pub struct CreateAutoMLJobFluentBuilder { /* private fields */ }
Expand description
Fluent builder constructing a request to CreateAutoMLJob
.
Creates an Autopilot job also referred to as Autopilot experiment or AutoML job.
An AutoML job in SageMaker AI is a fully automated process that allows you to build machine learning models with minimal effort and machine learning expertise. When initiating an AutoML job, you provide your data and optionally specify parameters tailored to your use case. SageMaker AI then automates the entire model development lifecycle, including data preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify and accelerate the model building process by automating various tasks and exploring different combinations of machine learning algorithms, data preprocessing techniques, and hyperparameter values. The output of an AutoML job comprises one or more trained models ready for deployment and inference. Additionally, SageMaker AI AutoML jobs generate a candidate model leaderboard, allowing you to select the best-performing model for deployment.
For more information about AutoML jobs, see https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html in the SageMaker AI developer guide.
We recommend using the new versions CreateAutoMLJobV2 and DescribeAutoMLJobV2, which offer backward compatibility.
CreateAutoMLJobV2
can manage tabular problem types identical to those of its previous version CreateAutoMLJob
, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning).
Find guidelines about how to migrate a CreateAutoMLJob
to CreateAutoMLJobV2
in Migrate a CreateAutoMLJob to CreateAutoMLJobV2.
You can find the best-performing model after you run an AutoML job by calling DescribeAutoMLJobV2 (recommended) or DescribeAutoMLJob.
Implementations§
Source§impl CreateAutoMLJobFluentBuilder
impl CreateAutoMLJobFluentBuilder
Sourcepub fn as_input(&self) -> &CreateAutoMlJobInputBuilder
pub fn as_input(&self) -> &CreateAutoMlJobInputBuilder
Access the CreateAutoMLJob as a reference.
Sourcepub async fn send(
self,
) -> Result<CreateAutoMlJobOutput, SdkError<CreateAutoMLJobError, HttpResponse>>
pub async fn send( self, ) -> Result<CreateAutoMlJobOutput, SdkError<CreateAutoMLJobError, HttpResponse>>
Sends the request and returns the response.
If an error occurs, an SdkError
will be returned with additional details that
can be matched against.
By default, any retryable failures will be retried twice. Retry behavior is configurable with the RetryConfig, which can be set when configuring the client.
Sourcepub fn customize(
self,
) -> CustomizableOperation<CreateAutoMlJobOutput, CreateAutoMLJobError, Self>
pub fn customize( self, ) -> CustomizableOperation<CreateAutoMlJobOutput, CreateAutoMLJobError, Self>
Consumes this builder, creating a customizable operation that can be modified before being sent.
Sourcepub fn auto_ml_job_name(self, input: impl Into<String>) -> Self
pub fn auto_ml_job_name(self, input: impl Into<String>) -> Self
Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
Sourcepub fn set_auto_ml_job_name(self, input: Option<String>) -> Self
pub fn set_auto_ml_job_name(self, input: Option<String>) -> Self
Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
Sourcepub fn get_auto_ml_job_name(&self) -> &Option<String>
pub fn get_auto_ml_job_name(&self) -> &Option<String>
Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
Sourcepub fn input_data_config(self, input: AutoMlChannel) -> Self
pub fn input_data_config(self, input: AutoMlChannel) -> Self
Appends an item to InputDataConfig
.
To override the contents of this collection use set_input_data_config
.
An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to InputDataConfig
supported by HyperParameterTrainingJobDefinition. Format(s) supported: CSV, Parquet. A minimum of 500 rows is required for the training dataset. There is not a minimum number of rows required for the validation dataset.
Sourcepub fn set_input_data_config(self, input: Option<Vec<AutoMlChannel>>) -> Self
pub fn set_input_data_config(self, input: Option<Vec<AutoMlChannel>>) -> Self
An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to InputDataConfig
supported by HyperParameterTrainingJobDefinition. Format(s) supported: CSV, Parquet. A minimum of 500 rows is required for the training dataset. There is not a minimum number of rows required for the validation dataset.
