Struct aws_sdk_sagemaker::operation::create_auto_ml_job::builders::CreateAutoMlJobInputBuilder
source · #[non_exhaustive]pub struct CreateAutoMlJobInputBuilder { /* private fields */ }
Expand description
A builder for CreateAutoMlJobInput
.
Implementations§
source§impl CreateAutoMlJobInputBuilder
impl CreateAutoMlJobInputBuilder
sourcepub fn auto_ml_job_name(self, input: impl Into<String>) -> Self
pub fn auto_ml_job_name(self, input: impl Into<String>) -> Self
Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
This field is required.sourcepub fn set_auto_ml_job_name(self, input: Option<String>) -> Self
pub fn set_auto_ml_job_name(self, input: Option<String>) -> Self
Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
sourcepub fn get_auto_ml_job_name(&self) -> &Option<String>
pub fn get_auto_ml_job_name(&self) -> &Option<String>
Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
sourcepub fn input_data_config(self, input: AutoMlChannel) -> Self
pub fn input_data_config(self, input: AutoMlChannel) -> Self
Appends an item to input_data_config
.
To override the contents of this collection use set_input_data_config
.
An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to InputDataConfig
supported by HyperParameterTrainingJobDefinition. Format(s) supported: CSV, Parquet. A minimum of 500 rows is required for the training dataset. There is not a minimum number of rows required for the validation dataset.
sourcepub fn set_input_data_config(self, input: Option<Vec<AutoMlChannel>>) -> Self
pub fn set_input_data_config(self, input: Option<Vec<AutoMlChannel>>) -> Self
An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to InputDataConfig
supported by HyperParameterTrainingJobDefinition. Format(s) supported: CSV, Parquet. A minimum of 500 rows is required for the training dataset. There is not a minimum number of rows required for the validation dataset.
sourcepub fn get_input_data_config(&self) -> &Option<Vec<AutoMlChannel>>
pub fn get_input_data_config(&self) -> &Option<Vec<AutoMlChannel>>
An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to InputDataConfig
supported by HyperParameterTrainingJobDefinition. Format(s) supported: CSV, Parquet. A minimum of 500 rows is required for the training dataset. There is not a minimum number of rows required for the validation dataset.
sourcepub fn output_data_config(self, input: AutoMlOutputDataConfig) -> Self
pub fn output_data_config(self, input: AutoMlOutputDataConfig) -> Self
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.
This field is required.sourcepub fn set_output_data_config(
self,
input: Option<AutoMlOutputDataConfig>
) -> Self
pub fn set_output_data_config( self, input: Option<AutoMlOutputDataConfig> ) -> Self
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.
sourcepub fn get_output_data_config(&self) -> &Option<AutoMlOutputDataConfig>
pub fn get_output_data_config(&self) -> &Option<AutoMlOutputDataConfig>
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.
sourcepub fn problem_type(self, input: ProblemType) -> Self
pub fn problem_type(self, input: ProblemType) -> Self
Defines the type of supervised learning problem available for the candidates. For more information, see Amazon SageMaker Autopilot problem types.
sourcepub fn set_problem_type(self, input: Option<ProblemType>) -> Self
pub fn set_problem_type(self, input: Option<ProblemType>) -> Self
Defines the type of supervised learning problem available for the candidates. For more information, see Amazon SageMaker Autopilot problem types.
sourcepub fn get_problem_type(&self) -> &Option<ProblemType>
pub fn get_problem_type(&self) -> &Option<ProblemType>
Defines the type of supervised learning problem available for the candidates. For more information, see Amazon SageMaker Autopilot problem types.
sourcepub fn auto_ml_job_objective(self, input: AutoMlJobObjective) -> Self
pub fn auto_ml_job_objective(self, input: AutoMlJobObjective) -> Self
Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. See AutoMLJobObjective for the default values.
sourcepub fn set_auto_ml_job_objective(
self,
input: Option<AutoMlJobObjective>
) -> Self
pub fn set_auto_ml_job_objective( self, input: Option<AutoMlJobObjective> ) -> Self
Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. See AutoMLJobObjective for the default values.
sourcepub fn get_auto_ml_job_objective(&self) -> &Option<AutoMlJobObjective>
pub fn get_auto_ml_job_objective(&self) -> &Option<AutoMlJobObjective>
Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. See AutoMLJobObjective for the default values.
