#[non_exhaustive]pub struct AutoMlCandidateGenerationConfig {
pub feature_specification_s3_uri: Option<String>,
pub algorithms_config: Option<Vec<AutoMlAlgorithmConfig>>,
}
Expand description
Stores the configuration information for how a candidate is generated (optional).
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.feature_specification_s3_uri: Option<String>
A URL to the Amazon S3 data source containing selected features from the input data source to run an Autopilot job. You can input FeatureAttributeNames
(optional) in JSON format as shown below:
{ "FeatureAttributeNames":\["col1", "col2", ...\] }
.
You can also specify the data type of the feature (optional) in the format shown below:
{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... } }
These column keys may not include the target column.
In ensembling mode, Autopilot only supports the following data types: numeric
, categorical
, text
, and datetime
. In HPO mode, Autopilot can support numeric
, categorical
, text
, datetime
, and sequence
.
If only FeatureDataTypes
is provided, the column keys (col1
, col2
,..) should be a subset of the column names in the input data.
If both FeatureDataTypes
and FeatureAttributeNames
are provided, then the column keys should be a subset of the column names provided in FeatureAttributeNames
.
The key name FeatureAttributeNames
is fixed. The values listed in \["col1", "col2", ...\]
are case sensitive and should be a list of strings containing unique values that are a subset of the column names in the input data. The list of columns provided must not include the target column.
algorithms_config: Option<Vec<AutoMlAlgorithmConfig>>
Stores the configuration information for the selection of algorithms trained on tabular data.
The list of available algorithms to choose from depends on the training mode set in TabularJobConfig.Mode
.
-
AlgorithmsConfig
should not be set if the training mode is set onAUTO
. -
When
AlgorithmsConfig
is provided, oneAutoMLAlgorithms
attribute must be set and one only.If the list of algorithms provided as values for
AutoMLAlgorithms
is empty,CandidateGenerationConfig
uses the full set of algorithms for the given training mode. -
When
AlgorithmsConfig
is not provided,CandidateGenerationConfig
uses the full set of algorithms for the given training mode.
For the list of all algorithms per problem type and training mode, see AutoMLAlgorithmConfig.
For more information on each algorithm, see the Algorithm support section in Autopilot developer guide.
Implementations§
source§impl AutoMlCandidateGenerationConfig
impl AutoMlCandidateGenerationConfig
sourcepub fn feature_specification_s3_uri(&self) -> Option<&str>
pub fn feature_specification_s3_uri(&self) -> Option<&str>
A URL to the Amazon S3 data source containing selected features from the input data source to run an Autopilot job. You can input FeatureAttributeNames
(optional) in JSON format as shown below:
{ "FeatureAttributeNames":\["col1", "col2", ...\] }
.
You can also specify the data type of the feature (optional) in the format shown below:
{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... } }
These column keys may not include the target column.
In ensembling mode, Autopilot only supports the following data types: numeric
, categorical
, text
, and datetime
. In HPO mode, Autopilot can support numeric
, categorical
, text
, datetime
, and sequence
.
If only FeatureDataTypes
is provided, the column keys (col1
, col2
,..) should be a subset of the column names in the input data.
If both FeatureDataTypes
and FeatureAttributeNames
are provided, then the column keys should be a subset of the column names provided in FeatureAttributeNames
.
The key name FeatureAttributeNames
is fixed. The values listed in \["col1", "col2", ...\]
are case sensitive and should be a list of strings containing unique values that are a subset of the column names in the input data. The list of columns provided must not include the target column.
sourcepub fn algorithms_config(&self) -> &[AutoMlAlgorithmConfig]
pub fn algorithms_config(&self) -> &[AutoMlAlgorithmConfig]
Stores the configuration information for the selection of algorithms trained on tabular data.
The list of available algorithms to choose from depends on the training mode set in TabularJobConfig.Mode
.
-
AlgorithmsConfig
should not be set if the training mode is set onAUTO
. -
When
AlgorithmsConfig
is provided, oneAutoMLAlgorithms
attribute must be set and one only.If the list of algorithms provided as values for
AutoMLAlgorithms
is empty,CandidateGenerationConfig
uses the full set of algorithms for the given training mode. -
When
AlgorithmsConfig
is not provided,CandidateGenerationConfig
uses the full set of algorithms for the given training mode.
For the list of all algorithms per problem type and training mode, see AutoMLAlgorithmConfig.
For more information on each algorithm, see the Algorithm support section in Autopilot developer guide.
If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .algorithms_config.is_none()
.
source§impl AutoMlCandidateGenerationConfig
impl AutoMlCandidateGenerationConfig
sourcepub fn builder() -> AutoMlCandidateGenerationConfigBuilder
pub fn builder() -> AutoMlCandidateGenerationConfigBuilder
Creates a new builder-style object to manufacture AutoMlCandidateGenerationConfig
.
Trait Implementations§
source§impl Clone for AutoMlCandidateGenerationConfig
impl Clone for AutoMlCandidateGenerationConfig
source§fn clone(&self) -> AutoMlCandidateGenerationConfig
fn clone(&self) -> AutoMlCandidateGenerationConfig
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl PartialEq for AutoMlCandidateGenerationConfig
impl PartialEq for AutoMlCandidateGenerationConfig
source§fn eq(&self, other: &AutoMlCandidateGenerationConfig) -> bool
fn eq(&self, other: &AutoMlCandidateGenerationConfig) -> bool
self
and other
values to be equal, and is used
by ==
.impl StructuralPartialEq for AutoMlCandidateGenerationConfig
Auto Trait Implementations§
impl Freeze for AutoMlCandidateGenerationConfig
impl RefUnwindSafe for AutoMlCandidateGenerationConfig
impl Send for AutoMlCandidateGenerationConfig
impl Sync for AutoMlCandidateGenerationConfig
impl Unpin for AutoMlCandidateGenerationConfig
impl UnwindSafe for AutoMlCandidateGenerationConfig
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§default unsafe fn clone_to_uninit(&self, dst: *mut T)
default unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)source§impl<T> Instrument for T
impl<T> Instrument for T
source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more