
required: falseList export jobs for the model card with the specified version.
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseOnly list model card export jobs that were created after the time specified.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseOnly list model card export jobs that were created before the time specified.
model_card_export_job_name_contains(impl Into<String>)
/set_model_card_export_job_name_contains(Option<String>)
:
required: falseOnly list model card export jobs with names that contain the specified string.
status_equals(ModelCardExportJobStatus)
/set_status_equals(Option<ModelCardExportJobStatus>)
:
required: falseOnly list model card export jobs with the specified status.
sort_by(ModelCardExportJobSortBy)
/set_sort_by(Option<ModelCardExportJobSortBy>)
:
required: falseSort model card export jobs by either name or creation time. Sorts by creation time by default.
sort_order(ModelCardExportJobSortOrder)
/set_sort_order(Option<ModelCardExportJobSortOrder>)
:
required: falseSort model card export jobs by ascending or descending order.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the response to a previous
ListModelCardExportJobs
request was truncated, the response includes aNextToken
. To retrieve the next set of model card export jobs, use the token in the next request.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of model card export jobs to list.
- On success, responds with
ListModelCardExportJobsOutput
with field(s):model_card_export_job_summaries(Option<Vec::<ModelCardExportJobSummary>>)
:The summaries of the listed model card export jobs.
next_token(Option<String>)
:If the response is truncated, SageMaker returns this token. To retrieve the next set of model card export jobs, use it in the subsequent request.
- On failure, responds with
SdkError<ListModelCardExportJobsError>
Source§impl Client
impl Client
Sourcepub fn list_model_card_versions(&self) -> ListModelCardVersionsFluentBuilder
pub fn list_model_card_versions(&self) -> ListModelCardVersionsFluentBuilder
Constructs a fluent builder for the ListModelCardVersions
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseOnly list model card versions that were created after the time specified.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseOnly list model card versions that were created before the time specified.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of model card versions to list.
model_card_name(impl Into<String>)
/set_model_card_name(Option<String>)
:
required: trueList model card versions for the model card with the specified name or Amazon Resource Name (ARN).
model_card_status(ModelCardStatus)
/set_model_card_status(Option<ModelCardStatus>)
:
required: falseOnly list model card versions with the specified approval status.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the response to a previous
ListModelCardVersions
request was truncated, the response includes aNextToken
. To retrieve the next set of model card versions, use the token in the next request.sort_by(ModelCardVersionSortBy)
/set_sort_by(Option<ModelCardVersionSortBy>)
:
required: falseSort listed model card versions by version. Sorts by version by default.
sort_order(ModelCardSortOrder)
/set_sort_order(Option<ModelCardSortOrder>)
:
required: falseSort model card versions by ascending or descending order.
- On success, responds with
ListModelCardVersionsOutput
with field(s):model_card_version_summary_list(Option<Vec::<ModelCardVersionSummary>>)
:The summaries of the listed versions of the model card.
next_token(Option<String>)
:If the response is truncated, SageMaker returns this token. To retrieve the next set of model card versions, use it in the subsequent request.
- On failure, responds with
SdkError<ListModelCardVersionsError>
Source§impl Client
impl Client
Sourcepub fn list_model_cards(&self) -> ListModelCardsFluentBuilder
pub fn list_model_cards(&self) -> ListModelCardsFluentBuilder
Constructs a fluent builder for the ListModelCards
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseOnly list model cards that were created after the time specified.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseOnly list model cards that were created before the time specified.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of model cards to list.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseOnly list model cards with names that contain the specified string.
model_card_status(ModelCardStatus)
/set_model_card_status(Option<ModelCardStatus>)
:
required: falseOnly list model cards with the specified approval status.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the response to a previous
ListModelCards
request was truncated, the response includes aNextToken
. To retrieve the next set of model cards, use the token in the next request.sort_by(ModelCardSortBy)
/set_sort_by(Option<ModelCardSortBy>)
:
required: falseSort model cards by either name or creation time. Sorts by creation time by default.
sort_order(ModelCardSortOrder)
/set_sort_order(Option<ModelCardSortOrder>)
:
required: falseSort model cards by ascending or descending order.
- On success, responds with
ListModelCardsOutput
with field(s):model_card_summaries(Option<Vec::<ModelCardSummary>>)
:The summaries of the listed model cards.
next_token(Option<String>)
:If the response is truncated, SageMaker returns this token. To retrieve the next set of model cards, use it in the subsequent request.
- On failure, responds with
SdkError<ListModelCardsError>
Source§impl Client
impl Client
Sourcepub fn list_model_explainability_job_definitions(
&self,
) -> ListModelExplainabilityJobDefinitionsFluentBuilder
pub fn list_model_explainability_job_definitions( &self, ) -> ListModelExplainabilityJobDefinitionsFluentBuilder
Constructs a fluent builder for the ListModelExplainabilityJobDefinitions
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
endpoint_name(impl Into<String>)
/set_endpoint_name(Option<String>)
:
required: falseName of the endpoint to monitor for model explainability.
sort_by(MonitoringJobDefinitionSortKey)
/set_sort_by(Option<MonitoringJobDefinitionSortKey>)
:
required: falseWhether to sort results by the
Name
orCreationTime
field. The default isCreationTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseWhether to sort the results in
Ascending
orDescending
order. The default isDescending
.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseThe token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of jobs to return in the response. The default value is 10.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseFilter for model explainability jobs whose name contains a specified string.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only model explainability jobs created before a specified time.
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only model explainability jobs created after a specified time.
- On success, responds with
ListModelExplainabilityJobDefinitionsOutput
with field(s):job_definition_summaries(Option<Vec::<MonitoringJobDefinitionSummary>>)
:A JSON array in which each element is a summary for a explainability bias jobs.
next_token(Option<String>)
:The token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.
- On failure, responds with
SdkError<ListModelExplainabilityJobDefinitionsError>
Source§impl Client
impl Client
Sourcepub fn list_model_metadata(&self) -> ListModelMetadataFluentBuilder
pub fn list_model_metadata(&self) -> ListModelMetadataFluentBuilder
Constructs a fluent builder for the ListModelMetadata
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
search_expression(ModelMetadataSearchExpression)
/set_search_expression(Option<ModelMetadataSearchExpression>)
:
required: falseOne or more filters that searches for the specified resource or resources in a search. All resource objects that satisfy the expression’s condition are included in the search results. Specify the Framework, FrameworkVersion, Domain or Task to filter supported. Filter names and values are case-sensitive.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the response to a previous
ListModelMetadataResponse
request was truncated, the response includes a NextToken. To retrieve the next set of model metadata, use the token in the next request.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of models to return in the response.
- On success, responds with
ListModelMetadataOutput
with field(s):model_metadata_summaries(Option<Vec::<ModelMetadataSummary>>)
:A structure that holds model metadata.
next_token(Option<String>)
:A token for getting the next set of recommendations, if there are any.
- On failure, responds with
SdkError<ListModelMetadataError>
Source§impl Client
impl Client
Sourcepub fn list_model_package_groups(&self) -> ListModelPackageGroupsFluentBuilder
pub fn list_model_package_groups(&self) -> ListModelPackageGroupsFluentBuilder
Constructs a fluent builder for the ListModelPackageGroups
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only model groups created after the specified time.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only model groups created before the specified time.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of results to return in the response.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA string in the model group name. This filter returns only model groups whose name contains the specified string.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the result of the previous
ListModelPackageGroups
request was truncated, the response includes aNextToken
. To retrieve the next set of model groups, use the token in the next request.sort_by(ModelPackageGroupSortBy)
/set_sort_by(Option<ModelPackageGroupSortBy>)
:
required: falseThe field to sort results by. The default is
CreationTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order for results. The default is
Ascending
.cross_account_filter_option(CrossAccountFilterOption)
/set_cross_account_filter_option(Option<CrossAccountFilterOption>)
:
required: falseA filter that returns either model groups shared with you or model groups in your own account. When the value is
CrossAccount
, the results show the resources made discoverable to you from other accounts. When the value isSameAccount
ornull
, the results show resources from your account. The default isSameAccount
.
- On success, responds with
ListModelPackageGroupsOutput
with field(s):model_package_group_summary_list(Option<Vec::<ModelPackageGroupSummary>>)
:A list of summaries of the model groups in your Amazon Web Services account.
next_token(Option<String>)
:If the response is truncated, SageMaker returns this token. To retrieve the next set of model groups, use it in the subsequent request.
- On failure, responds with
SdkError<ListModelPackageGroupsError>
Source§impl Client
impl Client
Sourcepub fn list_model_packages(&self) -> ListModelPackagesFluentBuilder
pub fn list_model_packages(&self) -> ListModelPackagesFluentBuilder
Constructs a fluent builder for the ListModelPackages
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only model packages created after the specified time (timestamp).
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only model packages created before the specified time (timestamp).
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of model packages to return in the response.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA string in the model package name. This filter returns only model packages whose name contains the specified string.
model_approval_status(ModelApprovalStatus)
/set_model_approval_status(Option<ModelApprovalStatus>)
:
required: falseA filter that returns only the model packages with the specified approval status.
model_package_group_name(impl Into<String>)
/set_model_package_group_name(Option<String>)
:
required: falseA filter that returns only model versions that belong to the specified model group.
model_package_type(ModelPackageType)
/set_model_package_type(Option<ModelPackageType>)
:
required: falseA filter that returns only the model packages of the specified type. This can be one of the following values.
-
UNVERSIONED
- List only unversioined models. This is the default value if noModelPackageType
is specified. -
VERSIONED
- List only versioned models. -
BOTH
- List both versioned and unversioned models.
-
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the response to a previous
ListModelPackages
request was truncated, the response includes aNextToken
. To retrieve the next set of model packages, use the token in the next request.sort_by(ModelPackageSortBy)
/set_sort_by(Option<ModelPackageSortBy>)
:
required: falseThe parameter by which to sort the results. The default is
CreationTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order for the results. The default is
Ascending
.
- On success, responds with
ListModelPackagesOutput
with field(s):model_package_summary_list(Option<Vec::<ModelPackageSummary>>)
:An array of
ModelPackageSummary
objects, each of which lists a model package.next_token(Option<String>)
:If the response is truncated, SageMaker returns this token. To retrieve the next set of model packages, use it in the subsequent request.
- On failure, responds with
SdkError<ListModelPackagesError>
Source§impl Client
impl Client
Sourcepub fn list_model_quality_job_definitions(
&self,
) -> ListModelQualityJobDefinitionsFluentBuilder
pub fn list_model_quality_job_definitions( &self, ) -> ListModelQualityJobDefinitionsFluentBuilder
Constructs a fluent builder for the ListModelQualityJobDefinitions
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
endpoint_name(impl Into<String>)
/set_endpoint_name(Option<String>)
:
required: falseA filter that returns only model quality monitoring job definitions that are associated with the specified endpoint.
sort_by(MonitoringJobDefinitionSortKey)
/set_sort_by(Option<MonitoringJobDefinitionSortKey>)
:
required: falseThe field to sort results by. The default is
CreationTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseWhether to sort the results in
Ascending
orDescending
order. The default isDescending
.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the result of the previous
ListModelQualityJobDefinitions
request was truncated, the response includes aNextToken
. To retrieve the next set of model quality monitoring job definitions, use the token in the next request.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of results to return in a call to
ListModelQualityJobDefinitions
.name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA string in the transform job name. This filter returns only model quality monitoring job definitions whose name contains the specified string.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only model quality monitoring job definitions created before the specified time.
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only model quality monitoring job definitions created after the specified time.
- On success, responds with
ListModelQualityJobDefinitionsOutput
with field(s):job_definition_summaries(Option<Vec::<MonitoringJobDefinitionSummary>>)
:A list of summaries of model quality monitoring job definitions.
next_token(Option<String>)
:If the response is truncated, Amazon SageMaker AI returns this token. To retrieve the next set of model quality monitoring job definitions, use it in the next request.
- On failure, responds with
SdkError<ListModelQualityJobDefinitionsError>
Source§impl Client
impl Client
Sourcepub fn list_models(&self) -> ListModelsFluentBuilder
pub fn list_models(&self) -> ListModelsFluentBuilder
Constructs a fluent builder for the ListModels
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
sort_by(ModelSortKey)
/set_sort_by(Option<ModelSortKey>)
:
required: falseSorts the list of results. The default is
CreationTime
.sort_order(OrderKey)
/set_sort_order(Option<OrderKey>)
:
required: falseThe sort order for results. The default is
Descending
.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the response to a previous
ListModels
request was truncated, the response includes aNextToken
. To retrieve the next set of models, use the token in the next request.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of models to return in the response.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA string in the model name. This filter returns only models whose name contains the specified string.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only models created before the specified time (timestamp).
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only models with a creation time greater than or equal to the specified time (timestamp).
- On success, responds with
ListModelsOutput
with field(s):models(Option<Vec::<ModelSummary>>)
:An array of
ModelSummary
objects, each of which lists a model.next_token(Option<String>)
:If the response is truncated, SageMaker returns this token. To retrieve the next set of models, use it in the subsequent request.
- On failure, responds with
SdkError<ListModelsError>
Source§impl Client
impl Client
Sourcepub fn list_monitoring_alert_history(
&self,
) -> ListMonitoringAlertHistoryFluentBuilder
pub fn list_monitoring_alert_history( &self, ) -> ListMonitoringAlertHistoryFluentBuilder
Constructs a fluent builder for the ListMonitoringAlertHistory
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
monitoring_schedule_name(impl Into<String>)
/set_monitoring_schedule_name(Option<String>)
:
required: falseThe name of a monitoring schedule.
monitoring_alert_name(impl Into<String>)
/set_monitoring_alert_name(Option<String>)
:
required: falseThe name of a monitoring alert.
sort_by(MonitoringAlertHistorySortKey)
/set_sort_by(Option<MonitoringAlertHistorySortKey>)
:
required: falseThe field used to sort results. The default is
CreationTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order, whether
Ascending
orDescending
, of the alert history. The default isDescending
.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the result of the previous
ListMonitoringAlertHistory
request was truncated, the response includes aNextToken
. To retrieve the next set of alerts in the history, use the token in the next request.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of results to display. The default is 100.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only alerts created on or before the specified time.
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only alerts created on or after the specified time.
status_equals(MonitoringAlertStatus)
/set_status_equals(Option<MonitoringAlertStatus>)
:
required: falseA filter that retrieves only alerts with a specific status.
- On success, responds with
ListMonitoringAlertHistoryOutput
with field(s):monitoring_alert_history(Option<Vec::<MonitoringAlertHistorySummary>>)
:An alert history for a model monitoring schedule.
next_token(Option<String>)
:If the response is truncated, SageMaker returns this token. To retrieve the next set of alerts, use it in the subsequent request.
- On failure, responds with
SdkError<ListMonitoringAlertHistoryError>
Source§impl Client
impl Client
Sourcepub fn list_monitoring_alerts(&self) -> ListMonitoringAlertsFluentBuilder
pub fn list_monitoring_alerts(&self) -> ListMonitoringAlertsFluentBuilder
Constructs a fluent builder for the ListMonitoringAlerts
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
monitoring_schedule_name(impl Into<String>)
/set_monitoring_schedule_name(Option<String>)
:
required: trueThe name of a monitoring schedule.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the result of the previous
ListMonitoringAlerts
request was truncated, the response includes aNextToken
. To retrieve the next set of alerts in the history, use the token in the next request.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of results to display. The default is 100.
- On success, responds with
ListMonitoringAlertsOutput
with field(s):monitoring_alert_summaries(Option<Vec::<MonitoringAlertSummary>>)
:A JSON array where each element is a summary for a monitoring alert.
next_token(Option<String>)
:If the response is truncated, SageMaker returns this token. To retrieve the next set of alerts, use it in the subsequent request.
- On failure, responds with
SdkError<ListMonitoringAlertsError>
Source§impl Client
impl Client
Sourcepub fn list_monitoring_executions(
&self,
) -> ListMonitoringExecutionsFluentBuilder
pub fn list_monitoring_executions( &self, ) -> ListMonitoringExecutionsFluentBuilder
Constructs a fluent builder for the ListMonitoringExecutions
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
monitoring_schedule_name(impl Into<String>)
/set_monitoring_schedule_name(Option<String>)
:
required: falseName of a specific schedule to fetch jobs for.
endpoint_name(impl Into<String>)
/set_endpoint_name(Option<String>)
:
required: falseName of a specific endpoint to fetch jobs for.
sort_by(MonitoringExecutionSortKey)
/set_sort_by(Option<MonitoringExecutionSortKey>)
:
required: falseWhether to sort the results by the
Status
,CreationTime
, orScheduledTime
field. The default isCreationTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseWhether to sort the results in
Ascending
orDescending
order. The default isDescending
.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseThe token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of jobs to return in the response. The default value is 10.
scheduled_time_before(DateTime)
/set_scheduled_time_before(Option<DateTime>)
:
required: falseFilter for jobs scheduled before a specified time.
scheduled_time_after(DateTime)
/set_scheduled_time_after(Option<DateTime>)
:
required: falseFilter for jobs scheduled after a specified time.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only jobs created before a specified time.
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only jobs created after a specified time.
last_modified_time_before(DateTime)
/set_last_modified_time_before(Option<DateTime>)
:
required: falseA filter that returns only jobs modified after a specified time.
last_modified_time_after(DateTime)
/set_last_modified_time_after(Option<DateTime>)
:
required: falseA filter that returns only jobs modified before a specified time.
status_equals(ExecutionStatus)
/set_status_equals(Option<ExecutionStatus>)
:
required: falseA filter that retrieves only jobs with a specific status.
monitoring_job_definition_name(impl Into<String>)
/set_monitoring_job_definition_name(Option<String>)
:
required: falseGets a list of the monitoring job runs of the specified monitoring job definitions.
monitoring_type_equals(MonitoringType)
/set_monitoring_type_equals(Option<MonitoringType>)
:
required: falseA filter that returns only the monitoring job runs of the specified monitoring type.
- On success, responds with
ListMonitoringExecutionsOutput
with field(s):monitoring_execution_summaries(Option<Vec::<MonitoringExecutionSummary>>)
:A JSON array in which each element is a summary for a monitoring execution.
next_token(Option<String>)
:The token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.
- On failure, responds with
SdkError<ListMonitoringExecutionsError>
Source§impl Client
impl Client
Sourcepub fn list_monitoring_schedules(&self) -> ListMonitoringSchedulesFluentBuilder
pub fn list_monitoring_schedules(&self) -> ListMonitoringSchedulesFluentBuilder
Constructs a fluent builder for the ListMonitoringSchedules
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
endpoint_name(impl Into<String>)
/set_endpoint_name(Option<String>)
:
required: falseName of a specific endpoint to fetch schedules for.
sort_by(MonitoringScheduleSortKey)
/set_sort_by(Option<MonitoringScheduleSortKey>)
:
required: falseWhether to sort the results by the
Status
,CreationTime
, orScheduledTime
field. The default isCreationTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseWhether to sort the results in
Ascending
orDescending
order. The default isDescending
.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseThe token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of jobs to return in the response. The default value is 10.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseFilter for monitoring schedules whose name contains a specified string.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only monitoring schedules created before a specified time.
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only monitoring schedules created after a specified time.
last_modified_time_before(DateTime)
/set_last_modified_time_before(Option<DateTime>)
:
required: falseA filter that returns only monitoring schedules modified before a specified time.
last_modified_time_after(DateTime)
/set_last_modified_time_after(Option<DateTime>)
:
required: falseA filter that returns only monitoring schedules modified after a specified time.
status_equals(ScheduleStatus)
/set_status_equals(Option<ScheduleStatus>)
:
required: falseA filter that returns only monitoring schedules modified before a specified time.
monitoring_job_definition_name(impl Into<String>)
/set_monitoring_job_definition_name(Option<String>)
:
required: falseGets a list of the monitoring schedules for the specified monitoring job definition.
monitoring_type_equals(MonitoringType)
/set_monitoring_type_equals(Option<MonitoringType>)
:
required: falseA filter that returns only the monitoring schedules for the specified monitoring type.
