#[non_exhaustive]pub struct CandidateGenerationConfig {
pub algorithms_config: Option<Vec<AutoMlAlgorithmConfig>>,
}Expand description
Stores the configuration information for how model candidates are generated using an AutoML job V2.
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. } syntax; cannot be matched against without a wildcard ..; and struct update syntax will not work.algorithms_config: Option<Vec<AutoMlAlgorithmConfig>>Your Autopilot job trains a default set of algorithms on your dataset. For tabular and time-series data, you can customize the algorithm list by selecting a subset of algorithms for your problem type.
AlgorithmsConfig stores the customized selection of algorithms to train on your data.
-
For the tabular problem type
TabularJobConfig, the list of available algorithms to choose from depends on the training mode set inAutoMLJobConfig.Mode.-
AlgorithmsConfigshould not be set when the training modeAutoMLJobConfig.Modeis set toAUTO. -
When
AlgorithmsConfigis provided, oneAutoMLAlgorithmsattribute must be set and one only.If the list of algorithms provided as values for
AutoMLAlgorithmsis empty,CandidateGenerationConfiguses the full set of algorithms for the given training mode. -
When
AlgorithmsConfigis not provided,CandidateGenerationConfiguses the full set of algorithms for the given training mode.
For the list of all algorithms per training mode, see AlgorithmConfig.
For more information on each algorithm, see the Algorithm support section in the Autopilot developer guide.
-
-
For the time-series forecasting problem type
TimeSeriesForecastingJobConfig, choose your algorithms from the list provided in AlgorithmConfig.For more information on each algorithm, see the Algorithms support for time-series forecasting section in the Autopilot developer guide.
-
When
AlgorithmsConfigis provided, oneAutoMLAlgorithmsattribute must be set and one only.If the list of algorithms provided as values for
AutoMLAlgorithmsis empty,CandidateGenerationConfiguses the full set of algorithms for time-series forecasting. -
When
AlgorithmsConfigis not provided,CandidateGenerationConfiguses the full set of algorithms for time-series forecasting.
-
Implementations§
source§impl CandidateGenerationConfig
impl CandidateGenerationConfig
sourcepub fn algorithms_config(&self) -> &[AutoMlAlgorithmConfig]
pub fn algorithms_config(&self) -> &[AutoMlAlgorithmConfig]
Your Autopilot job trains a default set of algorithms on your dataset. For tabular and time-series data, you can customize the algorithm list by selecting a subset of algorithms for your problem type.
AlgorithmsConfig stores the customized selection of algorithms to train on your data.
-
For the tabular problem type
TabularJobConfig, the list of available algorithms to choose from depends on the training mode set inAutoMLJobConfig.Mode.-
AlgorithmsConfigshould not be set when the training modeAutoMLJobConfig.Modeis set toAUTO. -
When
AlgorithmsConfigis provided, oneAutoMLAlgorithmsattribute must be set and one only.If the list of algorithms provided as values for
AutoMLAlgorithmsis empty,CandidateGenerationConfiguses the full set of algorithms for the given training mode. -
When
AlgorithmsConfigis not provided,CandidateGenerationConfiguses the full set of algorithms for the given training mode.
For the list of all algorithms per training mode, see AlgorithmConfig.
For more information on each algorithm, see the Algorithm support section in the Autopilot developer guide.
-
-
For the time-series forecasting problem type
TimeSeriesForecastingJobConfig, choose your algorithms from the list provided in AlgorithmConfig.For more information on each algorithm, see the Algorithms support for time-series forecasting section in the Autopilot developer guide.
-
When
AlgorithmsConfigis provided, oneAutoMLAlgorithmsattribute must be set and one only.If the list of algorithms provided as values for
AutoMLAlgorithmsis empty,CandidateGenerationConfiguses the full set of algorithms for time-series forecasting. -
When
AlgorithmsConfigis not provided,CandidateGenerationConfiguses the full set of algorithms for time-series forecasting.
-
If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .algorithms_config.is_none().
source§impl CandidateGenerationConfig
impl CandidateGenerationConfig
sourcepub fn builder() -> CandidateGenerationConfigBuilder
pub fn builder() -> CandidateGenerationConfigBuilder
Creates a new builder-style object to manufacture CandidateGenerationConfig.
Trait Implementations§
source§impl Clone for CandidateGenerationConfig
impl Clone for CandidateGenerationConfig
source§fn clone(&self) -> CandidateGenerationConfig
fn clone(&self) -> CandidateGenerationConfig
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moresource§impl Debug for CandidateGenerationConfig
impl Debug for CandidateGenerationConfig
source§impl PartialEq for CandidateGenerationConfig
impl PartialEq for CandidateGenerationConfig
source§fn eq(&self, other: &CandidateGenerationConfig) -> bool
fn eq(&self, other: &CandidateGenerationConfig) -> bool
self and other values to be equal, and is used
by ==.impl StructuralPartialEq for CandidateGenerationConfig
Auto Trait Implementations§
impl Freeze for CandidateGenerationConfig
impl RefUnwindSafe for CandidateGenerationConfig
impl Send for CandidateGenerationConfig
impl Sync for CandidateGenerationConfig
impl Unpin for CandidateGenerationConfig
impl UnwindSafe for CandidateGenerationConfig
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> Instrument for T
impl<T> Instrument for T
source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more