Struct aws_sdk_sagemaker::types::AutoMlJobConfig
source · #[non_exhaustive]pub struct AutoMlJobConfig {
pub completion_criteria: Option<AutoMlJobCompletionCriteria>,
pub security_config: Option<AutoMlSecurityConfig>,
pub data_split_config: Option<AutoMlDataSplitConfig>,
pub candidate_generation_config: Option<AutoMlCandidateGenerationConfig>,
pub mode: Option<AutoMlMode>,
}
Expand description
A collection of settings used for an AutoML job.
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.completion_criteria: Option<AutoMlJobCompletionCriteria>
How long an AutoML job is allowed to run, or how many candidates a job is allowed to generate.
security_config: Option<AutoMlSecurityConfig>
The security configuration for traffic encryption or Amazon VPC settings.
data_split_config: Option<AutoMlDataSplitConfig>
The configuration for splitting the input training dataset.
Type: AutoMLDataSplitConfig
candidate_generation_config: Option<AutoMlCandidateGenerationConfig>
The configuration for generating a candidate for an AutoML job (optional).
mode: Option<AutoMlMode>
The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot choose for you based on the dataset size by selecting AUTO
. In AUTO
mode, Autopilot chooses ENSEMBLING
for datasets smaller than 100 MB, and HYPERPARAMETER_TUNING
for larger ones.
The ENSEMBLING
mode uses a multi-stack ensemble model to predict classification and regression tasks directly from your dataset. This machine learning mode combines several base models to produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A multi-stack ensemble model can provide better performance over a single model by combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING
mode.
The HYPERPARAMETER_TUNING
(HPO) mode uses the best hyperparameters to train the best version of a model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING
mode.
Implementations§
source§impl AutoMlJobConfig
impl AutoMlJobConfig
sourcepub fn completion_criteria(&self) -> Option<&AutoMlJobCompletionCriteria>
pub fn completion_criteria(&self) -> Option<&AutoMlJobCompletionCriteria>
How long an AutoML job is allowed to run, or how many candidates a job is allowed to generate.
sourcepub fn security_config(&self) -> Option<&AutoMlSecurityConfig>
pub fn security_config(&self) -> Option<&AutoMlSecurityConfig>
The security configuration for traffic encryption or Amazon VPC settings.
sourcepub fn data_split_config(&self) -> Option<&AutoMlDataSplitConfig>
pub fn data_split_config(&self) -> Option<&AutoMlDataSplitConfig>
The configuration for splitting the input training dataset.
Type: AutoMLDataSplitConfig
sourcepub fn candidate_generation_config(
&self
) -> Option<&AutoMlCandidateGenerationConfig>
pub fn candidate_generation_config( &self ) -> Option<&AutoMlCandidateGenerationConfig>
The configuration for generating a candidate for an AutoML job (optional).
sourcepub fn mode(&self) -> Option<&AutoMlMode>
pub fn mode(&self) -> Option<&AutoMlMode>
The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot choose for you based on the dataset size by selecting AUTO
. In AUTO
mode, Autopilot chooses ENSEMBLING
for datasets smaller than 100 MB, and HYPERPARAMETER_TUNING
for larger ones.
The ENSEMBLING
mode uses a multi-stack ensemble model to predict classification and regression tasks directly from your dataset. This machine learning mode combines several base models to produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A multi-stack ensemble model can provide better performance over a single model by combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING
mode.
The HYPERPARAMETER_TUNING
(HPO) mode uses the best hyperparameters to train the best version of a model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING
mode.
source§impl AutoMlJobConfig
impl AutoMlJobConfig
sourcepub fn builder() -> AutoMlJobConfigBuilder
pub fn builder() -> AutoMlJobConfigBuilder
Creates a new builder-style object to manufacture AutoMlJobConfig
.
Trait Implementations§
source§impl Clone for AutoMlJobConfig
impl Clone for AutoMlJobConfig
source§fn clone(&self) -> AutoMlJobConfig
fn clone(&self) -> AutoMlJobConfig
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for AutoMlJobConfig
impl Debug for AutoMlJobConfig
source§impl PartialEq for AutoMlJobConfig
impl PartialEq for AutoMlJobConfig
source§fn eq(&self, other: &AutoMlJobConfig) -> bool
fn eq(&self, other: &AutoMlJobConfig) -> bool
self
and other
values to be equal, and is used
by ==
.