- On success, responds with
ListMonitoringSchedulesOutput
with field(s):monitoring_schedule_summaries(Option<Vec::<MonitoringScheduleSummary>>)
:A JSON array in which each element is a summary for a monitoring schedule.
next_token(Option<String>)
:The token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.
- On failure, responds with
SdkError<ListMonitoringSchedulesError>
Source§impl Client
impl Client
Sourcepub fn list_notebook_instance_lifecycle_configs(
&self,
) -> ListNotebookInstanceLifecycleConfigsFluentBuilder
pub fn list_notebook_instance_lifecycle_configs( &self, ) -> ListNotebookInstanceLifecycleConfigsFluentBuilder
Constructs a fluent builder for the ListNotebookInstanceLifecycleConfigs
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the result of a
ListNotebookInstanceLifecycleConfigs
request was truncated, the response includes aNextToken
. To get the next set of lifecycle configurations, use the token in the next request.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of lifecycle configurations to return in the response.
sort_by(NotebookInstanceLifecycleConfigSortKey)
/set_sort_by(Option<NotebookInstanceLifecycleConfigSortKey>)
:
required: falseSorts the list of results. The default is
CreationTime
.sort_order(NotebookInstanceLifecycleConfigSortOrder)
/set_sort_order(Option<NotebookInstanceLifecycleConfigSortOrder>)
:
required: falseThe sort order for results.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA string in the lifecycle configuration name. This filter returns only lifecycle configurations whose name contains the specified string.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only lifecycle configurations that were created before the specified time (timestamp).
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only lifecycle configurations that were created after the specified time (timestamp).
last_modified_time_before(DateTime)
/set_last_modified_time_before(Option<DateTime>)
:
required: falseA filter that returns only lifecycle configurations that were modified before the specified time (timestamp).
last_modified_time_after(DateTime)
/set_last_modified_time_after(Option<DateTime>)
:
required: falseA filter that returns only lifecycle configurations that were modified after the specified time (timestamp).
- On success, responds with
ListNotebookInstanceLifecycleConfigsOutput
with field(s):next_token(Option<String>)
:If the response is truncated, SageMaker AI returns this token. To get the next set of lifecycle configurations, use it in the next request.
notebook_instance_lifecycle_configs(Option<Vec::<NotebookInstanceLifecycleConfigSummary>>)
:An array of
NotebookInstanceLifecycleConfiguration
objects, each listing a lifecycle configuration.
- On failure, responds with
SdkError<ListNotebookInstanceLifecycleConfigsError>
Source§impl Client
impl Client
Sourcepub fn list_notebook_instances(&self) -> ListNotebookInstancesFluentBuilder
pub fn list_notebook_instances(&self) -> ListNotebookInstancesFluentBuilder
Constructs a fluent builder for the ListNotebookInstances
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the previous call to the
ListNotebookInstances
is truncated, the response includes aNextToken
. You can use this token in your subsequentListNotebookInstances
request to fetch the next set of notebook instances.You might specify a filter or a sort order in your request. When response is truncated, you must use the same values for the filer and sort order in the next request.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of notebook instances to return.
sort_by(NotebookInstanceSortKey)
/set_sort_by(Option<NotebookInstanceSortKey>)
:
required: falseThe field to sort results by. The default is
Name
.sort_order(NotebookInstanceSortOrder)
/set_sort_order(Option<NotebookInstanceSortOrder>)
:
required: falseThe sort order for results.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA string in the notebook instances’ name. This filter returns only notebook instances whose name contains the specified string.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only notebook instances that were created before the specified time (timestamp).
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only notebook instances that were created after the specified time (timestamp).
last_modified_time_before(DateTime)
/set_last_modified_time_before(Option<DateTime>)
:
required: falseA filter that returns only notebook instances that were modified before the specified time (timestamp).
last_modified_time_after(DateTime)
/set_last_modified_time_after(Option<DateTime>)
:
required: falseA filter that returns only notebook instances that were modified after the specified time (timestamp).
status_equals(NotebookInstanceStatus)
/set_status_equals(Option<NotebookInstanceStatus>)
:
required: falseA filter that returns only notebook instances with the specified status.
notebook_instance_lifecycle_config_name_contains(impl Into<String>)
/set_notebook_instance_lifecycle_config_name_contains(Option<String>)
:
required: falseA string in the name of a notebook instances lifecycle configuration associated with this notebook instance. This filter returns only notebook instances associated with a lifecycle configuration with a name that contains the specified string.
default_code_repository_contains(impl Into<String>)
/set_default_code_repository_contains(Option<String>)
:
required: falseA string in the name or URL of a Git repository associated with this notebook instance. This filter returns only notebook instances associated with a git repository with a name that contains the specified string.
additional_code_repository_equals(impl Into<String>)
/set_additional_code_repository_equals(Option<String>)
:
required: falseA filter that returns only notebook instances with associated with the specified git repository.
- On success, responds with
ListNotebookInstancesOutput
with field(s):next_token(Option<String>)
:If the response to the previous
ListNotebookInstances
request was truncated, SageMaker AI returns this token. To retrieve the next set of notebook instances, use the token in the next request.notebook_instances(Option<Vec::<NotebookInstanceSummary>>)
:An array of
NotebookInstanceSummary
objects, one for each notebook instance.
- On failure, responds with
SdkError<ListNotebookInstancesError>
Source§impl Client
impl Client
Sourcepub fn list_optimization_jobs(&self) -> ListOptimizationJobsFluentBuilder
pub fn list_optimization_jobs(&self) -> ListOptimizationJobsFluentBuilder
Constructs a fluent builder for the ListOptimizationJobs
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseA token that you use to get the next set of results following a truncated response. If the response to the previous request was truncated, that response provides the value for this token.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of optimization jobs to return in the response. The default is 50.
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseFilters the results to only those optimization jobs that were created after the specified time.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseFilters the results to only those optimization jobs that were created before the specified time.
last_modified_time_after(DateTime)
/set_last_modified_time_after(Option<DateTime>)
:
required: falseFilters the results to only those optimization jobs that were updated after the specified time.
last_modified_time_before(DateTime)
/set_last_modified_time_before(Option<DateTime>)
:
required: falseFilters the results to only those optimization jobs that were updated before the specified time.
optimization_contains(impl Into<String>)
/set_optimization_contains(Option<String>)
:
required: falseFilters the results to only those optimization jobs that apply the specified optimization techniques. You can specify either
Quantization
orCompilation
.name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseFilters the results to only those optimization jobs with a name that contains the specified string.
status_equals(OptimizationJobStatus)
/set_status_equals(Option<OptimizationJobStatus>)
:
required: falseFilters the results to only those optimization jobs with the specified status.
sort_by(ListOptimizationJobsSortBy)
/set_sort_by(Option<ListOptimizationJobsSortBy>)
:
required: falseThe field by which to sort the optimization jobs in the response. The default is
CreationTime
sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order for results. The default is
Ascending
- On success, responds with
ListOptimizationJobsOutput
with field(s):optimization_job_summaries(Option<Vec::<OptimizationJobSummary>>)
:A list of optimization jobs and their properties that matches any of the filters you specified in the request.
next_token(Option<String>)
:The token to use in a subsequent request to get the next set of results following a truncated response.
- On failure, responds with
SdkError<ListOptimizationJobsError>
Source§impl Client
impl Client
Sourcepub fn list_partner_apps(&self) -> ListPartnerAppsFluentBuilder
pub fn list_partner_apps(&self) -> ListPartnerAppsFluentBuilder
Constructs a fluent builder for the ListPartnerApps
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThis parameter defines the maximum number of results that can be returned in a single response. The
MaxResults
parameter is an upper bound, not a target. If there are more results available than the value specified, aNextToken
is provided in the response. TheNextToken
indicates that the user should get the next set of results by providing this token as a part of a subsequent call. The default value forMaxResults
is 10.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
- On success, responds with
ListPartnerAppsOutput
with field(s):summaries(Option<Vec::<PartnerAppSummary>>)
:The information related to each of the SageMaker Partner AI Apps in an account.
next_token(Option<String>)
:If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
- On failure, responds with
SdkError<ListPartnerAppsError>
Source§impl Client
impl Client
Sourcepub fn list_pipeline_execution_steps(
&self,
) -> ListPipelineExecutionStepsFluentBuilder
pub fn list_pipeline_execution_steps( &self, ) -> ListPipelineExecutionStepsFluentBuilder
Constructs a fluent builder for the ListPipelineExecutionSteps
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
pipeline_execution_arn(impl Into<String>)
/set_pipeline_execution_arn(Option<String>)
:
required: falseThe Amazon Resource Name (ARN) of the pipeline execution.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the result of the previous
ListPipelineExecutionSteps
request was truncated, the response includes aNextToken
. To retrieve the next set of pipeline execution steps, use the token in the next request.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of pipeline execution steps to return in the response.
sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe field by which to sort results. The default is
CreatedTime
.
- On success, responds with
ListPipelineExecutionStepsOutput
with field(s):pipeline_execution_steps(Option<Vec::<PipelineExecutionStep>>)
:A list of
PipeLineExecutionStep
objects. EachPipeLineExecutionStep
consists of StepName, StartTime, EndTime, StepStatus, and Metadata. Metadata is an object with properties for each job that contains relevant information about the job created by the step.next_token(Option<String>)
:If the result of the previous
ListPipelineExecutionSteps
request was truncated, the response includes aNextToken
. To retrieve the next set of pipeline execution steps, use the token in the next request.
- On failure, responds with
SdkError<ListPipelineExecutionStepsError>
Source§impl Client
impl Client
Sourcepub fn list_pipeline_executions(&self) -> ListPipelineExecutionsFluentBuilder
pub fn list_pipeline_executions(&self) -> ListPipelineExecutionsFluentBuilder
Constructs a fluent builder for the ListPipelineExecutions
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
pipeline_name(impl Into<String>)
/set_pipeline_name(Option<String>)
:
required: trueThe name or Amazon Resource Name (ARN) of the pipeline.
created_after(DateTime)
/set_created_after(Option<DateTime>)
:
required: falseA filter that returns the pipeline executions that were created after a specified time.
created_before(DateTime)
/set_created_before(Option<DateTime>)
:
required: falseA filter that returns the pipeline executions that were created before a specified time.
sort_by(SortPipelineExecutionsBy)
/set_sort_by(Option<SortPipelineExecutionsBy>)
:
required: falseThe field by which to sort results. The default is
CreatedTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order for results.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the result of the previous
ListPipelineExecutions
request was truncated, the response includes aNextToken
. To retrieve the next set of pipeline executions, use the token in the next request.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of pipeline executions to return in the response.
- On success, responds with
ListPipelineExecutionsOutput
with field(s):pipeline_execution_summaries(Option<Vec::<PipelineExecutionSummary>>)
:Contains a sorted list of pipeline execution summary objects matching the specified filters. Each run summary includes the Amazon Resource Name (ARN) of the pipeline execution, the run date, and the status. This list can be empty.
next_token(Option<String>)
:If the result of the previous
ListPipelineExecutions
request was truncated, the response includes aNextToken
. To retrieve the next set of pipeline executions, use the token in the next request.
- On failure, responds with
SdkError<ListPipelineExecutionsError>
Source§impl Client
impl Client
Sourcepub fn list_pipeline_parameters_for_execution(
&self,
) -> ListPipelineParametersForExecutionFluentBuilder
pub fn list_pipeline_parameters_for_execution( &self, ) -> ListPipelineParametersForExecutionFluentBuilder
Constructs a fluent builder for the ListPipelineParametersForExecution
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
pipeline_execution_arn(impl Into<String>)
/set_pipeline_execution_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of the pipeline execution.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the result of the previous
ListPipelineParametersForExecution
request was truncated, the response includes aNextToken
. To retrieve the next set of parameters, use the token in the next request.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of parameters to return in the response.
- On success, responds with
ListPipelineParametersForExecutionOutput
with field(s):pipeline_parameters(Option<Vec::<Parameter>>)
:Contains a list of pipeline parameters. This list can be empty.
next_token(Option<String>)
:If the result of the previous
ListPipelineParametersForExecution
request was truncated, the response includes aNextToken
. To retrieve the next set of parameters, use the token in the next request.
- On failure, responds with
SdkError<ListPipelineParametersForExecutionError>
Source§impl Client
impl Client
Sourcepub fn list_pipelines(&self) -> ListPipelinesFluentBuilder
pub fn list_pipelines(&self) -> ListPipelinesFluentBuilder
Constructs a fluent builder for the ListPipelines
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
pipeline_name_prefix(impl Into<String>)
/set_pipeline_name_prefix(Option<String>)
:
required: falseThe prefix of the pipeline name.
created_after(DateTime)
/set_created_after(Option<DateTime>)
:
required: falseA filter that returns the pipelines that were created after a specified time.
created_before(DateTime)
/set_created_before(Option<DateTime>)
:
required: falseA filter that returns the pipelines that were created before a specified time.
sort_by(SortPipelinesBy)
/set_sort_by(Option<SortPipelinesBy>)
:
required: falseThe field by which to sort results. The default is
CreatedTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order for results.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the result of the previous
ListPipelines
request was truncated, the response includes aNextToken
. To retrieve the next set of pipelines, use the token in the next request.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of pipelines to return in the response.
- On success, responds with
ListPipelinesOutput
with field(s):pipeline_summaries(Option<Vec::<PipelineSummary>>)
:Contains a sorted list of
PipelineSummary
objects matching the specified filters. EachPipelineSummary
consists of PipelineArn, PipelineName, ExperimentName, PipelineDescription, CreationTime, LastModifiedTime, LastRunTime, and RoleArn. This list can be empty.next_token(Option<String>)
:If the result of the previous
ListPipelines
request was truncated, the response includes aNextToken
. To retrieve the next set of pipelines, use the token in the next request.
- On failure, responds with
SdkError<ListPipelinesError>
Source§impl Client
impl Client
Sourcepub fn list_processing_jobs(&self) -> ListProcessingJobsFluentBuilder
pub fn list_processing_jobs(&self) -> ListProcessingJobsFluentBuilder
Constructs a fluent builder for the ListProcessingJobs
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only processing jobs created after the specified time.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only processing jobs created after the specified time.
last_modified_time_after(DateTime)
/set_last_modified_time_after(Option<DateTime>)
:
required: falseA filter that returns only processing jobs modified after the specified time.
last_modified_time_before(DateTime)
/set_last_modified_time_before(Option<DateTime>)
:
required: falseA filter that returns only processing jobs modified before the specified time.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA string in the processing job name. This filter returns only processing jobs whose name contains the specified string.
status_equals(ProcessingJobStatus)
/set_status_equals(Option<ProcessingJobStatus>)
:
required: falseA filter that retrieves only processing jobs with a specific status.
sort_by(SortBy)
/set_sort_by(Option<SortBy>)
:
required: falseThe field to sort results by. The default is
CreationTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order for results. The default is
Ascending
.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the result of the previous
ListProcessingJobs
request was truncated, the response includes aNextToken
. To retrieve the next set of processing jobs, use the token in the next request.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of processing jobs to return in the response.
- On success, responds with
ListProcessingJobsOutput
with field(s):processing_job_summaries(Option<Vec::<ProcessingJobSummary>>)
:An array of
ProcessingJobSummary
objects, each listing a processing job.next_token(Option<String>)
:If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of processing jobs, use it in the subsequent request.
- On failure, responds with
SdkError<ListProcessingJobsError>
Source§impl Client
impl Client
Sourcepub fn list_projects(&self) -> ListProjectsFluentBuilder
pub fn list_projects(&self) -> ListProjectsFluentBuilder
Constructs a fluent builder for the ListProjects
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns the projects that were created after a specified time.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns the projects that were created before a specified time.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of projects to return in the response.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA filter that returns the projects whose name contains a specified string.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the result of the previous
ListProjects
request was truncated, the response includes aNextToken
. To retrieve the next set of projects, use the token in the next request.sort_by(ProjectSortBy)
/set_sort_by(Option<ProjectSortBy>)
:
required: falseThe field by which to sort results. The default is
CreationTime
.sort_order(ProjectSortOrder)
/set_sort_order(Option<ProjectSortOrder>)
:
required: falseThe sort order for results. The default is
Ascending
.
- On success, responds with
ListProjectsOutput
with field(s):project_summary_list(Option<Vec::<ProjectSummary>>)
:A list of summaries of projects.
next_token(Option<String>)
:If the result of the previous
ListCompilationJobs
request was truncated, the response includes aNextToken
. To retrieve the next set of model compilation jobs, use the token in the next request.
- On failure, responds with
SdkError<ListProjectsError>
Source§impl Client
impl Client
Sourcepub fn list_resource_catalogs(&self) -> ListResourceCatalogsFluentBuilder
pub fn list_resource_catalogs(&self) -> ListResourceCatalogsFluentBuilder
Constructs a fluent builder for the ListResourceCatalogs
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA string that partially matches one or more
ResourceCatalog
s names. FiltersResourceCatalog
by name.creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseUse this parameter to search for
ResourceCatalog
s created after a specific date and time.creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseUse this parameter to search for
ResourceCatalog
s created before a specific date and time.sort_order(ResourceCatalogSortOrder)
/set_sort_order(Option<ResourceCatalogSortOrder>)
:
required: falseThe order in which the resource catalogs are listed.
sort_by(ResourceCatalogSortBy)
/set_sort_by(Option<ResourceCatalogSortBy>)
:
required: falseThe value on which the resource catalog list is sorted.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of results returned by
ListResourceCatalogs
.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseA token to resume pagination of
ListResourceCatalogs
results.
- On success, responds with
ListResourceCatalogsOutput
with field(s):resource_catalogs(Option<Vec::<ResourceCatalog>>)
:A list of the requested
ResourceCatalog
s.next_token(Option<String>)
:A token to resume pagination of
ListResourceCatalogs
results.
- On failure, responds with
SdkError<ListResourceCatalogsError>
Source§impl Client
impl Client
Sourcepub fn list_spaces(&self) -> ListSpacesFluentBuilder
pub fn list_spaces(&self) -> ListSpacesFluentBuilder
Constructs a fluent builder for the ListSpaces
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThis parameter defines the maximum number of results that can be return in a single response. The
MaxResults
parameter is an upper bound, not a target. If there are more results available than the value specified, aNextToken
is provided in the response. TheNextToken
indicates that the user should get the next set of results by providing this token as a part of a subsequent call. The default value forMaxResults
is 10.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order for the results. The default is
Ascending
.sort_by(SpaceSortKey)
/set_sort_by(Option<SpaceSortKey>)
:
required: falseThe parameter by which to sort the results. The default is
CreationTime
.domain_id_equals(impl Into<String>)
/set_domain_id_equals(Option<String>)
:
required: falseA parameter to search for the domain ID.
space_name_contains(impl Into<String>)
/set_space_name_contains(Option<String>)
:
required: falseA parameter by which to filter the results.
- On success, responds with
ListSpacesOutput
with field(s):spaces(Option<Vec::<SpaceDetails>>)
:The list of spaces.
next_token(Option<String>)
:If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
- On failure, responds with
SdkError<ListSpacesError>
Source§impl Client
impl Client
Sourcepub fn list_stage_devices(&self) -> ListStageDevicesFluentBuilder
pub fn list_stage_devices(&self) -> ListStageDevicesFluentBuilder
Constructs a fluent builder for the ListStageDevices
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseThe response from the last list when returning a list large enough to neeed tokening.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of requests to select.
edge_deployment_plan_name(impl Into<String>)
/set_edge_deployment_plan_name(Option<String>)
:
required: trueThe name of the edge deployment plan.
exclude_devices_deployed_in_other_stage(bool)
/set_exclude_devices_deployed_in_other_stage(Option<bool>)
:
required: falseToggle for excluding devices deployed in other stages.
stage_name(impl Into<String>)
/set_stage_name(Option<String>)
:
required: trueThe name of the stage in the deployment.
