#[non_exhaustive]
pub struct AutoMlJobObjective { pub metric_name: Option<AutoMlMetricEnum>, }
Expand description

Specifies a metric to minimize or maximize as the objective of an AutoML job.

Fields (Non-exhaustive)§

This struct is marked as non-exhaustive
Non-exhaustive structs could have additional fields added in future. Therefore, non-exhaustive structs cannot be constructed in external crates using the traditional Struct { .. } syntax; cannot be matched against without a wildcard ..; and struct update syntax will not work.
§metric_name: Option<AutoMlMetricEnum>

The name of the objective metric used to measure the predictive quality of a machine learning system. During training, the model's parameters are updated iteratively to optimize its performance based on the feedback provided by the objective metric when evaluating the model on the validation dataset.

The list of available metrics supported by Autopilot and the default metric applied when you do not specify a metric name explicitly depend on the problem type.

  • For tabular problem types:

    • List of available metrics:

      • Regression: InferenceLatency, MAE, MSE, R2, RMSE

      • Binary classification: Accuracy, AUC, BalancedAccuracy, F1, InferenceLatency, LogLoss, Precision, Recall

      • Multiclass classification: Accuracy, BalancedAccuracy, F1macro, InferenceLatency, LogLoss, PrecisionMacro, RecallMacro

      For a description of each metric, see Autopilot metrics for classification and regression.

    • Default objective metrics:

      • Regression: MSE.

      • Binary classification: F1.

      • Multiclass classification: Accuracy.

  • For image or text classification problem types:

  • For time-series forecasting problem types:

  • For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the AutoMLJobObjective field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see Metrics for fine-tuning LLMs in Autopilot.

Implementations§

source§

impl AutoMlJobObjective

source

pub fn metric_name(&self) -> Option<&AutoMlMetricEnum>

The name of the objective metric used to measure the predictive quality of a machine learning system. During training, the model's parameters are updated iteratively to optimize its performance based on the feedback provided by the objective metric when evaluating the model on the validation dataset.

The list of available metrics supported by Autopilot and the default metric applied when you do not specify a metric name explicitly depend on the problem type.

  • For tabular problem types:

    • List of available metrics:

      • Regression: InferenceLatency, MAE, MSE, R2, RMSE

      • Binary classification: Accuracy, AUC, BalancedAccuracy, F1, InferenceLatency, LogLoss, Precision, Recall

      • Multiclass classification: Accuracy, BalancedAccuracy, F1macro, InferenceLatency, LogLoss, PrecisionMacro, RecallMacro

      For a description of each metric, see Autopilot metrics for classification and regression.

    • Default objective metrics:

      • Regression: MSE.

      • Binary classification: F1.

      • Multiclass classification: Accuracy.

  • For image or text classification problem types:

  • For time-series forecasting problem types:

  • For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the AutoMLJobObjective field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see Metrics for fine-tuning LLMs in Autopilot.

source§

impl AutoMlJobObjective

source

pub fn builder() -> AutoMlJobObjectiveBuilder

Creates a new builder-style object to manufacture AutoMlJobObjective.

Trait Implementations§

source§

impl Clone for AutoMlJobObjective

source§

fn clone(&self) -> AutoMlJobObjective

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for AutoMlJobObjective

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl PartialEq for AutoMlJobObjective

source§

fn eq(&self, other: &AutoMlJobObjective) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl StructuralPartialEq for AutoMlJobObjective

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T> Instrument for T

source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<Unshared, Shared> IntoShared<Shared> for Unsharedwhere Shared: FromUnshared<Unshared>,

source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
source§

impl<T> Same for T

§

type Output = T

Should always be Self
source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T> WithSubscriber for T

source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more