sourcepub fn auto_ml_job_config(self, input: AutoMlJobConfig) -> Self
pub fn auto_ml_job_config(self, input: AutoMlJobConfig) -> Self
A collection of settings used to configure an AutoML job.
sourcepub fn set_auto_ml_job_config(self, input: Option<AutoMlJobConfig>) -> Self
pub fn set_auto_ml_job_config(self, input: Option<AutoMlJobConfig>) -> Self
A collection of settings used to configure an AutoML job.
sourcepub fn get_auto_ml_job_config(&self) -> &Option<AutoMlJobConfig>
pub fn get_auto_ml_job_config(&self) -> &Option<AutoMlJobConfig>
A collection of settings used to configure an AutoML job.
sourcepub fn role_arn(self, input: impl Into<String>) -> Self
pub fn role_arn(self, input: impl Into<String>) -> Self
The ARN of the role that is used to access the data.
This field is required.sourcepub fn set_role_arn(self, input: Option<String>) -> Self
pub fn set_role_arn(self, input: Option<String>) -> Self
The ARN of the role that is used to access the data.
sourcepub fn get_role_arn(&self) -> &Option<String>
pub fn get_role_arn(&self) -> &Option<String>
The ARN of the role that is used to access the data.
sourcepub fn generate_candidate_definitions_only(self, input: bool) -> Self
pub fn generate_candidate_definitions_only(self, input: bool) -> Self
Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
sourcepub fn set_generate_candidate_definitions_only(
self,
input: Option<bool>
) -> Self
pub fn set_generate_candidate_definitions_only( self, input: Option<bool> ) -> Self
Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
sourcepub fn get_generate_candidate_definitions_only(&self) -> &Option<bool>
pub fn get_generate_candidate_definitions_only(&self) -> &Option<bool>
Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
Appends an item to tags
.
To override the contents of this collection use set_tags
.
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
sourcepub fn model_deploy_config(self, input: ModelDeployConfig) -> Self
pub fn model_deploy_config(self, input: ModelDeployConfig) -> Self
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
sourcepub fn set_model_deploy_config(self, input: Option<ModelDeployConfig>) -> Self
pub fn set_model_deploy_config(self, input: Option<ModelDeployConfig>) -> Self
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
sourcepub fn get_model_deploy_config(&self) -> &Option<ModelDeployConfig>
pub fn get_model_deploy_config(&self) -> &Option<ModelDeployConfig>
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
sourcepub fn build(self) -> Result<CreateAutoMlJobInput, BuildError>
pub fn build(self) -> Result<CreateAutoMlJobInput, BuildError>
Consumes the builder and constructs a CreateAutoMlJobInput
.
source§impl CreateAutoMlJobInputBuilder
impl CreateAutoMlJobInputBuilder
sourcepub async fn send_with(
self,
client: &Client
) -> Result<CreateAutoMlJobOutput, SdkError<CreateAutoMLJobError, HttpResponse>>
pub async fn send_with( self, client: &Client ) -> Result<CreateAutoMlJobOutput, SdkError<CreateAutoMLJobError, HttpResponse>>
Sends a request with this input using the given client.
Trait Implementations§
source§impl Clone for CreateAutoMlJobInputBuilder
impl Clone for CreateAutoMlJobInputBuilder
source§fn clone(&self) -> CreateAutoMlJobInputBuilder
fn clone(&self) -> CreateAutoMlJobInputBuilder
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for CreateAutoMlJobInputBuilder
impl Debug for CreateAutoMlJobInputBuilder
source§impl Default for CreateAutoMlJobInputBuilder
impl Default for CreateAutoMlJobInputBuilder
source§fn default() -> CreateAutoMlJobInputBuilder
fn default() -> CreateAutoMlJobInputBuilder
source§impl PartialEq for CreateAutoMlJobInputBuilder
impl PartialEq for CreateAutoMlJobInputBuilder
source§fn eq(&self, other: &CreateAutoMlJobInputBuilder) -> bool
fn eq(&self, other: &CreateAutoMlJobInputBuilder) -> bool
self
and other
values to be equal, and is used
by ==
.