- On success, responds with
ListStageDevicesOutput
with field(s):device_deployment_summaries(Option<Vec::<DeviceDeploymentSummary>>)
:List of summaries of devices allocated to the stage.
next_token(Option<String>)
:The token to use when calling the next page of results.
- On failure, responds with
SdkError<ListStageDevicesError>
Source§impl Client
impl Client
Sourcepub fn list_studio_lifecycle_configs(
&self,
) -> ListStudioLifecycleConfigsFluentBuilder
pub fn list_studio_lifecycle_configs( &self, ) -> ListStudioLifecycleConfigsFluentBuilder
Constructs a fluent builder for the ListStudioLifecycleConfigs
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe total number of items to return in the response. If the total number of items available is more than the value specified, a
NextToken
is provided in the response. To resume pagination, provide theNextToken
value in the as part of a subsequent call. The default value is 10.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the previous call to ListStudioLifecycleConfigs didn’t return the full set of Lifecycle Configurations, the call returns a token for getting the next set of Lifecycle Configurations.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA string in the Lifecycle Configuration name. This filter returns only Lifecycle Configurations whose name contains the specified string.
app_type_equals(StudioLifecycleConfigAppType)
/set_app_type_equals(Option<StudioLifecycleConfigAppType>)
:
required: falseA parameter to search for the App Type to which the Lifecycle Configuration is attached.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only Lifecycle Configurations created on or before the specified time.
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only Lifecycle Configurations created on or after the specified time.
modified_time_before(DateTime)
/set_modified_time_before(Option<DateTime>)
:
required: falseA filter that returns only Lifecycle Configurations modified before the specified time.
modified_time_after(DateTime)
/set_modified_time_after(Option<DateTime>)
:
required: falseA filter that returns only Lifecycle Configurations modified after the specified time.
sort_by(StudioLifecycleConfigSortKey)
/set_sort_by(Option<StudioLifecycleConfigSortKey>)
:
required: falseThe property used to sort results. The default value is CreationTime.
sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order. The default value is Descending.
- On success, responds with
ListStudioLifecycleConfigsOutput
with field(s):next_token(Option<String>)
:If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
studio_lifecycle_configs(Option<Vec::<StudioLifecycleConfigDetails>>)
:A list of Lifecycle Configurations and their properties.
- On failure, responds with
SdkError<ListStudioLifecycleConfigsError>
Source§impl Client
impl Client
Sourcepub fn list_subscribed_workteams(&self) -> ListSubscribedWorkteamsFluentBuilder
pub fn list_subscribed_workteams(&self) -> ListSubscribedWorkteamsFluentBuilder
Constructs a fluent builder for the ListSubscribedWorkteams
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA string in the work team name. This filter returns only work teams whose name contains the specified string.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the result of the previous
ListSubscribedWorkteams
request was truncated, the response includes aNextToken
. To retrieve the next set of labeling jobs, use the token in the next request.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of work teams to return in each page of the response.
- On success, responds with
ListSubscribedWorkteamsOutput
with field(s):subscribed_workteams(Option<Vec::<SubscribedWorkteam>>)
:An array of
Workteam
objects, each describing a work team.next_token(Option<String>)
:If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of work teams, use it in the subsequent request.
- On failure, responds with
SdkError<ListSubscribedWorkteamsError>
Source§impl Client
impl Client
Constructs a fluent builder for the ListTags
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
resource_arn(impl Into<String>)
/set_resource_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of the resource whose tags you want to retrieve.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the response to the previous
ListTags
request is truncated, SageMaker returns this token. To retrieve the next set of tags, use it in the subsequent request.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseMaximum number of tags to return.
- On success, responds with
ListTagsOutput
with field(s):tags(Option<Vec::<Tag>>)
:An array of
Tag
objects, each with a tag key and a value.next_token(Option<String>)
:If response is truncated, SageMaker includes a token in the response. You can use this token in your subsequent request to fetch next set of tokens.
- On failure, responds with
SdkError<ListTagsError>
Source§impl Client
impl Client
Sourcepub fn list_training_jobs(&self) -> ListTrainingJobsFluentBuilder
pub fn list_training_jobs(&self) -> ListTrainingJobsFluentBuilder
Constructs a fluent builder for the ListTrainingJobs
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the result of the previous
ListTrainingJobs
request was truncated, the response includes aNextToken
. To retrieve the next set of training jobs, use the token in the next request.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of training jobs to return in the response.
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only training jobs created after the specified time (timestamp).
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only training jobs created before the specified time (timestamp).
last_modified_time_after(DateTime)
/set_last_modified_time_after(Option<DateTime>)
:
required: falseA filter that returns only training jobs modified after the specified time (timestamp).
last_modified_time_before(DateTime)
/set_last_modified_time_before(Option<DateTime>)
:
required: falseA filter that returns only training jobs modified before the specified time (timestamp).
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA string in the training job name. This filter returns only training jobs whose name contains the specified string.
status_equals(TrainingJobStatus)
/set_status_equals(Option<TrainingJobStatus>)
:
required: falseA filter that retrieves only training jobs with a specific status.
sort_by(SortBy)
/set_sort_by(Option<SortBy>)
:
required: falseThe field to sort results by. The default is
CreationTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order for results. The default is
Ascending
.warm_pool_status_equals(WarmPoolResourceStatus)
/set_warm_pool_status_equals(Option<WarmPoolResourceStatus>)
:
required: falseA filter that retrieves only training jobs with a specific warm pool status.
training_plan_arn_equals(impl Into<String>)
/set_training_plan_arn_equals(Option<String>)
:
required: falseThe Amazon Resource Name (ARN); of the training plan to filter training jobs by. For more information about reserving GPU capacity for your SageMaker training jobs using Amazon SageMaker Training Plan, see
CreateTrainingPlan
.
- On success, responds with
ListTrainingJobsOutput
with field(s):training_job_summaries(Option<Vec::<TrainingJobSummary>>)
:An array of
TrainingJobSummary
objects, each listing a training job.next_token(Option<String>)
:If the response is truncated, SageMaker returns this token. To retrieve the next set of training jobs, use it in the subsequent request.
- On failure, responds with
SdkError<ListTrainingJobsError>
Source§impl Client
impl Client
Sourcepub fn list_training_jobs_for_hyper_parameter_tuning_job(
&self,
) -> ListTrainingJobsForHyperParameterTuningJobFluentBuilder
pub fn list_training_jobs_for_hyper_parameter_tuning_job( &self, ) -> ListTrainingJobsForHyperParameterTuningJobFluentBuilder
Constructs a fluent builder for the ListTrainingJobsForHyperParameterTuningJob
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
hyper_parameter_tuning_job_name(impl Into<String>)
/set_hyper_parameter_tuning_job_name(Option<String>)
:
required: trueThe name of the tuning job whose training jobs you want to list.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the result of the previous
ListTrainingJobsForHyperParameterTuningJob
request was truncated, the response includes aNextToken
. To retrieve the next set of training jobs, use the token in the next request.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of training jobs to return. The default value is 10.
status_equals(TrainingJobStatus)
/set_status_equals(Option<TrainingJobStatus>)
:
required: falseA filter that returns only training jobs with the specified status.
sort_by(TrainingJobSortByOptions)
/set_sort_by(Option<TrainingJobSortByOptions>)
:
required: falseThe field to sort results by. The default is
Name
.If the value of this field is
FinalObjectiveMetricValue
, any training jobs that did not return an objective metric are not listed.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order for results. The default is
Ascending
.
- On success, responds with
ListTrainingJobsForHyperParameterTuningJobOutput
with field(s):training_job_summaries(Option<Vec::<HyperParameterTrainingJobSummary>>)
:A list of TrainingJobSummary objects that describe the training jobs that the
ListTrainingJobsForHyperParameterTuningJob
request returned.next_token(Option<String>)
:If the result of this
ListTrainingJobsForHyperParameterTuningJob
request was truncated, the response includes aNextToken
. To retrieve the next set of training jobs, use the token in the next request.
- On failure, responds with
SdkError<ListTrainingJobsForHyperParameterTuningJobError>
Source§impl Client
impl Client
Sourcepub fn list_training_plans(&self) -> ListTrainingPlansFluentBuilder
pub fn list_training_plans(&self) -> ListTrainingPlansFluentBuilder
Constructs a fluent builder for the ListTrainingPlans
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseA token to continue pagination if more results are available.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of results to return in the response.
start_time_after(DateTime)
/set_start_time_after(Option<DateTime>)
:
required: falseFilter to list only training plans with an actual start time after this date.
start_time_before(DateTime)
/set_start_time_before(Option<DateTime>)
:
required: falseFilter to list only training plans with an actual start time before this date.
sort_by(TrainingPlanSortBy)
/set_sort_by(Option<TrainingPlanSortBy>)
:
required: falseThe training plan field to sort the results by (e.g., StartTime, Status).
sort_order(TrainingPlanSortOrder)
/set_sort_order(Option<TrainingPlanSortOrder>)
:
required: falseThe order to sort the results (Ascending or Descending).
filters(TrainingPlanFilter)
/set_filters(Option<Vec::<TrainingPlanFilter>>)
:
required: falseAdditional filters to apply to the list of training plans.
- On success, responds with
ListTrainingPlansOutput
with field(s):next_token(Option<String>)
:A token to continue pagination if more results are available.
training_plan_summaries(Option<Vec::<TrainingPlanSummary>>)
:A list of summary information for the training plans.
- On failure, responds with
SdkError<ListTrainingPlansError>
Source§impl Client
impl Client
Sourcepub fn list_transform_jobs(&self) -> ListTransformJobsFluentBuilder
pub fn list_transform_jobs(&self) -> ListTransformJobsFluentBuilder
Constructs a fluent builder for the ListTransformJobs
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
creation_time_after(DateTime)
/set_creation_time_after(Option<DateTime>)
:
required: falseA filter that returns only transform jobs created after the specified time.
creation_time_before(DateTime)
/set_creation_time_before(Option<DateTime>)
:
required: falseA filter that returns only transform jobs created before the specified time.
last_modified_time_after(DateTime)
/set_last_modified_time_after(Option<DateTime>)
:
required: falseA filter that returns only transform jobs modified after the specified time.
last_modified_time_before(DateTime)
/set_last_modified_time_before(Option<DateTime>)
:
required: falseA filter that returns only transform jobs modified before the specified time.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA string in the transform job name. This filter returns only transform jobs whose name contains the specified string.
status_equals(TransformJobStatus)
/set_status_equals(Option<TransformJobStatus>)
:
required: falseA filter that retrieves only transform jobs with a specific status.
sort_by(SortBy)
/set_sort_by(Option<SortBy>)
:
required: falseThe field to sort results by. The default is
CreationTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order for results. The default is
Descending
.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the result of the previous
ListTransformJobs
request was truncated, the response includes aNextToken
. To retrieve the next set of transform jobs, use the token in the next request.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of transform jobs to return in the response. The default value is
10
.
- On success, responds with
ListTransformJobsOutput
with field(s):transform_job_summaries(Option<Vec::<TransformJobSummary>>)
:An array of
TransformJobSummary
objects.next_token(Option<String>)
:If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of transform jobs, use it in the next request.
- On failure, responds with
SdkError<ListTransformJobsError>
Source§impl Client
impl Client
Sourcepub fn list_trial_components(&self) -> ListTrialComponentsFluentBuilder
pub fn list_trial_components(&self) -> ListTrialComponentsFluentBuilder
Constructs a fluent builder for the ListTrialComponents
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
experiment_name(impl Into<String>)
/set_experiment_name(Option<String>)
:
required: falseA filter that returns only components that are part of the specified experiment. If you specify
ExperimentName
, you can’t filter bySourceArn
orTrialName
.trial_name(impl Into<String>)
/set_trial_name(Option<String>)
:
required: falseA filter that returns only components that are part of the specified trial. If you specify
TrialName
, you can’t filter byExperimentName
orSourceArn
.source_arn(impl Into<String>)
/set_source_arn(Option<String>)
:
required: falseA filter that returns only components that have the specified source Amazon Resource Name (ARN). If you specify
SourceArn
, you can’t filter byExperimentName
orTrialName
.created_after(DateTime)
/set_created_after(Option<DateTime>)
:
required: falseA filter that returns only components created after the specified time.
created_before(DateTime)
/set_created_before(Option<DateTime>)
:
required: falseA filter that returns only components created before the specified time.
sort_by(SortTrialComponentsBy)
/set_sort_by(Option<SortTrialComponentsBy>)
:
required: falseThe property used to sort results. The default value is
CreationTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order. The default value is
Descending
.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of components to return in the response. The default value is 10.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the previous call to
ListTrialComponents
didn’t return the full set of components, the call returns a token for getting the next set of components.
- On success, responds with
ListTrialComponentsOutput
with field(s):trial_component_summaries(Option<Vec::<TrialComponentSummary>>)
:A list of the summaries of your trial components.
next_token(Option<String>)
:A token for getting the next set of components, if there are any.
- On failure, responds with
SdkError<ListTrialComponentsError>
Source§impl Client
impl Client
Sourcepub fn list_trials(&self) -> ListTrialsFluentBuilder
pub fn list_trials(&self) -> ListTrialsFluentBuilder
Constructs a fluent builder for the ListTrials
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
experiment_name(impl Into<String>)
/set_experiment_name(Option<String>)
:
required: falseA filter that returns only trials that are part of the specified experiment.
trial_component_name(impl Into<String>)
/set_trial_component_name(Option<String>)
:
required: falseA filter that returns only trials that are associated with the specified trial component.
created_after(DateTime)
/set_created_after(Option<DateTime>)
:
required: falseA filter that returns only trials created after the specified time.
created_before(DateTime)
/set_created_before(Option<DateTime>)
:
required: falseA filter that returns only trials created before the specified time.
sort_by(SortTrialsBy)
/set_sort_by(Option<SortTrialsBy>)
:
required: falseThe property used to sort results. The default value is
CreationTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order. The default value is
Descending
.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of trials to return in the response. The default value is 10.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the previous call to
ListTrials
didn’t return the full set of trials, the call returns a token for getting the next set of trials.
- On success, responds with
ListTrialsOutput
with field(s):trial_summaries(Option<Vec::<TrialSummary>>)
:A list of the summaries of your trials.
next_token(Option<String>)
:A token for getting the next set of trials, if there are any.
- On failure, responds with
SdkError<ListTrialsError>
Source§impl Client
impl Client
Sourcepub fn list_user_profiles(&self) -> ListUserProfilesFluentBuilder
pub fn list_user_profiles(&self) -> ListUserProfilesFluentBuilder
Constructs a fluent builder for the ListUserProfiles
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThis parameter defines the maximum number of results that can be return in a single response. The
MaxResults
parameter is an upper bound, not a target. If there are more results available than the value specified, aNextToken
is provided in the response. TheNextToken
indicates that the user should get the next set of results by providing this token as a part of a subsequent call. The default value forMaxResults
is 10.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order for the results. The default is Ascending.
sort_by(UserProfileSortKey)
/set_sort_by(Option<UserProfileSortKey>)
:
required: falseThe parameter by which to sort the results. The default is CreationTime.
domain_id_equals(impl Into<String>)
/set_domain_id_equals(Option<String>)
:
required: falseA parameter by which to filter the results.
user_profile_name_contains(impl Into<String>)
/set_user_profile_name_contains(Option<String>)
:
required: falseA parameter by which to filter the results.
- On success, responds with
ListUserProfilesOutput
with field(s):user_profiles(Option<Vec::<UserProfileDetails>>)
:The list of user profiles.
next_token(Option<String>)
:If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
- On failure, responds with
SdkError<ListUserProfilesError>
Source§impl Client
impl Client
Sourcepub fn list_workforces(&self) -> ListWorkforcesFluentBuilder
pub fn list_workforces(&self) -> ListWorkforcesFluentBuilder
Constructs a fluent builder for the ListWorkforces
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
sort_by(ListWorkforcesSortByOptions)
/set_sort_by(Option<ListWorkforcesSortByOptions>)
:
required: falseSort workforces using the workforce name or creation date.
sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseSort workforces in ascending or descending order.
name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA filter you can use to search for workforces using part of the workforce name.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseA token to resume pagination.
max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of workforces returned in the response.
- On success, responds with
ListWorkforcesOutput
with field(s):workforces(Option<Vec::<Workforce>>)
:A list containing information about your workforce.
next_token(Option<String>)
:A token to resume pagination.
- On failure, responds with
SdkError<ListWorkforcesError>
Source§impl Client
impl Client
Sourcepub fn list_workteams(&self) -> ListWorkteamsFluentBuilder
pub fn list_workteams(&self) -> ListWorkteamsFluentBuilder
Constructs a fluent builder for the ListWorkteams
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
sort_by(ListWorkteamsSortByOptions)
/set_sort_by(Option<ListWorkteamsSortByOptions>)
:
required: falseThe field to sort results by. The default is
CreationTime
.sort_order(SortOrder)
/set_sort_order(Option<SortOrder>)
:
required: falseThe sort order for results. The default is
Ascending
.name_contains(impl Into<String>)
/set_name_contains(Option<String>)
:
required: falseA string in the work team’s name. This filter returns only work teams whose name contains the specified string.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf the result of the previous
ListWorkteams
request was truncated, the response includes aNextToken
. To retrieve the next set of labeling jobs, use the token in the next request.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of work teams to return in each page of the response.
- On success, responds with
ListWorkteamsOutput
with field(s):workteams(Option<Vec::<Workteam>>)
:An array of
Workteam
objects, each describing a work team.next_token(Option<String>)
:If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of work teams, use it in the subsequent request.
- On failure, responds with
SdkError<ListWorkteamsError>
Source§impl Client
impl Client
Sourcepub fn put_model_package_group_policy(
&self,
) -> PutModelPackageGroupPolicyFluentBuilder
pub fn put_model_package_group_policy( &self, ) -> PutModelPackageGroupPolicyFluentBuilder
Constructs a fluent builder for the PutModelPackageGroupPolicy
operation.
- The fluent builder is configurable:
model_package_group_name(impl Into<String>)
/set_model_package_group_name(Option<String>)
:
required: trueThe name of the model group to add a resource policy to.
resource_policy(impl Into<String>)
/set_resource_policy(Option<String>)
:
required: trueThe resource policy for the model group.
- On success, responds with
PutModelPackageGroupPolicyOutput
with field(s):model_package_group_arn(Option<String>)
:The Amazon Resource Name (ARN) of the model package group.
- On failure, responds with
SdkError<PutModelPackageGroupPolicyError>
Source§impl Client
impl Client
Sourcepub fn query_lineage(&self) -> QueryLineageFluentBuilder
pub fn query_lineage(&self) -> QueryLineageFluentBuilder
Constructs a fluent builder for the QueryLineage
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
start_arns(impl Into<String>)
/set_start_arns(Option<Vec::<String>>)
:
required: falseA list of resource Amazon Resource Name (ARN) that represent the starting point for your lineage query.
direction(Direction)
/set_direction(Option<Direction>)
:
required: falseAssociations between lineage entities have a direction. This parameter determines the direction from the StartArn(s) that the query traverses.
include_edges(bool)
/set_include_edges(Option<bool>)
:
required: falseSetting this value to
True
retrieves not only the entities of interest but also the Associations and lineage entities on the path. Set toFalse
to only return lineage entities that match your query.filters(QueryFilters)
/set_filters(Option<QueryFilters>)
:
required: falseA set of filtering parameters that allow you to specify which entities should be returned.
-
Properties - Key-value pairs to match on the lineage entities’ properties.
-
LineageTypes - A set of lineage entity types to match on. For example:
TrialComponent
,Artifact
, orContext
. -
CreatedBefore - Filter entities created before this date.
-
ModifiedBefore - Filter entities modified before this date.
-
ModifiedAfter - Filter entities modified after this date.
