#[non_exhaustive]pub struct RecommendationJobContainerConfig {
pub domain: Option<String>,
pub task: Option<String>,
pub framework: Option<String>,
pub framework_version: Option<String>,
pub payload_config: Option<RecommendationJobPayloadConfig>,
pub nearest_model_name: Option<String>,
pub supported_instance_types: Option<Vec<String>>,
pub supported_endpoint_type: Option<RecommendationJobSupportedEndpointType>,
pub data_input_config: Option<String>,
pub supported_response_mime_types: Option<Vec<String>>,
}
Expand description
Specifies mandatory fields for running an Inference Recommender job directly in the CreateInferenceRecommendationsJob API. The fields specified in ContainerConfig
override the corresponding fields in the model package. Use ContainerConfig
if you want to specify these fields for the recommendation job but don't want to edit them in your model package.
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.domain: Option<String>
The machine learning domain of the model and its components.
Valid Values: COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING | MACHINE_LEARNING
task: Option<String>
The machine learning task that the model accomplishes.
Valid Values: IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION | IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER
framework: Option<String>
The machine learning framework of the container image.
Valid Values: TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN
framework_version: Option<String>
The framework version of the container image.
payload_config: Option<RecommendationJobPayloadConfig>
Specifies the SamplePayloadUrl
and all other sample payload-related fields.
nearest_model_name: Option<String>
The name of a pre-trained machine learning model benchmarked by Amazon SageMaker Inference Recommender that matches your model.
Valid Values: efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge | vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon | resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased | xceptionV1-keras | resnet50 | retinanet
supported_instance_types: Option<Vec<String>>
A list of the instance types that are used to generate inferences in real-time.
supported_endpoint_type: Option<RecommendationJobSupportedEndpointType>
The endpoint type to receive recommendations for. By default this is null, and the results of the inference recommendation job return a combined list of both real-time and serverless benchmarks. By specifying a value for this field, you can receive a longer list of benchmarks for the desired endpoint type.
data_input_config: Option<String>
Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. This field is used for optimizing your model using SageMaker Neo. For more information, see DataInputConfig.
supported_response_mime_types: Option<Vec<String>>
The supported MIME types for the output data.
Implementations§
source§impl RecommendationJobContainerConfig
impl RecommendationJobContainerConfig
sourcepub fn domain(&self) -> Option<&str>
pub fn domain(&self) -> Option<&str>
The machine learning domain of the model and its components.
Valid Values: COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING | MACHINE_LEARNING
sourcepub fn task(&self) -> Option<&str>
pub fn task(&self) -> Option<&str>
The machine learning task that the model accomplishes.
Valid Values: IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION | IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER
sourcepub fn framework(&self) -> Option<&str>
pub fn framework(&self) -> Option<&str>
The machine learning framework of the container image.
Valid Values: TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN
sourcepub fn framework_version(&self) -> Option<&str>
pub fn framework_version(&self) -> Option<&str>
The framework version of the container image.
sourcepub fn payload_config(&self) -> Option<&RecommendationJobPayloadConfig>
pub fn payload_config(&self) -> Option<&RecommendationJobPayloadConfig>
Specifies the SamplePayloadUrl
and all other sample payload-related fields.
sourcepub fn nearest_model_name(&self) -> Option<&str>
pub fn nearest_model_name(&self) -> Option<&str>
The name of a pre-trained machine learning model benchmarked by Amazon SageMaker Inference Recommender that matches your model.
Valid Values: efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge | vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon | resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased | xceptionV1-keras | resnet50 | retinanet
sourcepub fn supported_instance_types(&self) -> &[String]
pub fn supported_instance_types(&self) -> &[String]
A list of the instance types that are used to generate inferences in real-time.
If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .supported_instance_types.is_none()
.
sourcepub fn supported_endpoint_type(
&self,
) -> Option<&RecommendationJobSupportedEndpointType>
pub fn supported_endpoint_type( &self, ) -> Option<&RecommendationJobSupportedEndpointType>
The endpoint type to receive recommendations for. By default this is null, and the results of the inference recommendation job return a combined list of both real-time and serverless benchmarks. By specifying a value for this field, you can receive a longer list of benchmarks for the desired endpoint type.
sourcepub fn data_input_config(&self) -> Option<&str>
pub fn data_input_config(&self) -> Option<&str>
Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. This field is used for optimizing your model using SageMaker Neo. For more information, see DataInputConfig.
sourcepub fn supported_response_mime_types(&self) -> &[String]
pub fn supported_response_mime_types(&self) -> &[String]
The supported MIME types for the output data.
If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .supported_response_mime_types.is_none()
.
source§impl RecommendationJobContainerConfig
impl RecommendationJobContainerConfig
sourcepub fn builder() -> RecommendationJobContainerConfigBuilder
pub fn builder() -> RecommendationJobContainerConfigBuilder
Creates a new builder-style object to manufacture RecommendationJobContainerConfig
.
Trait Implementations§
source§impl Clone for RecommendationJobContainerConfig
impl Clone for RecommendationJobContainerConfig
source§fn clone(&self) -> RecommendationJobContainerConfig
fn clone(&self) -> RecommendationJobContainerConfig
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl PartialEq for RecommendationJobContainerConfig
impl PartialEq for RecommendationJobContainerConfig
source§fn eq(&self, other: &RecommendationJobContainerConfig) -> bool
fn eq(&self, other: &RecommendationJobContainerConfig) -> bool
self
and other
values to be equal, and is used
by ==
.impl StructuralPartialEq for RecommendationJobContainerConfig
Auto Trait Implementations§
impl Freeze for RecommendationJobContainerConfig
impl RefUnwindSafe for RecommendationJobContainerConfig
impl Send for RecommendationJobContainerConfig
impl Sync for RecommendationJobContainerConfig
impl Unpin for RecommendationJobContainerConfig
impl UnwindSafe for RecommendationJobContainerConfig
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§default unsafe fn clone_to_uninit(&self, dst: *mut T)
default unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)source§impl<T> Instrument for T
impl<T> Instrument for T
source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more