Struct aws_sdk_sagemaker::operation::create_mlflow_tracking_server::CreateMlflowTrackingServerInput
source · #[non_exhaustive]pub struct CreateMlflowTrackingServerInput {
pub tracking_server_name: Option<String>,
pub artifact_store_uri: Option<String>,
pub tracking_server_size: Option<TrackingServerSize>,
pub mlflow_version: Option<String>,
pub role_arn: Option<String>,
pub automatic_model_registration: Option<bool>,
pub weekly_maintenance_window_start: Option<String>,
pub tags: Option<Vec<Tag>>,
}
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.tracking_server_name: Option<String>
A unique string identifying the tracking server name. This string is part of the tracking server ARN.
artifact_store_uri: Option<String>
The S3 URI for a general purpose bucket to use as the MLflow Tracking Server artifact store.
tracking_server_size: Option<TrackingServerSize>
The size of the tracking server you want to create. You can choose between "Small"
, "Medium"
, and "Large"
. The default MLflow Tracking Server configuration size is "Small"
. You can choose a size depending on the projected use of the tracking server such as the volume of data logged, number of users, and frequency of use.
We recommend using a small tracking server for teams of up to 25 users, a medium tracking server for teams of up to 50 users, and a large tracking server for teams of up to 100 users.
mlflow_version: Option<String>
The version of MLflow that the tracking server uses. To see which MLflow versions are available to use, see How it works.
role_arn: Option<String>
The Amazon Resource Name (ARN) for an IAM role in your account that the MLflow Tracking Server uses to access the artifact store in Amazon S3. The role should have AmazonS3FullAccess
permissions. For more information on IAM permissions for tracking server creation, see Set up IAM permissions for MLflow.
automatic_model_registration: Option<bool>
Whether to enable or disable automatic registration of new MLflow models to the SageMaker Model Registry. To enable automatic model registration, set this value to True
. To disable automatic model registration, set this value to False
. If not specified, AutomaticModelRegistration
defaults to False
.
weekly_maintenance_window_start: Option<String>
The day and time of the week in Coordinated Universal Time (UTC) 24-hour standard time that weekly maintenance updates are scheduled. For example: TUE:03:30.
Tags consisting of key-value pairs used to manage metadata for the tracking server.
Implementations§
source§impl CreateMlflowTrackingServerInput
impl CreateMlflowTrackingServerInput
sourcepub fn tracking_server_name(&self) -> Option<&str>
pub fn tracking_server_name(&self) -> Option<&str>
A unique string identifying the tracking server name. This string is part of the tracking server ARN.
sourcepub fn artifact_store_uri(&self) -> Option<&str>
pub fn artifact_store_uri(&self) -> Option<&str>
The S3 URI for a general purpose bucket to use as the MLflow Tracking Server artifact store.
sourcepub fn tracking_server_size(&self) -> Option<&TrackingServerSize>
pub fn tracking_server_size(&self) -> Option<&TrackingServerSize>
The size of the tracking server you want to create. You can choose between "Small"
, "Medium"
, and "Large"
. The default MLflow Tracking Server configuration size is "Small"
. You can choose a size depending on the projected use of the tracking server such as the volume of data logged, number of users, and frequency of use.
We recommend using a small tracking server for teams of up to 25 users, a medium tracking server for teams of up to 50 users, and a large tracking server for teams of up to 100 users.
sourcepub fn mlflow_version(&self) -> Option<&str>
pub fn mlflow_version(&self) -> Option<&str>
The version of MLflow that the tracking server uses. To see which MLflow versions are available to use, see How it works.
sourcepub fn role_arn(&self) -> Option<&str>
pub fn role_arn(&self) -> Option<&str>
The Amazon Resource Name (ARN) for an IAM role in your account that the MLflow Tracking Server uses to access the artifact store in Amazon S3. The role should have AmazonS3FullAccess
permissions. For more information on IAM permissions for tracking server creation, see Set up IAM permissions for MLflow.
sourcepub fn automatic_model_registration(&self) -> Option<bool>
pub fn automatic_model_registration(&self) -> Option<bool>
Whether to enable or disable automatic registration of new MLflow models to the SageMaker Model Registry. To enable automatic model registration, set this value to True
. To disable automatic model registration, set this value to False
. If not specified, AutomaticModelRegistration
defaults to False
.
sourcepub fn weekly_maintenance_window_start(&self) -> Option<&str>
pub fn weekly_maintenance_window_start(&self) -> Option<&str>
The day and time of the week in Coordinated Universal Time (UTC) 24-hour standard time that weekly maintenance updates are scheduled. For example: TUE:03:30.
Tags consisting of key-value pairs used to manage metadata for the tracking server.
If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .tags.is_none()
.
source§impl CreateMlflowTrackingServerInput
impl CreateMlflowTrackingServerInput
sourcepub fn builder() -> CreateMlflowTrackingServerInputBuilder
pub fn builder() -> CreateMlflowTrackingServerInputBuilder
Creates a new builder-style object to manufacture CreateMlflowTrackingServerInput
.
Trait Implementations§
source§impl Clone for CreateMlflowTrackingServerInput
impl Clone for CreateMlflowTrackingServerInput
source§fn clone(&self) -> CreateMlflowTrackingServerInput
fn clone(&self) -> CreateMlflowTrackingServerInput
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl PartialEq for CreateMlflowTrackingServerInput
impl PartialEq for CreateMlflowTrackingServerInput
source§fn eq(&self, other: &CreateMlflowTrackingServerInput) -> bool
fn eq(&self, other: &CreateMlflowTrackingServerInput) -> bool
self
and other
values to be equal, and is used by ==
.impl StructuralPartialEq for CreateMlflowTrackingServerInput
Auto Trait Implementations§
impl Freeze for CreateMlflowTrackingServerInput
impl RefUnwindSafe for CreateMlflowTrackingServerInput
impl Send for CreateMlflowTrackingServerInput
impl Sync for CreateMlflowTrackingServerInput
impl Unpin for CreateMlflowTrackingServerInput
impl UnwindSafe for CreateMlflowTrackingServerInput
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§default unsafe fn clone_to_uninit(&self, dst: *mut T)
default unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)source§impl<T> Instrument for T
impl<T> Instrument for T
source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more