-
max_depth(i32)
/set_max_depth(Option<i32>)
:
required: falseThe maximum depth in lineage relationships from the
StartArns
that are traversed. Depth is a measure of the number ofAssociations
from theStartArn
entity to the matched results.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseLimits the number of vertices in the results. Use the
NextToken
in a response to to retrieve the next page of results.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseLimits the number of vertices in the request. Use the
NextToken
in a response to to retrieve the next page of results.
- On success, responds with
QueryLineageOutput
with field(s):vertices(Option<Vec::<Vertex>>)
:A list of vertices connected to the start entity(ies) in the lineage graph.
edges(Option<Vec::<Edge>>)
:A list of edges that connect vertices in the response.
next_token(Option<String>)
:Limits the number of vertices in the response. Use the
NextToken
in a response to to retrieve the next page of results.
- On failure, responds with
SdkError<QueryLineageError>
Source§impl Client
impl Client
Sourcepub fn register_devices(&self) -> RegisterDevicesFluentBuilder
pub fn register_devices(&self) -> RegisterDevicesFluentBuilder
Constructs a fluent builder for the RegisterDevices
operation.
- The fluent builder is configurable:
device_fleet_name(impl Into<String>)
/set_device_fleet_name(Option<String>)
:
required: trueThe name of the fleet.
devices(Device)
/set_devices(Option<Vec::<Device>>)
:
required: trueA list of devices to register with SageMaker Edge Manager.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseThe tags associated with devices.
- On success, responds with
RegisterDevicesOutput
- On failure, responds with
SdkError<RegisterDevicesError>
Source§impl Client
impl Client
Sourcepub fn render_ui_template(&self) -> RenderUiTemplateFluentBuilder
pub fn render_ui_template(&self) -> RenderUiTemplateFluentBuilder
Constructs a fluent builder for the RenderUiTemplate
operation.
- The fluent builder is configurable:
ui_template(UiTemplate)
/set_ui_template(Option<UiTemplate>)
:
required: falseA
Template
object containing the worker UI template to render.task(RenderableTask)
/set_task(Option<RenderableTask>)
:
required: trueA
RenderableTask
object containing a representative task to render.role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) that has access to the S3 objects that are used by the template.
human_task_ui_arn(impl Into<String>)
/set_human_task_ui_arn(Option<String>)
:
required: falseThe
HumanTaskUiArn
of the worker UI that you want to render. Do not provide aHumanTaskUiArn
if you use theUiTemplate
parameter.See a list of available Human Ui Amazon Resource Names (ARNs) in UiConfig.
- On success, responds with
RenderUiTemplateOutput
with field(s):rendered_content(Option<String>)
:A Liquid template that renders the HTML for the worker UI.
errors(Option<Vec::<RenderingError>>)
:A list of one or more
RenderingError
objects if any were encountered while rendering the template. If there were no errors, the list is empty.
- On failure, responds with
SdkError<RenderUiTemplateError>
Source§impl Client
impl Client
Sourcepub fn retry_pipeline_execution(&self) -> RetryPipelineExecutionFluentBuilder
pub fn retry_pipeline_execution(&self) -> RetryPipelineExecutionFluentBuilder
Constructs a fluent builder for the RetryPipelineExecution
operation.
- The fluent builder is configurable:
pipeline_execution_arn(impl Into<String>)
/set_pipeline_execution_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of the pipeline execution.
client_request_token(impl Into<String>)
/set_client_request_token(Option<String>)
:
required: trueA unique, case-sensitive identifier that you provide to ensure the idempotency of the operation. An idempotent operation completes no more than once.
parallelism_configuration(ParallelismConfiguration)
/set_parallelism_configuration(Option<ParallelismConfiguration>)
:
required: falseThis configuration, if specified, overrides the parallelism configuration of the parent pipeline.
- On success, responds with
RetryPipelineExecutionOutput
with field(s):pipeline_execution_arn(Option<String>)
:The Amazon Resource Name (ARN) of the pipeline execution.
- On failure, responds with
SdkError<RetryPipelineExecutionError>
Source§impl Client
impl Client
Sourcepub fn search(&self) -> SearchFluentBuilder
pub fn search(&self) -> SearchFluentBuilder
Constructs a fluent builder for the Search
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
resource(ResourceType)
/set_resource(Option<ResourceType>)
:
required: trueThe name of the SageMaker resource to search for.
search_expression(SearchExpression)
/set_search_expression(Option<SearchExpression>)
:
required: falseA Boolean conditional statement. Resources must satisfy this condition to be included in search results. You must provide at least one subexpression, filter, or nested filter. The maximum number of recursive
SubExpressions
,NestedFilters
, andFilters
that can be included in aSearchExpression
object is 50.sort_by(impl Into<String>)
/set_sort_by(Option<String>)
:
required: falseThe name of the resource property used to sort the
SearchResults
. The default isLastModifiedTime
.sort_order(SearchSortOrder)
/set_sort_order(Option<SearchSortOrder>)
:
required: falseHow
SearchResults
are ordered. Valid values areAscending
orDescending
. The default isDescending
.next_token(impl Into<String>)
/set_next_token(Option<String>)
:
required: falseIf more than
MaxResults
resources match the specifiedSearchExpression
, the response includes aNextToken
. TheNextToken
can be passed to the nextSearchRequest
to continue retrieving results.max_results(i32)
/set_max_results(Option<i32>)
:
required: falseThe maximum number of results to return.
cross_account_filter_option(CrossAccountFilterOption)
/set_cross_account_filter_option(Option<CrossAccountFilterOption>)
:
required: falseA cross account filter option. When the value is
“CrossAccount”
the search results will only include resources made discoverable to you from other accounts. When the value is“SameAccount”
ornull
the search results will only include resources from your account. Default isnull
. For more information on searching for resources made discoverable to your account, see Search discoverable resources in the SageMaker Developer Guide. The maximum number ofResourceCatalog
s viewable is 1000.visibility_conditions(VisibilityConditions)
/set_visibility_conditions(Option<Vec::<VisibilityConditions>>)
:
required: falseLimits the results of your search request to the resources that you can access.
- On success, responds with
SearchOutput
with field(s):results(Option<Vec::<SearchRecord>>)
:A list of
SearchRecord
objects.next_token(Option<String>)
:If the result of the previous
Search
request was truncated, the response includes a NextToken. To retrieve the next set of results, use the token in the next request.total_hits(Option<TotalHits>)
:The total number of matching results.
- On failure, responds with
SdkError<SearchError>
Source§impl Client
impl Client
Sourcepub fn search_training_plan_offerings(
&self,
) -> SearchTrainingPlanOfferingsFluentBuilder
pub fn search_training_plan_offerings( &self, ) -> SearchTrainingPlanOfferingsFluentBuilder
Constructs a fluent builder for the SearchTrainingPlanOfferings
operation.
- The fluent builder is configurable:
instance_type(ReservedCapacityInstanceType)
/set_instance_type(Option<ReservedCapacityInstanceType>)
:
required: falseThe type of instance you want to search for in the available training plan offerings. This field allows you to filter the search results based on the specific compute resources you require for your SageMaker training jobs or SageMaker HyperPod clusters. When searching for training plan offerings, specifying the instance type helps you find Reserved Instances that match your computational needs.
instance_count(i32)
/set_instance_count(Option<i32>)
:
required: falseThe number of instances you want to reserve in the training plan offerings. This allows you to specify the quantity of compute resources needed for your SageMaker training jobs or SageMaker HyperPod clusters, helping you find reserved capacity offerings that match your requirements.
start_time_after(DateTime)
/set_start_time_after(Option<DateTime>)
:
required: falseA filter to search for training plan offerings with a start time after a specified date.
end_time_before(DateTime)
/set_end_time_before(Option<DateTime>)
:
required: falseA filter to search for reserved capacity offerings with an end time before a specified date.
duration_hours(i64)
/set_duration_hours(Option<i64>)
:
required: trueThe desired duration in hours for the training plan offerings.
target_resources(SageMakerResourceName)
/set_target_resources(Option<Vec::<SageMakerResourceName>>)
:
required: trueThe target resources (e.g., SageMaker Training Jobs, SageMaker HyperPod) to search for in the offerings.
Training plans are specific to their target resource.
-
A training plan designed for SageMaker training jobs can only be used to schedule and run training jobs.
-
A training plan for HyperPod clusters can be used exclusively to provide compute resources to a cluster’s instance group.
-
- On success, responds with
SearchTrainingPlanOfferingsOutput
with field(s):training_plan_offerings(Option<Vec::<TrainingPlanOffering>>)
:A list of training plan offerings that match the search criteria.
- On failure, responds with
SdkError<SearchTrainingPlanOfferingsError>
Source§impl Client
impl Client
Sourcepub fn send_pipeline_execution_step_failure(
&self,
) -> SendPipelineExecutionStepFailureFluentBuilder
pub fn send_pipeline_execution_step_failure( &self, ) -> SendPipelineExecutionStepFailureFluentBuilder
Constructs a fluent builder for the SendPipelineExecutionStepFailure
operation.
- The fluent builder is configurable:
callback_token(impl Into<String>)
/set_callback_token(Option<String>)
:
required: trueThe pipeline generated token from the Amazon SQS queue.
failure_reason(impl Into<String>)
/set_failure_reason(Option<String>)
:
required: falseA message describing why the step failed.
client_request_token(impl Into<String>)
/set_client_request_token(Option<String>)
:
required: falseA unique, case-sensitive identifier that you provide to ensure the idempotency of the operation. An idempotent operation completes no more than one time.
- On success, responds with
SendPipelineExecutionStepFailureOutput
with field(s):pipeline_execution_arn(Option<String>)
:The Amazon Resource Name (ARN) of the pipeline execution.
- On failure, responds with
SdkError<SendPipelineExecutionStepFailureError>
Source§impl Client
impl Client
Sourcepub fn send_pipeline_execution_step_success(
&self,
) -> SendPipelineExecutionStepSuccessFluentBuilder
pub fn send_pipeline_execution_step_success( &self, ) -> SendPipelineExecutionStepSuccessFluentBuilder
Constructs a fluent builder for the SendPipelineExecutionStepSuccess
operation.
- The fluent builder is configurable:
callback_token(impl Into<String>)
/set_callback_token(Option<String>)
:
required: trueThe pipeline generated token from the Amazon SQS queue.
output_parameters(OutputParameter)
/set_output_parameters(Option<Vec::<OutputParameter>>)
:
required: falseA list of the output parameters of the callback step.
client_request_token(impl Into<String>)
/set_client_request_token(Option<String>)
:
required: falseA unique, case-sensitive identifier that you provide to ensure the idempotency of the operation. An idempotent operation completes no more than one time.
- On success, responds with
SendPipelineExecutionStepSuccessOutput
with field(s):pipeline_execution_arn(Option<String>)
:The Amazon Resource Name (ARN) of the pipeline execution.
- On failure, responds with
SdkError<SendPipelineExecutionStepSuccessError>
Source§impl Client
impl Client
Sourcepub fn start_edge_deployment_stage(
&self,
) -> StartEdgeDeploymentStageFluentBuilder
pub fn start_edge_deployment_stage( &self, ) -> StartEdgeDeploymentStageFluentBuilder
Constructs a fluent builder for the StartEdgeDeploymentStage
operation.
- The fluent builder is configurable:
edge_deployment_plan_name(impl Into<String>)
/set_edge_deployment_plan_name(Option<String>)
:
required: trueThe name of the edge deployment plan to start.
stage_name(impl Into<String>)
/set_stage_name(Option<String>)
:
required: trueThe name of the stage to start.
- On success, responds with
StartEdgeDeploymentStageOutput
- On failure, responds with
SdkError<StartEdgeDeploymentStageError>
Source§impl Client
impl Client
Sourcepub fn start_inference_experiment(
&self,
) -> StartInferenceExperimentFluentBuilder
pub fn start_inference_experiment( &self, ) -> StartInferenceExperimentFluentBuilder
Constructs a fluent builder for the StartInferenceExperiment
operation.
- The fluent builder is configurable:
name(impl Into<String>)
/set_name(Option<String>)
:
required: trueThe name of the inference experiment to start.
- On success, responds with
StartInferenceExperimentOutput
with field(s):inference_experiment_arn(Option<String>)
:The ARN of the started inference experiment to start.
- On failure, responds with
SdkError<StartInferenceExperimentError>
Source§impl Client
impl Client
Sourcepub fn start_mlflow_tracking_server(
&self,
) -> StartMlflowTrackingServerFluentBuilder
pub fn start_mlflow_tracking_server( &self, ) -> StartMlflowTrackingServerFluentBuilder
Constructs a fluent builder for the StartMlflowTrackingServer
operation.
- The fluent builder is configurable:
tracking_server_name(impl Into<String>)
/set_tracking_server_name(Option<String>)
:
required: trueThe name of the tracking server to start.
- On success, responds with
StartMlflowTrackingServerOutput
with field(s):tracking_server_arn(Option<String>)
:The ARN of the started tracking server.
- On failure, responds with
SdkError<StartMlflowTrackingServerError>
Source§impl Client
impl Client
Sourcepub fn start_monitoring_schedule(&self) -> StartMonitoringScheduleFluentBuilder
pub fn start_monitoring_schedule(&self) -> StartMonitoringScheduleFluentBuilder
Constructs a fluent builder for the StartMonitoringSchedule
operation.
- The fluent builder is configurable:
monitoring_schedule_name(impl Into<String>)
/set_monitoring_schedule_name(Option<String>)
:
required: trueThe name of the schedule to start.
- On success, responds with
StartMonitoringScheduleOutput
- On failure, responds with
SdkError<StartMonitoringScheduleError>
Source§impl Client
impl Client
Sourcepub fn start_notebook_instance(&self) -> StartNotebookInstanceFluentBuilder
pub fn start_notebook_instance(&self) -> StartNotebookInstanceFluentBuilder
Constructs a fluent builder for the StartNotebookInstance
operation.
- The fluent builder is configurable:
notebook_instance_name(impl Into<String>)
/set_notebook_instance_name(Option<String>)
:
required: trueThe name of the notebook instance to start.
- On success, responds with
StartNotebookInstanceOutput
- On failure, responds with
SdkError<StartNotebookInstanceError>
Source§impl Client
impl Client
Sourcepub fn start_pipeline_execution(&self) -> StartPipelineExecutionFluentBuilder
pub fn start_pipeline_execution(&self) -> StartPipelineExecutionFluentBuilder
Constructs a fluent builder for the StartPipelineExecution
operation.
- The fluent builder is configurable:
pipeline_name(impl Into<String>)
/set_pipeline_name(Option<String>)
:
required: trueThe name or Amazon Resource Name (ARN) of the pipeline.
pipeline_execution_display_name(impl Into<String>)
/set_pipeline_execution_display_name(Option<String>)
:
required: falseThe display name of the pipeline execution.
pipeline_parameters(Parameter)
/set_pipeline_parameters(Option<Vec::<Parameter>>)
:
required: falseContains a list of pipeline parameters. This list can be empty.
pipeline_execution_description(impl Into<String>)
/set_pipeline_execution_description(Option<String>)
:
required: falseThe description of the pipeline execution.
client_request_token(impl Into<String>)
/set_client_request_token(Option<String>)
:
required: trueA unique, case-sensitive identifier that you provide to ensure the idempotency of the operation. An idempotent operation completes no more than once.
parallelism_configuration(ParallelismConfiguration)
/set_parallelism_configuration(Option<ParallelismConfiguration>)
:
required: falseThis configuration, if specified, overrides the parallelism configuration of the parent pipeline for this specific run.
selective_execution_config(SelectiveExecutionConfig)
/set_selective_execution_config(Option<SelectiveExecutionConfig>)
:
required: falseThe selective execution configuration applied to the pipeline run.
- On success, responds with
StartPipelineExecutionOutput
with field(s):pipeline_execution_arn(Option<String>)
:The Amazon Resource Name (ARN) of the pipeline execution.
- On failure, responds with
SdkError<StartPipelineExecutionError>
Source§impl Client
impl Client
Sourcepub fn stop_auto_ml_job(&self) -> StopAutoMLJobFluentBuilder
pub fn stop_auto_ml_job(&self) -> StopAutoMLJobFluentBuilder
Constructs a fluent builder for the StopAutoMLJob
operation.
- The fluent builder is configurable:
auto_ml_job_name(impl Into<String>)
/set_auto_ml_job_name(Option<String>)
:
required: trueThe name of the object you are requesting.
- On success, responds with
StopAutoMlJobOutput
- On failure, responds with
SdkError<StopAutoMLJobError>
Source§impl Client
impl Client
Sourcepub fn stop_compilation_job(&self) -> StopCompilationJobFluentBuilder
pub fn stop_compilation_job(&self) -> StopCompilationJobFluentBuilder
Constructs a fluent builder for the StopCompilationJob
operation.
- The fluent builder is configurable:
compilation_job_name(impl Into<String>)
/set_compilation_job_name(Option<String>)
:
required: trueThe name of the model compilation job to stop.
- On success, responds with
StopCompilationJobOutput
- On failure, responds with
SdkError<StopCompilationJobError>
Source§impl Client
impl Client
Sourcepub fn stop_edge_deployment_stage(&self) -> StopEdgeDeploymentStageFluentBuilder
pub fn stop_edge_deployment_stage(&self) -> StopEdgeDeploymentStageFluentBuilder
Constructs a fluent builder for the StopEdgeDeploymentStage
operation.
- The fluent builder is configurable:
edge_deployment_plan_name(impl Into<String>)
/set_edge_deployment_plan_name(Option<String>)
:
required: trueThe name of the edge deployment plan to stop.
stage_name(impl Into<String>)
/set_stage_name(Option<String>)
:
required: trueThe name of the stage to stop.
- On success, responds with
StopEdgeDeploymentStageOutput
- On failure, responds with
SdkError<StopEdgeDeploymentStageError>
Source§impl Client
impl Client
Sourcepub fn stop_edge_packaging_job(&self) -> StopEdgePackagingJobFluentBuilder
pub fn stop_edge_packaging_job(&self) -> StopEdgePackagingJobFluentBuilder
Constructs a fluent builder for the StopEdgePackagingJob
operation.
- The fluent builder is configurable:
edge_packaging_job_name(impl Into<String>)
/set_edge_packaging_job_name(Option<String>)
:
required: trueThe name of the edge packaging job.
- On success, responds with
StopEdgePackagingJobOutput
- On failure, responds with
SdkError<StopEdgePackagingJobError>
Source§impl Client
impl Client
Sourcepub fn stop_hyper_parameter_tuning_job(
&self,
) -> StopHyperParameterTuningJobFluentBuilder
pub fn stop_hyper_parameter_tuning_job( &self, ) -> StopHyperParameterTuningJobFluentBuilder
Constructs a fluent builder for the StopHyperParameterTuningJob
operation.
- The fluent builder is configurable:
hyper_parameter_tuning_job_name(impl Into<String>)
/set_hyper_parameter_tuning_job_name(Option<String>)
:
required: trueThe name of the tuning job to stop.
- On success, responds with
StopHyperParameterTuningJobOutput
- On failure, responds with
SdkError<StopHyperParameterTuningJobError>
Source§impl Client
impl Client
Sourcepub fn stop_inference_experiment(&self) -> StopInferenceExperimentFluentBuilder
pub fn stop_inference_experiment(&self) -> StopInferenceExperimentFluentBuilder
Constructs a fluent builder for the StopInferenceExperiment
operation.
- The fluent builder is configurable:
name(impl Into<String>)
/set_name(Option<String>)
:
required: trueThe name of the inference experiment to stop.
model_variant_actions(impl Into<String>, ModelVariantAction)
/set_model_variant_actions(Option<HashMap::<String, ModelVariantAction>>)
:
required: trueArray of key-value pairs, with names of variants mapped to actions. The possible actions are the following:
-
Promote
- Promote the shadow variant to a production variant -
Remove
- Delete the variant -
Retain
- Keep the variant as it is
-
desired_model_variants(ModelVariantConfig)
/set_desired_model_variants(Option<Vec::<ModelVariantConfig>>)
:
required: falseAn array of
ModelVariantConfig
objects. There is one for each variant that you want to deploy after the inference experiment stops. EachModelVariantConfig
describes the infrastructure configuration for deploying the corresponding variant.desired_state(InferenceExperimentStopDesiredState)
/set_desired_state(Option<InferenceExperimentStopDesiredState>)
:
required: falseThe desired state of the experiment after stopping. The possible states are the following:
-
Completed
: The experiment completed successfully -
Cancelled
: The experiment was canceled
-
reason(impl Into<String>)
/set_reason(Option<String>)
:
required: falseThe reason for stopping the experiment.
