#[non_exhaustive]pub struct CandidateGenerationConfig {
pub algorithms_config: Option<Vec<AutoMlAlgorithmConfig>>,
}
Expand description
Stores the configuration information for how model candidates are generated using an AutoML job V2.
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.algorithms_config: Option<Vec<AutoMlAlgorithmConfig>>
Your Autopilot job trains a default set of algorithms on your dataset. For tabular and time-series data, you can customize the algorithm list by selecting a subset of algorithms for your problem type.
AlgorithmsConfig
stores the customized selection of algorithms to train on your data.
-
For the tabular problem type
TabularJobConfig
, the list of available algorithms to choose from depends on the training mode set inAutoMLJobConfig.Mode
.-
AlgorithmsConfig
should not be set when the training modeAutoMLJobConfig.Mode
is set toAUTO
. -
When
AlgorithmsConfig
is provided, oneAutoMLAlgorithms
attribute must be set and one only.If the list of algorithms provided as values for
AutoMLAlgorithms
is empty,CandidateGenerationConfig
uses the full set of algorithms for the given training mode. -
When
AlgorithmsConfig
is not provided,CandidateGenerationConfig
uses the full set of algorithms for the given training mode.
For the list of all algorithms per training mode, see AlgorithmConfig.
For more information on each algorithm, see the Algorithm support section in the Autopilot developer guide.
-
-
For the time-series forecasting problem type
TimeSeriesForecastingJobConfig
, choose your algorithms from the list provided in AlgorithmConfig.For more information on each algorithm, see the Algorithms support for time-series forecasting section in the Autopilot developer guide.
-
When
AlgorithmsConfig
is provided, oneAutoMLAlgorithms
attribute must be set and one only.If the list of algorithms provided as values for
AutoMLAlgorithms
is empty,CandidateGenerationConfig
uses the full set of algorithms for time-series forecasting. -
When
AlgorithmsConfig
is not provided,CandidateGenerationConfig
uses the full set of algorithms for time-series forecasting.
-
Implementations§
source§impl CandidateGenerationConfig
impl CandidateGenerationConfig
sourcepub fn algorithms_config(&self) -> &[AutoMlAlgorithmConfig]
pub fn algorithms_config(&self) -> &[AutoMlAlgorithmConfig]
Your Autopilot job trains a default set of algorithms on your dataset. For tabular and time-series data, you can customize the algorithm list by selecting a subset of algorithms for your problem type.
AlgorithmsConfig
stores the customized selection of algorithms to train on your data.
-
For the tabular problem type
TabularJobConfig
, the list of available algorithms to choose from depends on the training mode set inAutoMLJobConfig.Mode
.-
AlgorithmsConfig
should not be set when the training modeAutoMLJobConfig.Mode
is set toAUTO
. -
When
AlgorithmsConfig
is provided, oneAutoMLAlgorithms
attribute must be set and one only.If the list of algorithms provided as values for
AutoMLAlgorithms
is empty,CandidateGenerationConfig
uses the full set of algorithms for the given training mode. -
When
AlgorithmsConfig
is not provided,CandidateGenerationConfig
uses the full set of algorithms for the given training mode.
For the list of all algorithms per training mode, see AlgorithmConfig.
For more information on each algorithm, see the Algorithm support section in the Autopilot developer guide.
-
-
For the time-series forecasting problem type
TimeSeriesForecastingJobConfig
, choose your algorithms from the list provided in AlgorithmConfig.For more information on each algorithm, see the Algorithms support for time-series forecasting section in the Autopilot developer guide.
-
When
AlgorithmsConfig
is provided, oneAutoMLAlgorithms
attribute must be set and one only.If the list of algorithms provided as values for
AutoMLAlgorithms
is empty,CandidateGenerationConfig
uses the full set of algorithms for time-series forecasting. -
When
AlgorithmsConfig
is not provided,CandidateGenerationConfig
uses the full set of algorithms for time-series forecasting.
-
If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .algorithms_config.is_none()
.
source§impl CandidateGenerationConfig
impl CandidateGenerationConfig
sourcepub fn builder() -> CandidateGenerationConfigBuilder
pub fn builder() -> CandidateGenerationConfigBuilder
Creates a new builder-style object to manufacture CandidateGenerationConfig
.
Trait Implementations§
source§impl Clone for CandidateGenerationConfig
impl Clone for CandidateGenerationConfig
source§fn clone(&self) -> CandidateGenerationConfig
fn clone(&self) -> CandidateGenerationConfig
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for CandidateGenerationConfig
impl Debug for CandidateGenerationConfig
impl StructuralPartialEq for CandidateGenerationConfig
Auto Trait Implementations§
impl Freeze for CandidateGenerationConfig
impl RefUnwindSafe for CandidateGenerationConfig
impl Send for CandidateGenerationConfig
impl Sync for CandidateGenerationConfig
impl Unpin for CandidateGenerationConfig
impl UnwindSafe for CandidateGenerationConfig
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§default unsafe fn clone_to_uninit(&self, dst: *mut T)
default unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)source§impl<T> Instrument for T
impl<T> Instrument for T
source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more