- On success, responds with
StopInferenceExperimentOutput
with field(s):inference_experiment_arn(Option<String>)
:The ARN of the stopped inference experiment.
- On failure, responds with
SdkError<StopInferenceExperimentError>
Source§impl Client
impl Client
Sourcepub fn stop_inference_recommendations_job(
&self,
) -> StopInferenceRecommendationsJobFluentBuilder
pub fn stop_inference_recommendations_job( &self, ) -> StopInferenceRecommendationsJobFluentBuilder
Constructs a fluent builder for the StopInferenceRecommendationsJob
operation.
- The fluent builder is configurable:
job_name(impl Into<String>)
/set_job_name(Option<String>)
:
required: trueThe name of the job you want to stop.
- On success, responds with
StopInferenceRecommendationsJobOutput
- On failure, responds with
SdkError<StopInferenceRecommendationsJobError>
Source§impl Client
impl Client
Sourcepub fn stop_labeling_job(&self) -> StopLabelingJobFluentBuilder
pub fn stop_labeling_job(&self) -> StopLabelingJobFluentBuilder
Constructs a fluent builder for the StopLabelingJob
operation.
- The fluent builder is configurable:
labeling_job_name(impl Into<String>)
/set_labeling_job_name(Option<String>)
:
required: trueThe name of the labeling job to stop.
- On success, responds with
StopLabelingJobOutput
- On failure, responds with
SdkError<StopLabelingJobError>
Source§impl Client
impl Client
Sourcepub fn stop_mlflow_tracking_server(
&self,
) -> StopMlflowTrackingServerFluentBuilder
pub fn stop_mlflow_tracking_server( &self, ) -> StopMlflowTrackingServerFluentBuilder
Constructs a fluent builder for the StopMlflowTrackingServer
operation.
- The fluent builder is configurable:
tracking_server_name(impl Into<String>)
/set_tracking_server_name(Option<String>)
:
required: trueThe name of the tracking server to stop.
- On success, responds with
StopMlflowTrackingServerOutput
with field(s):tracking_server_arn(Option<String>)
:The ARN of the stopped tracking server.
- On failure, responds with
SdkError<StopMlflowTrackingServerError>
Source§impl Client
impl Client
Sourcepub fn stop_monitoring_schedule(&self) -> StopMonitoringScheduleFluentBuilder
pub fn stop_monitoring_schedule(&self) -> StopMonitoringScheduleFluentBuilder
Constructs a fluent builder for the StopMonitoringSchedule
operation.
- The fluent builder is configurable:
monitoring_schedule_name(impl Into<String>)
/set_monitoring_schedule_name(Option<String>)
:
required: trueThe name of the schedule to stop.
- On success, responds with
StopMonitoringScheduleOutput
- On failure, responds with
SdkError<StopMonitoringScheduleError>
Source§impl Client
impl Client
Sourcepub fn stop_notebook_instance(&self) -> StopNotebookInstanceFluentBuilder
pub fn stop_notebook_instance(&self) -> StopNotebookInstanceFluentBuilder
Constructs a fluent builder for the StopNotebookInstance
operation.
- The fluent builder is configurable:
notebook_instance_name(impl Into<String>)
/set_notebook_instance_name(Option<String>)
:
required: trueThe name of the notebook instance to terminate.
- On success, responds with
StopNotebookInstanceOutput
- On failure, responds with
SdkError<StopNotebookInstanceError>
Source§impl Client
impl Client
Sourcepub fn stop_optimization_job(&self) -> StopOptimizationJobFluentBuilder
pub fn stop_optimization_job(&self) -> StopOptimizationJobFluentBuilder
Constructs a fluent builder for the StopOptimizationJob
operation.
- The fluent builder is configurable:
optimization_job_name(impl Into<String>)
/set_optimization_job_name(Option<String>)
:
required: trueThe name that you assigned to the optimization job.
- On success, responds with
StopOptimizationJobOutput
- On failure, responds with
SdkError<StopOptimizationJobError>
Source§impl Client
impl Client
Sourcepub fn stop_pipeline_execution(&self) -> StopPipelineExecutionFluentBuilder
pub fn stop_pipeline_execution(&self) -> StopPipelineExecutionFluentBuilder
Constructs a fluent builder for the StopPipelineExecution
operation.
- The fluent builder is configurable:
pipeline_execution_arn(impl Into<String>)
/set_pipeline_execution_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of the pipeline execution.
client_request_token(impl Into<String>)
/set_client_request_token(Option<String>)
:
required: trueA unique, case-sensitive identifier that you provide to ensure the idempotency of the operation. An idempotent operation completes no more than once.
- On success, responds with
StopPipelineExecutionOutput
with field(s):pipeline_execution_arn(Option<String>)
:The Amazon Resource Name (ARN) of the pipeline execution.
- On failure, responds with
SdkError<StopPipelineExecutionError>
Source§impl Client
impl Client
Sourcepub fn stop_processing_job(&self) -> StopProcessingJobFluentBuilder
pub fn stop_processing_job(&self) -> StopProcessingJobFluentBuilder
Constructs a fluent builder for the StopProcessingJob
operation.
- The fluent builder is configurable:
processing_job_name(impl Into<String>)
/set_processing_job_name(Option<String>)
:
required: trueThe name of the processing job to stop.
- On success, responds with
StopProcessingJobOutput
- On failure, responds with
SdkError<StopProcessingJobError>
Source§impl Client
impl Client
Sourcepub fn stop_training_job(&self) -> StopTrainingJobFluentBuilder
pub fn stop_training_job(&self) -> StopTrainingJobFluentBuilder
Constructs a fluent builder for the StopTrainingJob
operation.
- The fluent builder is configurable:
training_job_name(impl Into<String>)
/set_training_job_name(Option<String>)
:
required: trueThe name of the training job to stop.
- On success, responds with
StopTrainingJobOutput
- On failure, responds with
SdkError<StopTrainingJobError>
Source§impl Client
impl Client
Sourcepub fn stop_transform_job(&self) -> StopTransformJobFluentBuilder
pub fn stop_transform_job(&self) -> StopTransformJobFluentBuilder
Constructs a fluent builder for the StopTransformJob
operation.
- The fluent builder is configurable:
transform_job_name(impl Into<String>)
/set_transform_job_name(Option<String>)
:
required: trueThe name of the batch transform job to stop.
- On success, responds with
StopTransformJobOutput
- On failure, responds with
SdkError<StopTransformJobError>
Source§impl Client
impl Client
Sourcepub fn update_action(&self) -> UpdateActionFluentBuilder
pub fn update_action(&self) -> UpdateActionFluentBuilder
Constructs a fluent builder for the UpdateAction
operation.
- The fluent builder is configurable:
action_name(impl Into<String>)
/set_action_name(Option<String>)
:
required: trueThe name of the action to update.
description(impl Into<String>)
/set_description(Option<String>)
:
required: falseThe new description for the action.
status(ActionStatus)
/set_status(Option<ActionStatus>)
:
required: falseThe new status for the action.
properties(impl Into<String>, impl Into<String>)
/set_properties(Option<HashMap::<String, String>>)
:
required: falseThe new list of properties. Overwrites the current property list.
properties_to_remove(impl Into<String>)
/set_properties_to_remove(Option<Vec::<String>>)
:
required: falseA list of properties to remove.
- On success, responds with
UpdateActionOutput
with field(s):action_arn(Option<String>)
:The Amazon Resource Name (ARN) of the action.
- On failure, responds with
SdkError<UpdateActionError>
Source§impl Client
impl Client
Sourcepub fn update_app_image_config(&self) -> UpdateAppImageConfigFluentBuilder
pub fn update_app_image_config(&self) -> UpdateAppImageConfigFluentBuilder
Constructs a fluent builder for the UpdateAppImageConfig
operation.
- The fluent builder is configurable:
app_image_config_name(impl Into<String>)
/set_app_image_config_name(Option<String>)
:
required: trueThe name of the AppImageConfig to update.
kernel_gateway_image_config(KernelGatewayImageConfig)
/set_kernel_gateway_image_config(Option<KernelGatewayImageConfig>)
:
required: falseThe new KernelGateway app to run on the image.
jupyter_lab_app_image_config(JupyterLabAppImageConfig)
/set_jupyter_lab_app_image_config(Option<JupyterLabAppImageConfig>)
:
required: falseThe JupyterLab app running on the image.
code_editor_app_image_config(CodeEditorAppImageConfig)
/set_code_editor_app_image_config(Option<CodeEditorAppImageConfig>)
:
required: falseThe Code Editor app running on the image.
- On success, responds with
UpdateAppImageConfigOutput
with field(s):app_image_config_arn(Option<String>)
:The ARN for the AppImageConfig.
- On failure, responds with
SdkError<UpdateAppImageConfigError>
Source§impl Client
impl Client
Sourcepub fn update_artifact(&self) -> UpdateArtifactFluentBuilder
pub fn update_artifact(&self) -> UpdateArtifactFluentBuilder
Constructs a fluent builder for the UpdateArtifact
operation.
- The fluent builder is configurable:
artifact_arn(impl Into<String>)
/set_artifact_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of the artifact to update.
artifact_name(impl Into<String>)
/set_artifact_name(Option<String>)
:
required: falseThe new name for the artifact.
properties(impl Into<String>, impl Into<String>)
/set_properties(Option<HashMap::<String, String>>)
:
required: falseThe new list of properties. Overwrites the current property list.
properties_to_remove(impl Into<String>)
/set_properties_to_remove(Option<Vec::<String>>)
:
required: falseA list of properties to remove.
- On success, responds with
UpdateArtifactOutput
with field(s):artifact_arn(Option<String>)
:The Amazon Resource Name (ARN) of the artifact.
- On failure, responds with
SdkError<UpdateArtifactError>
Source§impl Client
impl Client
Sourcepub fn update_cluster(&self) -> UpdateClusterFluentBuilder
pub fn update_cluster(&self) -> UpdateClusterFluentBuilder
Constructs a fluent builder for the UpdateCluster
operation.
- The fluent builder is configurable:
cluster_name(impl Into<String>)
/set_cluster_name(Option<String>)
:
required: trueSpecify the name of the SageMaker HyperPod cluster you want to update.
instance_groups(ClusterInstanceGroupSpecification)
/set_instance_groups(Option<Vec::<ClusterInstanceGroupSpecification>>)
:
required: trueSpecify the instance groups to update.
node_recovery(ClusterNodeRecovery)
/set_node_recovery(Option<ClusterNodeRecovery>)
:
required: falseThe node recovery mode to be applied to the SageMaker HyperPod cluster.
instance_groups_to_delete(impl Into<String>)
/set_instance_groups_to_delete(Option<Vec::<String>>)
:
required: falseSpecify the names of the instance groups to delete. Use a single
,
as the separator between multiple names.
- On success, responds with
UpdateClusterOutput
with field(s):cluster_arn(Option<String>)
:The Amazon Resource Name (ARN) of the updated SageMaker HyperPod cluster.
- On failure, responds with
SdkError<UpdateClusterError>
Source§impl Client
impl Client
Sourcepub fn update_cluster_scheduler_config(
&self,
) -> UpdateClusterSchedulerConfigFluentBuilder
pub fn update_cluster_scheduler_config( &self, ) -> UpdateClusterSchedulerConfigFluentBuilder
Constructs a fluent builder for the UpdateClusterSchedulerConfig
operation.
- The fluent builder is configurable:
cluster_scheduler_config_id(impl Into<String>)
/set_cluster_scheduler_config_id(Option<String>)
:
required: trueID of the cluster policy.
target_version(i32)
/set_target_version(Option<i32>)
:
required: trueTarget version.
scheduler_config(SchedulerConfig)
/set_scheduler_config(Option<SchedulerConfig>)
:
required: falseCluster policy configuration.
description(impl Into<String>)
/set_description(Option<String>)
:
required: falseDescription of the cluster policy.
- On success, responds with
UpdateClusterSchedulerConfigOutput
with field(s):cluster_scheduler_config_arn(Option<String>)
:ARN of the cluster policy.
cluster_scheduler_config_version(Option<i32>)
:Version of the cluster policy.
- On failure, responds with
SdkError<UpdateClusterSchedulerConfigError>
Source§impl Client
impl Client
Sourcepub fn update_cluster_software(&self) -> UpdateClusterSoftwareFluentBuilder
pub fn update_cluster_software(&self) -> UpdateClusterSoftwareFluentBuilder
Constructs a fluent builder for the UpdateClusterSoftware
operation.
- The fluent builder is configurable:
cluster_name(impl Into<String>)
/set_cluster_name(Option<String>)
:
required: trueSpecify the name or the Amazon Resource Name (ARN) of the SageMaker HyperPod cluster you want to update for security patching.
instance_groups(UpdateClusterSoftwareInstanceGroupSpecification)
/set_instance_groups(Option<Vec::<UpdateClusterSoftwareInstanceGroupSpecification>>)
:
required: falseThe array of instance groups for which to update AMI versions.
deployment_config(DeploymentConfiguration)
/set_deployment_config(Option<DeploymentConfiguration>)
:
required: falseThe configuration to use when updating the AMI versions.
- On success, responds with
UpdateClusterSoftwareOutput
with field(s):cluster_arn(Option<String>)
:The Amazon Resource Name (ARN) of the SageMaker HyperPod cluster being updated for security patching.
- On failure, responds with
SdkError<UpdateClusterSoftwareError>
Source§impl Client
impl Client
Sourcepub fn update_code_repository(&self) -> UpdateCodeRepositoryFluentBuilder
pub fn update_code_repository(&self) -> UpdateCodeRepositoryFluentBuilder
Constructs a fluent builder for the UpdateCodeRepository
operation.
- The fluent builder is configurable:
code_repository_name(impl Into<String>)
/set_code_repository_name(Option<String>)
:
required: trueThe name of the Git repository to update.
git_config(GitConfigForUpdate)
/set_git_config(Option<GitConfigForUpdate>)
:
required: falseThe configuration of the git repository, including the URL and the Amazon Resource Name (ARN) of the Amazon Web Services Secrets Manager secret that contains the credentials used to access the repository. The secret must have a staging label of
AWSCURRENT
and must be in the following format:{“username”: UserName, “password”: Password}
- On success, responds with
UpdateCodeRepositoryOutput
with field(s):code_repository_arn(Option<String>)
:The ARN of the Git repository.
- On failure, responds with
SdkError<UpdateCodeRepositoryError>
Source§impl Client
impl Client
Sourcepub fn update_compute_quota(&self) -> UpdateComputeQuotaFluentBuilder
pub fn update_compute_quota(&self) -> UpdateComputeQuotaFluentBuilder
Constructs a fluent builder for the UpdateComputeQuota
operation.
- The fluent builder is configurable:
compute_quota_id(impl Into<String>)
/set_compute_quota_id(Option<String>)
:
required: trueID of the compute allocation definition.
target_version(i32)
/set_target_version(Option<i32>)
:
required: trueTarget version.
compute_quota_config(ComputeQuotaConfig)
/set_compute_quota_config(Option<ComputeQuotaConfig>)
:
required: falseConfiguration of the compute allocation definition. This includes the resource sharing option, and the setting to preempt low priority tasks.
compute_quota_target(ComputeQuotaTarget)
/set_compute_quota_target(Option<ComputeQuotaTarget>)
:
required: falseThe target entity to allocate compute resources to.
activation_state(ActivationState)
/set_activation_state(Option<ActivationState>)
:
required: falseThe state of the compute allocation being described. Use to enable or disable compute allocation.
Default is
Enabled
.description(impl Into<String>)
/set_description(Option<String>)
:
required: falseDescription of the compute allocation definition.
- On success, responds with
UpdateComputeQuotaOutput
with field(s):compute_quota_arn(Option<String>)
:ARN of the compute allocation definition.
compute_quota_version(Option<i32>)
:Version of the compute allocation definition.
- On failure, responds with
SdkError<UpdateComputeQuotaError>
Source§impl Client
impl Client
Sourcepub fn update_context(&self) -> UpdateContextFluentBuilder
pub fn update_context(&self) -> UpdateContextFluentBuilder
Constructs a fluent builder for the UpdateContext
operation.
- The fluent builder is configurable:
context_name(impl Into<String>)
/set_context_name(Option<String>)
:
required: trueThe name of the context to update.
description(impl Into<String>)
/set_description(Option<String>)
:
required: falseThe new description for the context.
properties(impl Into<String>, impl Into<String>)
/set_properties(Option<HashMap::<String, String>>)
:
required: falseThe new list of properties. Overwrites the current property list.
properties_to_remove(impl Into<String>)
/set_properties_to_remove(Option<Vec::<String>>)
:
required: falseA list of properties to remove.
- On success, responds with
UpdateContextOutput
with field(s):context_arn(Option<String>)
:The Amazon Resource Name (ARN) of the context.
- On failure, responds with
SdkError<UpdateContextError>
Source§impl Client
impl Client
Sourcepub fn update_device_fleet(&self) -> UpdateDeviceFleetFluentBuilder
pub fn update_device_fleet(&self) -> UpdateDeviceFleetFluentBuilder
Constructs a fluent builder for the UpdateDeviceFleet
operation.
- The fluent builder is configurable:
device_fleet_name(impl Into<String>)
/set_device_fleet_name(Option<String>)
:
required: trueThe name of the fleet.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:
required: falseThe Amazon Resource Name (ARN) of the device.
description(impl Into<String>)
/set_description(Option<String>)
:
required: falseDescription of the fleet.
output_config(EdgeOutputConfig)
/set_output_config(Option<EdgeOutputConfig>)
:
required: trueOutput configuration for storing sample data collected by the fleet.
enable_iot_role_alias(bool)
/set_enable_iot_role_alias(Option<bool>)
:
required: falseWhether to create an Amazon Web Services IoT Role Alias during device fleet creation. The name of the role alias generated will match this pattern: “SageMakerEdge-{DeviceFleetName}”.
For example, if your device fleet is called “demo-fleet”, the name of the role alias will be “SageMakerEdge-demo-fleet”.
- On success, responds with
UpdateDeviceFleetOutput
- On failure, responds with
SdkError<UpdateDeviceFleetError>
Source§impl Client
impl Client
Sourcepub fn update_devices(&self) -> UpdateDevicesFluentBuilder
pub fn update_devices(&self) -> UpdateDevicesFluentBuilder
Constructs a fluent builder for the UpdateDevices
operation.
- The fluent builder is configurable:
device_fleet_name(impl Into<String>)
/set_device_fleet_name(Option<String>)
:
required: trueThe name of the fleet the devices belong to.
devices(Device)
/set_devices(Option<Vec::<Device>>)
:
required: trueList of devices to register with Edge Manager agent.
- On success, responds with
UpdateDevicesOutput
- On failure, responds with
SdkError<UpdateDevicesError>
Source§impl Client
impl Client
Sourcepub fn update_domain(&self) -> UpdateDomainFluentBuilder
pub fn update_domain(&self) -> UpdateDomainFluentBuilder
Constructs a fluent builder for the UpdateDomain
operation.
- The fluent builder is configurable:
domain_id(impl Into<String>)
/set_domain_id(Option<String>)
:
required: trueThe ID of the domain to be updated.
default_user_settings(UserSettings)
/set_default_user_settings(Option<UserSettings>)
:
required: falseA collection of settings.
domain_settings_for_update(DomainSettingsForUpdate)
/set_domain_settings_for_update(Option<DomainSettingsForUpdate>)
:
required: falseA collection of
DomainSettings
configuration values to update.app_security_group_management(AppSecurityGroupManagement)
/set_app_security_group_management(Option<AppSecurityGroupManagement>)
:
required: falseThe entity that creates and manages the required security groups for inter-app communication in
VPCOnly
mode. Required whenCreateDomain.AppNetworkAccessType
isVPCOnly
andDomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn
is provided. If setting up the domain for use with RStudio, this value must be set toService
.default_space_settings(DefaultSpaceSettings)
/set_default_space_settings(Option<DefaultSpaceSettings>)
:
required: falseThe default settings for shared spaces that users create in the domain.
subnet_ids(impl Into<String>)
/set_subnet_ids(Option<Vec::<String>>)
:
required: falseThe VPC subnets that Studio uses for communication.
If removing subnets, ensure there are no apps in the
InService
,Pending
, orDeleting
state.app_network_access_type(AppNetworkAccessType)
/set_app_network_access_type(Option<AppNetworkAccessType>)
:
required: falseSpecifies the VPC used for non-EFS traffic.
-
PublicInternetOnly
- Non-EFS traffic is through a VPC managed by Amazon SageMaker AI, which allows direct internet access. -
VpcOnly
- All Studio traffic is through the specified VPC and subnets.
This configuration can only be modified if there are no apps in the
InService
,Pending
, orDeleting
state. The configuration cannot be updated ifDomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn
is already set orDomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn
is provided as part of the same request.-
tag_propagation(TagPropagation)
/set_tag_propagation(Option<TagPropagation>)
:
required: falseIndicates whether custom tag propagation is supported for the domain. Defaults to
DISABLED
.
- On success, responds with
UpdateDomainOutput
with field(s):domain_arn(Option<String>)
:The Amazon Resource Name (ARN) of the domain.
- On failure, responds with
SdkError<UpdateDomainError>
Source§impl Client
impl Client
Sourcepub fn update_endpoint(&self) -> UpdateEndpointFluentBuilder
pub fn update_endpoint(&self) -> UpdateEndpointFluentBuilder
Constructs a fluent builder for the UpdateEndpoint
operation.
- The fluent builder is configurable:
endpoint_name(impl Into<String>)
/set_endpoint_name(Option<String>)
:
required: trueThe name of the endpoint whose configuration you want to update.
endpoint_config_name(impl Into<String>)
/set_endpoint_config_name(Option<String>)
:
required: trueThe name of the new endpoint configuration.
retain_all_variant_properties(bool)
/set_retain_all_variant_properties(Option<bool>)
:
required: falseWhen updating endpoint resources, enables or disables the retention of variant properties, such as the instance count or the variant weight. To retain the variant properties of an endpoint when updating it, set
RetainAllVariantProperties
totrue
. To use the variant properties specified in a newEndpointConfig
call when updating an endpoint, setRetainAllVariantProperties
tofalse
. The default isfalse
.exclude_retained_variant_properties(VariantProperty)
/set_exclude_retained_variant_properties(Option<Vec::<VariantProperty>>)
:
required: falseWhen you are updating endpoint resources with
RetainAllVariantProperties
, whose value is set totrue
,ExcludeRetainedVariantProperties
specifies the list of type VariantProperty to override with the values provided byEndpointConfig
. If you don’t specify a value forExcludeRetainedVariantProperties
, no variant properties are overridden.deployment_config(DeploymentConfig)
/set_deployment_config(Option<DeploymentConfig>)
:
required: falseThe deployment configuration for an endpoint, which contains the desired deployment strategy and rollback configurations.
retain_deployment_config(bool)
/set_retain_deployment_config(Option<bool>)
:
required: falseSpecifies whether to reuse the last deployment configuration. The default value is false (the configuration is not reused).
- On success, responds with
UpdateEndpointOutput
with field(s):endpoint_arn(Option<String>)
:The Amazon Resource Name (ARN) of the endpoint.
- On failure, responds with
SdkError<UpdateEndpointError>
Source§impl Client
impl Client
Sourcepub fn update_endpoint_weights_and_capacities(
&self,
) -> UpdateEndpointWeightsAndCapacitiesFluentBuilder
pub fn update_endpoint_weights_and_capacities( &self, ) -> UpdateEndpointWeightsAndCapacitiesFluentBuilder
Constructs a fluent builder for the UpdateEndpointWeightsAndCapacities
operation.
- The fluent builder is configurable:
endpoint_name(impl Into<String>)
/set_endpoint_name(Option<String>)
:
required: trueThe name of an existing SageMaker endpoint.
desired_weights_and_capacities(DesiredWeightAndCapacity)
/set_desired_weights_and_capacities(Option<Vec::<DesiredWeightAndCapacity>>)
:
required: trueAn object that provides new capacity and weight values for a variant.
- On success, responds with
UpdateEndpointWeightsAndCapacitiesOutput
with field(s):endpoint_arn(Option<String>)
:The Amazon Resource Name (ARN) of the updated endpoint.
- On failure, responds with
SdkError<UpdateEndpointWeightsAndCapacitiesError>
Source§impl Client
impl Client
Sourcepub fn update_experiment(&self) -> UpdateExperimentFluentBuilder
pub fn update_experiment(&self) -> UpdateExperimentFluentBuilder
Constructs a fluent builder for the UpdateExperiment
operation.
- The fluent builder is configurable:
experiment_name(impl Into<String>)
/set_experiment_name(Option<String>)
:
required: trueThe name of the experiment to update.
display_name(impl Into<String>)
/set_display_name(Option<String>)
:
required: falseThe name of the experiment as displayed. The name doesn’t need to be unique. If
DisplayName
isn’t specified,ExperimentName
is displayed.description(impl Into<String>)
/set_description(Option<String>)
:
required: falseThe description of the experiment.
- On success, responds with
UpdateExperimentOutput
with field(s):experiment_arn(Option<String>)
:The Amazon Resource Name (ARN) of the experiment.
- On failure, responds with
SdkError<UpdateExperimentError>
Source§impl Client
impl Client
Sourcepub fn update_feature_group(&self) -> UpdateFeatureGroupFluentBuilder
pub fn update_feature_group(&self) -> UpdateFeatureGroupFluentBuilder
Constructs a fluent builder for the UpdateFeatureGroup
operation.
- The fluent builder is configurable:
feature_group_name(impl Into<String>)
/set_feature_group_name(Option<String>)
:
required: trueThe name or Amazon Resource Name (ARN) of the feature group that you’re updating.
feature_additions(FeatureDefinition)
/set_feature_additions(Option<Vec::<FeatureDefinition>>)
:
required: falseUpdates the feature group. Updating a feature group is an asynchronous operation. When you get an HTTP 200 response, you’ve made a valid request. It takes some time after you’ve made a valid request for Feature Store to update the feature group.
online_store_config(OnlineStoreConfigUpdate)
/set_online_store_config(Option<OnlineStoreConfigUpdate>)
:
required: falseUpdates the feature group online store configuration.
throughput_config(ThroughputConfigUpdate)
/set_throughput_config(Option<ThroughputConfigUpdate>)
:
required: falseThe new throughput configuration for the feature group. You can switch between on-demand and provisioned modes or update the read / write capacity of provisioned feature groups. You can switch a feature group to on-demand only once in a 24 hour period.
- On success, responds with
UpdateFeatureGroupOutput
with field(s):feature_group_arn(Option<String>)
:The Amazon Resource Number (ARN) of the feature group that you’re updating.
- On failure, responds with
SdkError<UpdateFeatureGroupError>
Source§impl Client
impl Client
Sourcepub fn update_feature_metadata(&self) -> UpdateFeatureMetadataFluentBuilder
pub fn update_feature_metadata(&self) -> UpdateFeatureMetadataFluentBuilder
Constructs a fluent builder for the UpdateFeatureMetadata
operation.
- The fluent builder is configurable:
feature_group_name(impl Into<String>)
/set_feature_group_name(Option<String>)
:
required: trueThe name or Amazon Resource Name (ARN) of the feature group containing the feature that you’re updating.
feature_name(impl Into<String>)
/set_feature_name(Option<String>)
:
required: trueThe name of the feature that you’re updating.
description(impl Into<String>)
/set_description(Option<String>)
:
required: falseA description that you can write to better describe the feature.
parameter_additions(FeatureParameter)
/set_parameter_additions(Option<Vec::<FeatureParameter>>)
:
required: falseA list of key-value pairs that you can add to better describe the feature.
parameter_removals(impl Into<String>)
/set_parameter_removals(Option<Vec::<String>>)
:
required: falseA list of parameter keys that you can specify to remove parameters that describe your feature.
- On success, responds with
UpdateFeatureMetadataOutput
- On failure, responds with
SdkError<UpdateFeatureMetadataError>
Source§impl Client
impl Client
Sourcepub fn update_hub(&self) -> UpdateHubFluentBuilder
pub fn update_hub(&self) -> UpdateHubFluentBuilder
Constructs a fluent builder for the UpdateHub
operation.
- The fluent builder is configurable:
hub_name(impl Into<String>)
/set_hub_name(Option<String>)
:
required: trueThe name of the hub to update.
hub_description(impl Into<String>)
/set_hub_description(Option<String>)
:
required: falseA description of the updated hub.
hub_display_name(impl Into<String>)
/set_hub_display_name(Option<String>)
:
required: falseThe display name of the hub.
hub_search_keywords(impl Into<String>)
/set_hub_search_keywords(Option<Vec::<String>>)
:
required: falseThe searchable keywords for the hub.
- On success, responds with
UpdateHubOutput
with field(s):hub_arn(Option<String>)
:The Amazon Resource Name (ARN) of the updated hub.
- On failure, responds with
SdkError<UpdateHubError>
Source§impl Client
impl Client
Sourcepub fn update_hub_content(&self) -> UpdateHubContentFluentBuilder
pub fn update_hub_content(&self) -> UpdateHubContentFluentBuilder
Constructs a fluent builder for the UpdateHubContent
operation.
- The fluent builder is configurable:
hub_name(impl Into<String>)
/set_hub_name(Option<String>)
:
required: trueThe name of the SageMaker hub that contains the hub content you want to update. You can optionally use the hub ARN instead.
hub_content_name(impl Into<String>)
/set_hub_content_name(Option<String>)
:
required: trueThe name of the hub content resource that you want to update.
hub_content_type(HubContentType)
/set_hub_content_type(Option<HubContentType>)
:
required: trueThe content type of the resource that you want to update. Only specify a
Model
orNotebook
resource for this API. To update aModelReference
, use theUpdateHubContentReference
API instead.hub_content_version(impl Into<String>)
/set_hub_content_version(Option<String>)
:
required: trueThe hub content version that you want to update. For example, if you have two versions of a resource in your hub, you can update the second version.
hub_content_display_name(impl Into<String>)
/set_hub_content_display_name(Option<String>)
:
required: falseThe display name of the hub content.
hub_content_description(impl Into<String>)
/set_hub_content_description(Option<String>)
:
required: falseThe description of the hub content.
hub_content_markdown(impl Into<String>)
/set_hub_content_markdown(Option<String>)
:
required: falseA string that provides a description of the hub content. This string can include links, tables, and standard markdown formatting.
hub_content_search_keywords(impl Into<String>)
/set_hub_content_search_keywords(Option<Vec::<String>>)
:
required: falseThe searchable keywords of the hub content.
support_status(HubContentSupportStatus)
/set_support_status(Option<HubContentSupportStatus>)
:
required: falseIndicates the current status of the hub content resource.
- On success, responds with
UpdateHubContentOutput
with field(s):hub_arn(Option<String>)
:The ARN of the private model hub that contains the updated hub content.
hub_content_arn(Option<String>)
:The ARN of the hub content resource that was updated.
- On failure, responds with
SdkError<UpdateHubContentError>
Source§impl Client
impl Client
Sourcepub fn update_hub_content_reference(
&self,
) -> UpdateHubContentReferenceFluentBuilder
pub fn update_hub_content_reference( &self, ) -> UpdateHubContentReferenceFluentBuilder
Constructs a fluent builder for the UpdateHubContentReference
operation.
- The fluent builder is configurable:
hub_name(impl Into<String>)
/set_hub_name(Option<String>)
:
required: trueThe name of the SageMaker hub that contains the hub content you want to update. You can optionally use the hub ARN instead.
hub_content_name(impl Into<String>)
/set_hub_content_name(Option<String>)
:
required: trueThe name of the hub content resource that you want to update.
hub_content_type(HubContentType)
/set_hub_content_type(Option<HubContentType>)
:
required: trueThe content type of the resource that you want to update. Only specify a
ModelReference
resource for this API. To update aModel
orNotebook
resource, use theUpdateHubContent
API instead.min_version(impl Into<String>)
/set_min_version(Option<String>)
:
required: falseThe minimum hub content version of the referenced model that you want to use. The minimum version must be older than the latest available version of the referenced model. To support all versions of a model, set the value to
1.0.0
.
- On success, responds with
UpdateHubContentReferenceOutput
with field(s):hub_arn(Option<String>)
:The ARN of the private model hub that contains the updated hub content.
hub_content_arn(Option<String>)
:The ARN of the hub content resource that was updated.
- On failure, responds with
SdkError<UpdateHubContentReferenceError>
Source§impl Client
impl Client
Sourcepub fn update_image(&self) -> UpdateImageFluentBuilder
pub fn update_image(&self) -> UpdateImageFluentBuilder
Constructs a fluent builder for the UpdateImage
operation.
- The fluent builder is configurable:
delete_properties(impl Into<String>)
/set_delete_properties(Option<Vec::<String>>)
:
required: falseA list of properties to delete. Only the
Description
andDisplayName
properties can be deleted.description(impl Into<String>)
/set_description(Option<String>)
:
required: falseThe new description for the image.
display_name(impl Into<String>)
/set_display_name(Option<String>)
:
required: falseThe new display name for the image.
image_name(impl Into<String>)
/set_image_name(Option<String>)
:
required: trueThe name of the image to update.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:
required: falseThe new ARN for the IAM role that enables Amazon SageMaker AI to perform tasks on your behalf.
- On success, responds with
UpdateImageOutput
with field(s):image_arn(Option<String>)
:The ARN of the image.
- On failure, responds with
SdkError<UpdateImageError>
Source§impl Client
impl Client
Sourcepub fn update_image_version(&self) -> UpdateImageVersionFluentBuilder
pub fn update_image_version(&self) -> UpdateImageVersionFluentBuilder
Constructs a fluent builder for the UpdateImageVersion
operation.
- The fluent builder is configurable:
image_name(impl Into<String>)
/set_image_name(Option<String>)
:
required: trueThe name of the image.
alias(impl Into<String>)
/set_alias(Option<String>)
:
required: falseThe alias of the image version.
version(i32)
/set_version(Option<i32>)
:
required: falseThe version of the image.
aliases_to_add(impl Into<String>)
/set_aliases_to_add(Option<Vec::<String>>)
:
required: falseA list of aliases to add.
aliases_to_delete(impl Into<String>)
/set_aliases_to_delete(Option<Vec::<String>>)
:
required: falseA list of aliases to delete.
vendor_guidance(VendorGuidance)
/set_vendor_guidance(Option<VendorGuidance>)
:
required: falseThe availability of the image version specified by the maintainer.
-
NOT_PROVIDED
: The maintainers did not provide a status for image version stability. -
STABLE
: The image version is stable. -
TO_BE_ARCHIVED
: The image version is set to be archived. Custom image versions that are set to be archived are automatically archived after three months. -
ARCHIVED
: The image version is archived. Archived image versions are not searchable and are no longer actively supported.
-
job_type(JobType)
/set_job_type(Option<JobType>)
:
required: falseIndicates SageMaker AI job type compatibility.
-
TRAINING
: The image version is compatible with SageMaker AI training jobs. -
INFERENCE
: The image version is compatible with SageMaker AI inference jobs. -
NOTEBOOK_KERNEL
: The image version is compatible with SageMaker AI notebook kernels.
-
ml_framework(impl Into<String>)
/set_ml_framework(Option<String>)
:
required: falseThe machine learning framework vended in the image version.
programming_lang(impl Into<String>)
/set_programming_lang(Option<String>)
:
required: falseThe supported programming language and its version.
processor(Processor)
/set_processor(Option<Processor>)
:
required: falseIndicates CPU or GPU compatibility.
-
CPU
: The image version is compatible with CPU. -
GPU
: The image version is compatible with GPU.
-
horovod(bool)
/set_horovod(Option<bool>)
:
required: falseIndicates Horovod compatibility.
release_notes(impl Into<String>)
/set_release_notes(Option<String>)
:
required: falseThe maintainer description of the image version.
- On success, responds with
UpdateImageVersionOutput
with field(s):image_version_arn(Option<String>)
:The ARN of the image version.
- On failure, responds with
SdkError<UpdateImageVersionError>
Source§impl Client
impl Client
Sourcepub fn update_inference_component(
&self,
) -> UpdateInferenceComponentFluentBuilder
pub fn update_inference_component( &self, ) -> UpdateInferenceComponentFluentBuilder
Constructs a fluent builder for the UpdateInferenceComponent
operation.
- The fluent builder is configurable:
inference_component_name(impl Into<String>)
/set_inference_component_name(Option<String>)
:
required: trueThe name of the inference component.
specification(InferenceComponentSpecification)
/set_specification(Option<InferenceComponentSpecification>)
:
required: falseDetails about the resources to deploy with this inference component, including the model, container, and compute resources.
runtime_config(InferenceComponentRuntimeConfig)
/set_runtime_config(Option<InferenceComponentRuntimeConfig>)
:
required: falseRuntime settings for a model that is deployed with an inference component.
deployment_config(InferenceComponentDeploymentConfig)
/set_deployment_config(Option<InferenceComponentDeploymentConfig>)
:
required: falseThe deployment configuration for the inference component. The configuration contains the desired deployment strategy and rollback settings.
- On success, responds with
UpdateInferenceComponentOutput
with field(s):inference_component_arn(Option<String>)
:The Amazon Resource Name (ARN) of the inference component.
- On failure, responds with
SdkError<UpdateInferenceComponentError>
Source§impl Client
impl Client
Sourcepub fn update_inference_component_runtime_config(
&self,
) -> UpdateInferenceComponentRuntimeConfigFluentBuilder
pub fn update_inference_component_runtime_config( &self, ) -> UpdateInferenceComponentRuntimeConfigFluentBuilder
Constructs a fluent builder for the UpdateInferenceComponentRuntimeConfig
operation.
- The fluent builder is configurable:
inference_component_name(impl Into<String>)
/set_inference_component_name(Option<String>)
:
required: trueThe name of the inference component to update.
desired_runtime_config(InferenceComponentRuntimeConfig)
/set_desired_runtime_config(Option<InferenceComponentRuntimeConfig>)
:
required: trueRuntime settings for a model that is deployed with an inference component.
- On success, responds with
UpdateInferenceComponentRuntimeConfigOutput
with field(s):inference_component_arn(Option<String>)
:The Amazon Resource Name (ARN) of the inference component.
- On failure, responds with
SdkError<UpdateInferenceComponentRuntimeConfigError>
Source§impl Client
impl Client
Sourcepub fn update_inference_experiment(
&self,
) -> UpdateInferenceExperimentFluentBuilder
pub fn update_inference_experiment( &self, ) -> UpdateInferenceExperimentFluentBuilder
Constructs a fluent builder for the UpdateInferenceExperiment
operation.
- The fluent builder is configurable:
name(impl Into<String>)
/set_name(Option<String>)
:
required: trueThe name of the inference experiment to be updated.
schedule(InferenceExperimentSchedule)
/set_schedule(Option<InferenceExperimentSchedule>)
:
required: falseThe duration for which the inference experiment will run. If the status of the inference experiment is
Created
, then you can update both the start and end dates. If the status of the inference experiment isRunning
, then you can update only the end date.description(impl Into<String>)
/set_description(Option<String>)
:
required: falseThe description of the inference experiment.
model_variants(ModelVariantConfig)
/set_model_variants(Option<Vec::<ModelVariantConfig>>)
:
required: falseAn array of
ModelVariantConfig
objects. There is one for each variant, whose infrastructure configuration you want to update.data_storage_config(InferenceExperimentDataStorageConfig)
/set_data_storage_config(Option<InferenceExperimentDataStorageConfig>)
:
required: falseThe Amazon S3 location and configuration for storing inference request and response data.
shadow_mode_config(ShadowModeConfig)
/set_shadow_mode_config(Option<ShadowModeConfig>)
:
required: falseThe configuration of
ShadowMode
inference experiment type. Use this field to specify a production variant which takes all the inference requests, and a shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant also specify the percentage of requests that Amazon SageMaker replicates.
- On success, responds with
UpdateInferenceExperimentOutput
with field(s):inference_experiment_arn(Option<String>)
:The ARN of the updated inference experiment.
- On failure, responds with
SdkError<UpdateInferenceExperimentError>
Source§impl Client
impl Client
Sourcepub fn update_mlflow_tracking_server(
&self,
) -> UpdateMlflowTrackingServerFluentBuilder
pub fn update_mlflow_tracking_server( &self, ) -> UpdateMlflowTrackingServerFluentBuilder
Constructs a fluent builder for the UpdateMlflowTrackingServer
operation.
- The fluent builder is configurable:
tracking_server_name(impl Into<String>)
/set_tracking_server_name(Option<String>)
:
required: trueThe name of the MLflow Tracking Server to update.
artifact_store_uri(impl Into<String>)
/set_artifact_store_uri(Option<String>)
:
required: falseThe new S3 URI for the general purpose bucket to use as the artifact store for the MLflow Tracking Server.
tracking_server_size(TrackingServerSize)
/set_tracking_server_size(Option<TrackingServerSize>)
:
required: falseThe new size for the MLflow Tracking Server.
automatic_model_registration(bool)
/set_automatic_model_registration(Option<bool>)
:
required: falseWhether to enable or disable automatic registration of new MLflow models to the SageMaker Model Registry. To enable automatic model registration, set this value to
True
. To disable automatic model registration, set this value toFalse
. If not specified,AutomaticModelRegistration
defaults toFalse
weekly_maintenance_window_start(impl Into<String>)
/set_weekly_maintenance_window_start(Option<String>)
:
required: falseThe new weekly maintenance window start day and time to update. The maintenance window day and time should be in Coordinated Universal Time (UTC) 24-hour standard time. For example: TUE:03:30.
- On success, responds with
UpdateMlflowTrackingServerOutput
with field(s):tracking_server_arn(Option<String>)
:The ARN of the updated MLflow Tracking Server.
- On failure, responds with
SdkError<UpdateMlflowTrackingServerError>
Source§impl Client
impl Client
Sourcepub fn update_model_card(&self) -> UpdateModelCardFluentBuilder
pub fn update_model_card(&self) -> UpdateModelCardFluentBuilder
Constructs a fluent builder for the UpdateModelCard
operation.
- The fluent builder is configurable:
model_card_name(impl Into<String>)
/set_model_card_name(Option<String>)
:
required: trueThe name or Amazon Resource Name (ARN) of the model card to update.
content(impl Into<String>)
/set_content(Option<String>)
:
required: falseThe updated model card content. Content must be in model card JSON schema and provided as a string.
When updating model card content, be sure to include the full content and not just updated content.
model_card_status(ModelCardStatus)
/set_model_card_status(Option<ModelCardStatus>)
:
required: falseThe approval status of the model card within your organization. Different organizations might have different criteria for model card review and approval.
-
Draft
: The model card is a work in progress. -
PendingReview
: The model card is pending review. -
Approved
: The model card is approved. -
Archived
: The model card is archived. No more updates should be made to the model card, but it can still be exported.
-
- On success, responds with
UpdateModelCardOutput
with field(s):model_card_arn(Option<String>)
:The Amazon Resource Name (ARN) of the updated model card.
- On failure, responds with
SdkError<UpdateModelCardError>
Source§impl Client
impl Client
Sourcepub fn update_model_package(&self) -> UpdateModelPackageFluentBuilder
pub fn update_model_package(&self) -> UpdateModelPackageFluentBuilder
Constructs a fluent builder for the UpdateModelPackage
operation.
- The fluent builder is configurable:
model_package_arn(impl Into<String>)
/set_model_package_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of the model package.
model_approval_status(ModelApprovalStatus)
/set_model_approval_status(Option<ModelApprovalStatus>)
:
required: falseThe approval status of the model.
approval_description(impl Into<String>)
/set_approval_description(Option<String>)
:
required: falseA description for the approval status of the model.
customer_metadata_properties(impl Into<String>, impl Into<String>)
/set_customer_metadata_properties(Option<HashMap::<String, String>>)
:
required: falseThe metadata properties associated with the model package versions.
customer_metadata_properties_to_remove(impl Into<String>)
/set_customer_metadata_properties_to_remove(Option<Vec::<String>>)
:
required: falseThe metadata properties associated with the model package versions to remove.
additional_inference_specifications_to_add(AdditionalInferenceSpecificationDefinition)
/set_additional_inference_specifications_to_add(Option<Vec::<AdditionalInferenceSpecificationDefinition>>)
:
required: falseAn array of additional Inference Specification objects to be added to the existing array additional Inference Specification. Total number of additional Inference Specifications can not exceed 15. Each additional Inference Specification specifies artifacts based on this model package that can be used on inference endpoints. Generally used with SageMaker Neo to store the compiled artifacts.
inference_specification(InferenceSpecification)
/set_inference_specification(Option<InferenceSpecification>)
:
required: falseSpecifies details about inference jobs that you can run with models based on this model package, including the following information:
-
The Amazon ECR paths of containers that contain the inference code and model artifacts.
-
The instance types that the model package supports for transform jobs and real-time endpoints used for inference.
-
The input and output content formats that the model package supports for inference.
-
source_uri(impl Into<String>)
/set_source_uri(Option<String>)
:
required: falseThe URI of the source for the model package.
model_card(ModelPackageModelCard)
/set_model_card(Option<ModelPackageModelCard>)
:
required: falseThe model card associated with the model package. Since
ModelPackageModelCard
is tied to a model package, it is a specific usage of a model card and its schema is simplified compared to the schema ofModelCard
. TheModelPackageModelCard
schema does not includemodel_package_details
, andmodel_overview
is composed of themodel_creator
andmodel_artifact
properties. For more information about the model package model card schema, see Model package model card schema. For more information about the model card associated with the model package, see View the Details of a Model Version.model_life_cycle(ModelLifeCycle)
/set_model_life_cycle(Option<ModelLifeCycle>)
:
required: falseA structure describing the current state of the model in its life cycle.
client_token(impl Into<String>)
/set_client_token(Option<String>)
:
required: falseA unique token that guarantees that the call to this API is idempotent.
- On success, responds with
UpdateModelPackageOutput
with field(s):model_package_arn(Option<String>)
:The Amazon Resource Name (ARN) of the model.
- On failure, responds with
SdkError<UpdateModelPackageError>
Source§impl Client
impl Client
Sourcepub fn update_monitoring_alert(&self) -> UpdateMonitoringAlertFluentBuilder
pub fn update_monitoring_alert(&self) -> UpdateMonitoringAlertFluentBuilder
Constructs a fluent builder for the UpdateMonitoringAlert
operation.
- The fluent builder is configurable:
monitoring_schedule_name(impl Into<String>)
/set_monitoring_schedule_name(Option<String>)
:
required: trueThe name of a monitoring schedule.
monitoring_alert_name(impl Into<String>)
/set_monitoring_alert_name(Option<String>)
:
required: trueThe name of a monitoring alert.
datapoints_to_alert(i32)
/set_datapoints_to_alert(Option<i32>)
:
required: trueWithin
EvaluationPeriod
, how many execution failures will raise an alert.evaluation_period(i32)
/set_evaluation_period(Option<i32>)
:
required: trueThe number of most recent monitoring executions to consider when evaluating alert status.
- On success, responds with
UpdateMonitoringAlertOutput
with field(s):monitoring_schedule_arn(Option<String>)
:The Amazon Resource Name (ARN) of the monitoring schedule.
monitoring_alert_name(Option<String>)
:The name of a monitoring alert.
- On failure, responds with
SdkError<UpdateMonitoringAlertError>
Source§impl Client
impl Client
Sourcepub fn update_monitoring_schedule(
&self,
) -> UpdateMonitoringScheduleFluentBuilder
pub fn update_monitoring_schedule( &self, ) -> UpdateMonitoringScheduleFluentBuilder
Constructs a fluent builder for the UpdateMonitoringSchedule
operation.
- The fluent builder is configurable:
monitoring_schedule_name(impl Into<String>)
/set_monitoring_schedule_name(Option<String>)
:
required: trueThe name of the monitoring schedule. The name must be unique within an Amazon Web Services Region within an Amazon Web Services account.
monitoring_schedule_config(MonitoringScheduleConfig)
/set_monitoring_schedule_config(Option<MonitoringScheduleConfig>)
:
required: trueThe configuration object that specifies the monitoring schedule and defines the monitoring job.
- On success, responds with
UpdateMonitoringScheduleOutput
with field(s):monitoring_schedule_arn(Option<String>)
:The Amazon Resource Name (ARN) of the monitoring schedule.
- On failure, responds with
SdkError<UpdateMonitoringScheduleError>
Source§impl Client
impl Client
Sourcepub fn update_notebook_instance(&self) -> UpdateNotebookInstanceFluentBuilder
pub fn update_notebook_instance(&self) -> UpdateNotebookInstanceFluentBuilder
Constructs a fluent builder for the UpdateNotebookInstance
operation.
- The fluent builder is configurable:
notebook_instance_name(impl Into<String>)
/set_notebook_instance_name(Option<String>)
:
required: trueThe name of the notebook instance to update.
instance_type(InstanceType)
/set_instance_type(Option<InstanceType>)
:
required: falseThe Amazon ML compute instance type.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:
required: falseThe Amazon Resource Name (ARN) of the IAM role that SageMaker AI can assume to access the notebook instance. For more information, see SageMaker AI Roles.
To be able to pass this role to SageMaker AI, the caller of this API must have the
iam:PassRole
permission.lifecycle_config_name(impl Into<String>)
/set_lifecycle_config_name(Option<String>)
:
required: falseThe name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
disassociate_lifecycle_config(bool)
/set_disassociate_lifecycle_config(Option<bool>)
:
required: falseSet to
true
to remove the notebook instance lifecycle configuration currently associated with the notebook instance. This operation is idempotent. If you specify a lifecycle configuration that is not associated with the notebook instance when you call this method, it does not throw an error.volume_size_in_gb(i32)
/set_volume_size_in_gb(Option<i32>)
:
required: falseThe size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB. ML storage volumes are encrypted, so SageMaker AI can’t determine the amount of available free space on the volume. Because of this, you can increase the volume size when you update a notebook instance, but you can’t decrease the volume size. If you want to decrease the size of the ML storage volume in use, create a new notebook instance with the desired size.
default_code_repository(impl Into<String>)
/set_default_code_repository(Option<String>)
:
required: falseThe Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.
additional_code_repositories(impl Into<String>)
/set_additional_code_repositories(Option<Vec::<String>>)
:
required: falseAn array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.
accelerator_types(NotebookInstanceAcceleratorType)
/set_accelerator_types(Option<Vec::<NotebookInstanceAcceleratorType>>)
:
required: falseThis parameter is no longer supported. Elastic Inference (EI) is no longer available.
This parameter was used to specify a list of the EI instance types to associate with this notebook instance.
disassociate_accelerator_types(bool)
/set_disassociate_accelerator_types(Option<bool>)
:
required: falseThis parameter is no longer supported. Elastic Inference (EI) is no longer available.
This parameter was used to specify a list of the EI instance types to remove from this notebook instance.
disassociate_default_code_repository(bool)
/set_disassociate_default_code_repository(Option<bool>)
:
required: falseThe name or URL of the default Git repository to remove from this notebook instance. This operation is idempotent. If you specify a Git repository that is not associated with the notebook instance when you call this method, it does not throw an error.
disassociate_additional_code_repositories(bool)
/set_disassociate_additional_code_repositories(Option<bool>)
:
required: falseA list of names or URLs of the default Git repositories to remove from this notebook instance. This operation is idempotent. If you specify a Git repository that is not associated with the notebook instance when you call this method, it does not throw an error.
root_access(RootAccess)
/set_root_access(Option<RootAccess>)
:
required: falseWhether root access is enabled or disabled for users of the notebook instance. The default value is
Enabled
.If you set this to
Disabled
, users don’t have root access on the notebook instance, but lifecycle configuration scripts still run with root permissions.instance_metadata_service_configuration(InstanceMetadataServiceConfiguration)
/set_instance_metadata_service_configuration(Option<InstanceMetadataServiceConfiguration>)
:
required: falseInformation on the IMDS configuration of the notebook instance
- On success, responds with
UpdateNotebookInstanceOutput
- On failure, responds with
SdkError<UpdateNotebookInstanceError>
Source§impl Client
impl Client
Sourcepub fn update_notebook_instance_lifecycle_config(
&self,
) -> UpdateNotebookInstanceLifecycleConfigFluentBuilder
pub fn update_notebook_instance_lifecycle_config( &self, ) -> UpdateNotebookInstanceLifecycleConfigFluentBuilder
Constructs a fluent builder for the UpdateNotebookInstanceLifecycleConfig
operation.
- The fluent builder is configurable:
notebook_instance_lifecycle_config_name(impl Into<String>)
/set_notebook_instance_lifecycle_config_name(Option<String>)
:
required: trueThe name of the lifecycle configuration.
on_create(NotebookInstanceLifecycleHook)
/set_on_create(Option<Vec::<NotebookInstanceLifecycleHook>>)
:
required: falseThe shell script that runs only once, when you create a notebook instance. The shell script must be a base64-encoded string.
on_start(NotebookInstanceLifecycleHook)
/set_on_start(Option<Vec::<NotebookInstanceLifecycleHook>>)
:
required: falseThe shell script that runs every time you start a notebook instance, including when you create the notebook instance. The shell script must be a base64-encoded string.
- On success, responds with
UpdateNotebookInstanceLifecycleConfigOutput
- On failure, responds with
SdkError<UpdateNotebookInstanceLifecycleConfigError>
Source§impl Client
impl Client
Sourcepub fn update_partner_app(&self) -> UpdatePartnerAppFluentBuilder
pub fn update_partner_app(&self) -> UpdatePartnerAppFluentBuilder
Constructs a fluent builder for the UpdatePartnerApp
operation.
- The fluent builder is configurable:
arn(impl Into<String>)
/set_arn(Option<String>)
:
required: trueThe ARN of the SageMaker Partner AI App to update.
maintenance_config(PartnerAppMaintenanceConfig)
/set_maintenance_config(Option<PartnerAppMaintenanceConfig>)
:
required: falseMaintenance configuration settings for the SageMaker Partner AI App.
tier(impl Into<String>)
/set_tier(Option<String>)
:
required: falseIndicates the instance type and size of the cluster attached to the SageMaker Partner AI App.
application_config(PartnerAppConfig)
/set_application_config(Option<PartnerAppConfig>)
:
required: falseConfiguration settings for the SageMaker Partner AI App.
enable_iam_session_based_identity(bool)
/set_enable_iam_session_based_identity(Option<bool>)
:
required: falseWhen set to
TRUE
, the SageMaker Partner AI App sets the Amazon Web Services IAM session name or the authenticated IAM user as the identity of the SageMaker Partner AI App user.client_token(impl Into<String>)
/set_client_token(Option<String>)
:
required: falseA unique token that guarantees that the call to this API is idempotent.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseEach tag consists of a key and an optional value. Tag keys must be unique per resource.
- On success, responds with
UpdatePartnerAppOutput
with field(s):arn(Option<String>)
:The ARN of the SageMaker Partner AI App that was updated.
- On failure, responds with
SdkError<UpdatePartnerAppError>
Source§impl Client
impl Client
Sourcepub fn update_pipeline(&self) -> UpdatePipelineFluentBuilder
pub fn update_pipeline(&self) -> UpdatePipelineFluentBuilder
Constructs a fluent builder for the UpdatePipeline
operation.
- The fluent builder is configurable:
pipeline_name(impl Into<String>)
/set_pipeline_name(Option<String>)
:
required: trueThe name of the pipeline to update.
pipeline_display_name(impl Into<String>)
/set_pipeline_display_name(Option<String>)
:
required: falseThe display name of the pipeline.
pipeline_definition(impl Into<String>)
/set_pipeline_definition(Option<String>)
:
required: falseThe JSON pipeline definition.
pipeline_definition_s3_location(PipelineDefinitionS3Location)
/set_pipeline_definition_s3_location(Option<PipelineDefinitionS3Location>)
:
required: falseThe location of the pipeline definition stored in Amazon S3. If specified, SageMaker will retrieve the pipeline definition from this location.
pipeline_description(impl Into<String>)
/set_pipeline_description(Option<String>)
:
required: falseThe description of the pipeline.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:
required: falseThe Amazon Resource Name (ARN) that the pipeline uses to execute.
parallelism_configuration(ParallelismConfiguration)
/set_parallelism_configuration(Option<ParallelismConfiguration>)
:
required: falseIf specified, it applies to all executions of this pipeline by default.
- On success, responds with
UpdatePipelineOutput
with field(s):pipeline_arn(Option<String>)
:The Amazon Resource Name (ARN) of the updated pipeline.
- On failure, responds with
SdkError<UpdatePipelineError>
Source§impl Client
impl Client
Sourcepub fn update_pipeline_execution(&self) -> UpdatePipelineExecutionFluentBuilder
pub fn update_pipeline_execution(&self) -> UpdatePipelineExecutionFluentBuilder
Constructs a fluent builder for the UpdatePipelineExecution
operation.
- The fluent builder is configurable:
pipeline_execution_arn(impl Into<String>)
/set_pipeline_execution_arn(Option<String>)
:
required: trueThe Amazon Resource Name (ARN) of the pipeline execution.
pipeline_execution_description(impl Into<String>)
/set_pipeline_execution_description(Option<String>)
:
required: falseThe description of the pipeline execution.
pipeline_execution_display_name(impl Into<String>)
/set_pipeline_execution_display_name(Option<String>)
:
required: falseThe display name of the pipeline execution.
parallelism_configuration(ParallelismConfiguration)
/set_parallelism_configuration(Option<ParallelismConfiguration>)
:
required: falseThis configuration, if specified, overrides the parallelism configuration of the parent pipeline for this specific run.
- On success, responds with
UpdatePipelineExecutionOutput
with field(s):pipeline_execution_arn(Option<String>)
:The Amazon Resource Name (ARN) of the updated pipeline execution.
- On failure, responds with
SdkError<UpdatePipelineExecutionError>
Source§impl Client
impl Client
Sourcepub fn update_project(&self) -> UpdateProjectFluentBuilder
pub fn update_project(&self) -> UpdateProjectFluentBuilder
Constructs a fluent builder for the UpdateProject
operation.
- The fluent builder is configurable:
project_name(impl Into<String>)
/set_project_name(Option<String>)
:
required: trueThe name of the project.
project_description(impl Into<String>)
/set_project_description(Option<String>)
:
required: falseThe description for the project.
service_catalog_provisioning_update_details(ServiceCatalogProvisioningUpdateDetails)
/set_service_catalog_provisioning_update_details(Option<ServiceCatalogProvisioningUpdateDetails>)
:
required: falseThe product ID and provisioning artifact ID to provision a service catalog. The provisioning artifact ID will default to the latest provisioning artifact ID of the product, if you don’t provide the provisioning artifact ID. For more information, see What is Amazon Web Services Service Catalog.
tags(Tag)
/set_tags(Option<Vec::<Tag>>)
:
required: falseAn array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources. In addition, the project must have tag update constraints set in order to include this parameter in the request. For more information, see Amazon Web Services Service Catalog Tag Update Constraints.
- On success, responds with
UpdateProjectOutput
with field(s):project_arn(Option<String>)
:The Amazon Resource Name (ARN) of the project.
- On failure, responds with
SdkError<UpdateProjectError>
Source§impl Client
impl Client
Sourcepub fn update_space(&self) -> UpdateSpaceFluentBuilder
pub fn update_space(&self) -> UpdateSpaceFluentBuilder
Constructs a fluent builder for the UpdateSpace
operation.
- The fluent builder is configurable:
domain_id(impl Into<String>)
/set_domain_id(Option<String>)
:
required: trueThe ID of the associated domain.
space_name(impl Into<String>)
/set_space_name(Option<String>)
:
required: trueThe name of the space.
space_settings(SpaceSettings)
/set_space_settings(Option<SpaceSettings>)
:
required: falseA collection of space settings.
space_display_name(impl Into<String>)
/set_space_display_name(Option<String>)
:
required: falseThe name of the space that appears in the Amazon SageMaker Studio UI.
- On success, responds with
UpdateSpaceOutput
with field(s):space_arn(Option<String>)
:The space’s Amazon Resource Name (ARN).
- On failure, responds with
SdkError<UpdateSpaceError>
Source§impl Client
impl Client
Sourcepub fn update_training_job(&self) -> UpdateTrainingJobFluentBuilder
pub fn update_training_job(&self) -> UpdateTrainingJobFluentBuilder
Constructs a fluent builder for the UpdateTrainingJob
operation.
- The fluent builder is configurable:
training_job_name(impl Into<String>)
/set_training_job_name(Option<String>)
:
required: trueThe name of a training job to update the Debugger profiling configuration.
profiler_config(ProfilerConfigForUpdate)
/set_profiler_config(Option<ProfilerConfigForUpdate>)
:
required: falseConfiguration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.
profiler_rule_configurations(ProfilerRuleConfiguration)
/set_profiler_rule_configurations(Option<Vec::<ProfilerRuleConfiguration>>)
:
required: falseConfiguration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.
resource_config(ResourceConfigForUpdate)
/set_resource_config(Option<ResourceConfigForUpdate>)
:
required: falseThe training job
ResourceConfig
to update warm pool retention length.remote_debug_config(RemoteDebugConfigForUpdate)
/set_remote_debug_config(Option<RemoteDebugConfigForUpdate>)
:
required: falseConfiguration for remote debugging while the training job is running. You can update the remote debugging configuration when the
SecondaryStatus
of the job isDownloading
orTraining
.To learn more about the remote debugging functionality of SageMaker, see Access a training container through Amazon Web Services Systems Manager (SSM) for remote debugging.
- On success, responds with
UpdateTrainingJobOutput
with field(s):training_job_arn(Option<String>)
:The Amazon Resource Name (ARN) of the training job.
- On failure, responds with
SdkError<UpdateTrainingJobError>
Source§impl Client
impl Client
Sourcepub fn update_trial(&self) -> UpdateTrialFluentBuilder
pub fn update_trial(&self) -> UpdateTrialFluentBuilder
Constructs a fluent builder for the UpdateTrial
operation.
- The fluent builder is configurable:
trial_name(impl Into<String>)
/set_trial_name(Option<String>)
:
required: trueThe name of the trial to update.
display_name(impl Into<String>)
/set_display_name(Option<String>)
:
required: falseThe name of the trial as displayed. The name doesn’t need to be unique. If
DisplayName
isn’t specified,TrialName
is displayed.
- On success, responds with
UpdateTrialOutput
with field(s):trial_arn(Option<String>)
:The Amazon Resource Name (ARN) of the trial.
- On failure, responds with
SdkError<UpdateTrialError>
Source§impl Client
impl Client
Sourcepub fn update_trial_component(&self) -> UpdateTrialComponentFluentBuilder
pub fn update_trial_component(&self) -> UpdateTrialComponentFluentBuilder
Constructs a fluent builder for the UpdateTrialComponent
operation.
- The fluent builder is configurable:
trial_component_name(impl Into<String>)
/set_trial_component_name(Option<String>)
:
required: trueThe name of the component to update.
display_name(impl Into<String>)
/set_display_name(Option<String>)
:
required: falseThe name of the component as displayed. The name doesn’t need to be unique. If
DisplayName
isn’t specified,TrialComponentName
is displayed.status(TrialComponentStatus)
/set_status(Option<TrialComponentStatus>)
:
required: falseThe new status of the component.
start_time(DateTime)
/set_start_time(Option<DateTime>)
:
required: falseWhen the component started.
end_time(DateTime)
/set_end_time(Option<DateTime>)
:
required: falseWhen the component ended.
parameters(impl Into<String>, TrialComponentParameterValue)
/set_parameters(Option<HashMap::<String, TrialComponentParameterValue>>)
:
required: falseReplaces all of the component’s hyperparameters with the specified hyperparameters or add new hyperparameters. Existing hyperparameters are replaced if the trial component is updated with an identical hyperparameter key.
parameters_to_remove(impl Into<String>)
/set_parameters_to_remove(Option<Vec::<String>>)
:
required: falseThe hyperparameters to remove from the component.
input_artifacts(impl Into<String>, TrialComponentArtifact)
/set_input_artifacts(Option<HashMap::<String, TrialComponentArtifact>>)
:
required: falseReplaces all of the component’s input artifacts with the specified artifacts or adds new input artifacts. Existing input artifacts are replaced if the trial component is updated with an identical input artifact key.
input_artifacts_to_remove(impl Into<String>)
/set_input_artifacts_to_remove(Option<Vec::<String>>)
:
required: falseThe input artifacts to remove from the component.
output_artifacts(impl Into<String>, TrialComponentArtifact)
/set_output_artifacts(Option<HashMap::<String, TrialComponentArtifact>>)
:
required: falseReplaces all of the component’s output artifacts with the specified artifacts or adds new output artifacts. Existing output artifacts are replaced if the trial component is updated with an identical output artifact key.
output_artifacts_to_remove(impl Into<String>)
/set_output_artifacts_to_remove(Option<Vec::<String>>)
:
required: falseThe output artifacts to remove from the component.
- On success, responds with
UpdateTrialComponentOutput
with field(s):trial_component_arn(Option<String>)
:The Amazon Resource Name (ARN) of the trial component.
- On failure, responds with
SdkError<UpdateTrialComponentError>
Source§impl Client
impl Client
Sourcepub fn update_user_profile(&self) -> UpdateUserProfileFluentBuilder
pub fn update_user_profile(&self) -> UpdateUserProfileFluentBuilder
Constructs a fluent builder for the UpdateUserProfile
operation.
- The fluent builder is configurable:
domain_id(impl Into<String>)
/set_domain_id(Option<String>)
:
required: trueThe domain ID.
user_profile_name(impl Into<String>)
/set_user_profile_name(Option<String>)
:
required: trueThe user profile name.
user_settings(UserSettings)
/set_user_settings(Option<UserSettings>)
:
required: falseA collection of settings.
- On success, responds with
UpdateUserProfileOutput
with field(s):user_profile_arn(Option<String>)
:The user profile Amazon Resource Name (ARN).
- On failure, responds with
SdkError<UpdateUserProfileError>
Source§impl Client
impl Client
Sourcepub fn update_workforce(&self) -> UpdateWorkforceFluentBuilder
pub fn update_workforce(&self) -> UpdateWorkforceFluentBuilder
Constructs a fluent builder for the UpdateWorkforce
operation.
- The fluent builder is configurable:
workforce_name(impl Into<String>)
/set_workforce_name(Option<String>)
:
required: trueThe name of the private workforce that you want to update. You can find your workforce name by using the ListWorkforces operation.
source_ip_config(SourceIpConfig)
/set_source_ip_config(Option<SourceIpConfig>)
:
required: falseA list of one to ten worker IP address ranges (CIDRs) that can be used to access tasks assigned to this workforce.
Maximum: Ten CIDR values
oidc_config(OidcConfig)
/set_oidc_config(Option<OidcConfig>)
:
required: falseUse this parameter to update your OIDC Identity Provider (IdP) configuration for a workforce made using your own IdP.
workforce_vpc_config(WorkforceVpcConfigRequest)
/set_workforce_vpc_config(Option<WorkforceVpcConfigRequest>)
:
required: falseUse this parameter to update your VPC configuration for a workforce.
- On success, responds with
UpdateWorkforceOutput
with field(s):workforce(Option<Workforce>)
:A single private workforce. You can create one private work force in each Amazon Web Services Region. By default, any workforce-related API operation used in a specific region will apply to the workforce created in that region. To learn how to create a private workforce, see Create a Private Workforce.
- On failure, responds with
SdkError<UpdateWorkforceError>
Source§impl Client
impl Client
Sourcepub fn update_workteam(&self) -> UpdateWorkteamFluentBuilder
pub fn update_workteam(&self) -> UpdateWorkteamFluentBuilder
Constructs a fluent builder for the UpdateWorkteam
operation.
- The fluent builder is configurable:
workteam_name(impl Into<String>)
/set_workteam_name(Option<String>)
:
required: trueThe name of the work team to update.
member_definitions(MemberDefinition)
/set_member_definitions(Option<Vec::<MemberDefinition>>)
:
required: falseA list of
MemberDefinition
objects that contains objects that identify the workers that make up the work team.Workforces can be created using Amazon Cognito or your own OIDC Identity Provider (IdP). For private workforces created using Amazon Cognito use
CognitoMemberDefinition
. For workforces created using your own OIDC identity provider (IdP) useOidcMemberDefinition
. You should not provide input for both of these parameters in a single request.For workforces created using Amazon Cognito, private work teams correspond to Amazon Cognito user groups within the user pool used to create a workforce. All of the
CognitoMemberDefinition
objects that make up the member definition must have the sameClientId
andUserPool
values. To add a Amazon Cognito user group to an existing worker pool, seeAdding groups to a User Pool
. For more information about user pools, see Amazon Cognito User Pools.For workforces created using your own OIDC IdP, specify the user groups that you want to include in your private work team in
OidcMemberDefinition
by listing those groups inGroups
. Be aware that user groups that are already in the work team must also be listed inGroups
when you make this request to remain on the work team. If you do not include these user groups, they will no longer be associated with the work team you update.description(impl Into<String>)
/set_description(Option<String>)
:
required: falseAn updated description for the work team.
notification_configuration(NotificationConfiguration)
/set_notification_configuration(Option<NotificationConfiguration>)
:
required: falseConfigures SNS topic notifications for available or expiring work items
worker_access_configuration(WorkerAccessConfiguration)
/set_worker_access_configuration(Option<WorkerAccessConfiguration>)
:
required: falseUse this optional parameter to constrain access to an Amazon S3 resource based on the IP address using supported IAM global condition keys. The Amazon S3 resource is accessed in the worker portal using a Amazon S3 presigned URL.
- On success, responds with
UpdateWorkteamOutput
with field(s):workteam(Option<Workteam>)
:A
Workteam
object that describes the updated work team.
- On failure, responds with
SdkError<UpdateWorkteamError>
Source§impl Client
impl Client
Sourcepub fn from_conf(conf: Config) -> Self
pub fn from_conf(conf: Config) -> Self
Creates a new client from the service Config
.
§Panics
This method will panic in the following cases:
- Retries or timeouts are enabled without a
sleep_impl
configured. - Identity caching is enabled without a
sleep_impl
andtime_source
configured. - No
behavior_version
is provided.
The panic message for each of these will have instructions on how to resolve them.
Source§impl Client
impl Client
Sourcepub fn new(sdk_config: &SdkConfig) -> Self
pub fn new(sdk_config: &SdkConfig) -> Self
Creates a new client from an SDK Config.
§Panics
- This method will panic if the
sdk_config
is missing an async sleep implementation. If you experience this panic, set thesleep_impl
on the Config passed into this function to fix it. - This method will panic if the
sdk_config
is missing an HTTP connector. If you experience this panic, set thehttp_connector
on the Config passed into this function to fix it. - This method will panic if no
BehaviorVersion
is provided. If you experience this panic, setbehavior_version
on the Config or enable thebehavior-version-latest
Cargo feature.
Trait Implementations§
Source§impl Waiters for Client
impl Waiters for Client
Source§fn wait_until_endpoint_deleted(&self) -> EndpointDeletedFluentBuilder
fn wait_until_endpoint_deleted(&self) -> EndpointDeletedFluentBuilder
endpoint_deleted
Source§fn wait_until_endpoint_in_service(&self) -> EndpointInServiceFluentBuilder
fn wait_until_endpoint_in_service(&self) -> EndpointInServiceFluentBuilder
endpoint_in_service
Source§fn wait_until_image_created(&self) -> ImageCreatedFluentBuilder
fn wait_until_image_created(&self) -> ImageCreatedFluentBuilder
image_created
Source§fn wait_until_image_deleted(&self) -> ImageDeletedFluentBuilder
fn wait_until_image_deleted(&self) -> ImageDeletedFluentBuilder
image_deleted
Source§fn wait_until_image_updated(&self) -> ImageUpdatedFluentBuilder
fn wait_until_image_updated(&self) -> ImageUpdatedFluentBuilder
image_updated
Source§fn wait_until_image_version_created(&self) -> ImageVersionCreatedFluentBuilder
fn wait_until_image_version_created(&self) -> ImageVersionCreatedFluentBuilder
image_version_created
Source§fn wait_until_image_version_deleted(&self) -> ImageVersionDeletedFluentBuilder
fn wait_until_image_version_deleted(&self) -> ImageVersionDeletedFluentBuilder
image_version_deleted
Source§fn wait_until_notebook_instance_deleted(
&self,
) -> NotebookInstanceDeletedFluentBuilder
fn wait_until_notebook_instance_deleted( &self, ) -> NotebookInstanceDeletedFluentBuilder
notebook_instance_deleted
Source§fn wait_until_notebook_instance_in_service(
&self,
) -> NotebookInstanceInServiceFluentBuilder
fn wait_until_notebook_instance_in_service( &self, ) -> NotebookInstanceInServiceFluentBuilder
notebook_instance_in_service
Source§fn wait_until_notebook_instance_stopped(
&self,
) -> NotebookInstanceStoppedFluentBuilder
fn wait_until_notebook_instance_stopped( &self, ) -> NotebookInstanceStoppedFluentBuilder
notebook_instance_stopped
Source§fn wait_until_processing_job_completed_or_stopped(
&self,
) -> ProcessingJobCompletedOrStoppedFluentBuilder
fn wait_until_processing_job_completed_or_stopped( &self, ) -> ProcessingJobCompletedOrStoppedFluentBuilder
processing_job_completed_or_stopped
Source§fn wait_until_training_job_completed_or_stopped(
&self,
) -> TrainingJobCompletedOrStoppedFluentBuilder
fn wait_until_training_job_completed_or_stopped( &self, ) -> TrainingJobCompletedOrStoppedFluentBuilder
training_job_completed_or_stopped
Source§fn wait_until_transform_job_completed_or_stopped(
&self,
) -> TransformJobCompletedOrStoppedFluentBuilder
fn wait_until_transform_job_completed_or_stopped( &self, ) -> TransformJobCompletedOrStoppedFluentBuilder
transform_job_completed_or_stopped
Auto Trait Implementations§
impl Freeze for Client
impl !RefUnwindSafe for Client
impl Send for Client
impl Sync for Client
impl Unpin for Client
impl !UnwindSafe for Client
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Paint for Twhere
T: ?Sized,
impl<T> Paint for Twhere
T: ?Sized,
Source§fn fg(&self, value: Color) -> Painted<&T>
fn fg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the foreground set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like red()
and
green()
, which have the same functionality but are
pithier.
§Example
Set foreground color to white using fg()
:
use yansi::{Paint, Color};
painted.fg(Color::White);
Set foreground color to white using white()
.
use yansi::Paint;
painted.white();
Source§fn bright_black(&self) -> Painted<&T>
fn bright_black(&self) -> Painted<&T>
Source§fn bright_red(&self) -> Painted<&T>
fn bright_red(&self) -> Painted<&T>
Source§fn bright_green(&self) -> Painted<&T>
fn bright_green(&self) -> Painted<&T>
Source§fn bright_yellow(&self) -> Painted<&T>
fn bright_yellow(&self) -> Painted<&T>
Source§fn bright_blue(&self) -> Painted<&T>
fn bright_blue(&self) -> Painted<&T>
Source§fn bright_magenta(&self) -> Painted<&T>
fn bright_magenta(&self) -> Painted<&T>
Source§fn bright_cyan(&self) -> Painted<&T>
fn bright_cyan(&self) -> Painted<&T>
Source§fn bright_white(&self) -> Painted<&T>
fn bright_white(&self) -> Painted<&T>
Source§fn bg(&self, value: Color) -> Painted<&T>
fn bg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the background set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like on_red()
and
on_green()
, which have the same functionality but
are pithier.
§Example
Set background color to red using fg()
:
use yansi::{Paint, Color};
painted.bg(Color::Red);
Set background color to red using on_red()
.
use yansi::Paint;
painted.on_red();
Source§fn on_primary(&self) -> Painted<&T>
fn on_primary(&self) -> Painted<&T>
Source§fn on_magenta(&self) -> Painted<&T>
fn on_magenta(&self) -> Painted<&T>
Source§fn on_bright_black(&self) -> Painted<&T>
fn on_bright_black(&self) -> Painted<&T>
Source§fn on_bright_red(&self) -> Painted<&T>
fn on_bright_red(&self) -> Painted<&T>
Source§fn on_bright_green(&self) -> Painted<&T>
fn on_bright_green(&self) -> Painted<&T>
Source§fn on_bright_yellow(&self) -> Painted<&T>
fn on_bright_yellow(&self) -> Painted<&T>
Source§fn on_bright_blue(&self) -> Painted<&T>
fn on_bright_blue(&self) -> Painted<&T>
Source§fn on_bright_magenta(&self) -> Painted<&T>
fn on_bright_magenta(&self) -> Painted<&T>
Source§fn on_bright_cyan(&self) -> Painted<&T>
fn on_bright_cyan(&self) -> Painted<&T>
Source§fn on_bright_white(&self) -> Painted<&T>
fn on_bright_white(&self) -> Painted<&T>
Source§fn attr(&self, value: Attribute) -> Painted<&T>
fn attr(&self, value: Attribute) -> Painted<&T>
Enables the styling Attribute
value
.
This method should be used rarely. Instead, prefer to use
attribute-specific builder methods like bold()
and
underline()
, which have the same functionality
but are pithier.
§Example
Make text bold using attr()
:
use yansi::{Paint, Attribute};
painted.attr(Attribute::Bold);
Make text bold using using bold()
.
use yansi::Paint;
painted.bold();
Source§fn rapid_blink(&self) -> Painted<&T>
fn rapid_blink(&self) -> Painted<&T>
Source§fn quirk(&self, value: Quirk) -> Painted<&T>
fn quirk(&self, value: Quirk) -> Painted<&T>
Enables the yansi
Quirk
value
.
This method should be used rarely. Instead, prefer to use quirk-specific
builder methods like mask()
and
wrap()
, which have the same functionality but are
pithier.
§Example
Enable wrapping using .quirk()
:
use yansi::{Paint, Quirk};
painted.quirk(Quirk::Wrap);
Enable wrapping using wrap()
.
use yansi::Paint;
painted.wrap();
Source§fn clear(&self) -> Painted<&T>
👎Deprecated since 1.0.1: renamed to resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.
fn clear(&self) -> Painted<&T>
resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.Source§fn whenever(&self, value: Condition) -> Painted<&T>
fn whenever(&self, value: Condition) -> Painted<&T>
Conditionally enable styling based on whether the Condition
value
applies. Replaces any previous condition.
See the crate level docs for more details.
§Example
Enable styling painted
only when both stdout
and stderr
are TTYs:
use yansi::{Paint, Condition};
painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);