Sourcepub fn get_input_data_config(&self) -> &Option<Vec<AutoMlChannel>>
pub fn get_input_data_config(&self) -> &Option<Vec<AutoMlChannel>>
An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to InputDataConfig
supported by HyperParameterTrainingJobDefinition. Format(s) supported: CSV, Parquet. A minimum of 500 rows is required for the training dataset. There is not a minimum number of rows required for the validation dataset.
Sourcepub fn output_data_config(self, input: AutoMlOutputDataConfig) -> Self
pub fn output_data_config(self, input: AutoMlOutputDataConfig) -> Self
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.
Sourcepub fn set_output_data_config(
self,
input: Option<AutoMlOutputDataConfig>,
) -> Self
pub fn set_output_data_config( self, input: Option<AutoMlOutputDataConfig>, ) -> Self
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.
Sourcepub fn get_output_data_config(&self) -> &Option<AutoMlOutputDataConfig>
pub fn get_output_data_config(&self) -> &Option<AutoMlOutputDataConfig>
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.
Sourcepub fn problem_type(self, input: ProblemType) -> Self
pub fn problem_type(self, input: ProblemType) -> Self
Defines the type of supervised learning problem available for the candidates. For more information, see SageMaker Autopilot problem types.
Sourcepub fn set_problem_type(self, input: Option<ProblemType>) -> Self
pub fn set_problem_type(self, input: Option<ProblemType>) -> Self
Defines the type of supervised learning problem available for the candidates. For more information, see SageMaker Autopilot problem types.
Sourcepub fn get_problem_type(&self) -> &Option<ProblemType>
pub fn get_problem_type(&self) -> &Option<ProblemType>
Defines the type of supervised learning problem available for the candidates. For more information, see SageMaker Autopilot problem types.
Sourcepub fn auto_ml_job_objective(self, input: AutoMlJobObjective) -> Self
pub fn auto_ml_job_objective(self, input: AutoMlJobObjective) -> Self
Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. See AutoMLJobObjective for the default values.
Sourcepub fn set_auto_ml_job_objective(
self,
input: Option<AutoMlJobObjective>,
) -> Self
pub fn set_auto_ml_job_objective( self, input: Option<AutoMlJobObjective>, ) -> Self
Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. See AutoMLJobObjective for the default values.
Sourcepub fn get_auto_ml_job_objective(&self) -> &Option<AutoMlJobObjective>
pub fn get_auto_ml_job_objective(&self) -> &Option<AutoMlJobObjective>
Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. See AutoMLJobObjective for the default values.
Sourcepub fn auto_ml_job_config(self, input: AutoMlJobConfig) -> Self
pub fn auto_ml_job_config(self, input: AutoMlJobConfig) -> Self
A collection of settings used to configure an AutoML job.
Sourcepub fn set_auto_ml_job_config(self, input: Option<AutoMlJobConfig>) -> Self
pub fn set_auto_ml_job_config(self, input: Option<AutoMlJobConfig>) -> Self
A collection of settings used to configure an AutoML job.
Sourcepub fn get_auto_ml_job_config(&self) -> &Option<AutoMlJobConfig>
pub fn get_auto_ml_job_config(&self) -> &Option<AutoMlJobConfig>
A collection of settings used to configure an AutoML job.
Sourcepub fn role_arn(self, input: impl Into<String>) -> Self
pub fn role_arn(self, input: impl Into<String>) -> Self
The ARN of the role that is used to access the data.
Sourcepub fn set_role_arn(self, input: Option<String>) -> Self
pub fn set_role_arn(self, input: Option<String>) -> Self
The ARN of the role that is used to access the data.
Sourcepub fn get_role_arn(&self) -> &Option<String>
pub fn get_role_arn(&self) -> &Option<String>
The ARN of the role that is used to access the data.
Sourcepub fn generate_candidate_definitions_only(self, input: bool) -> Self
pub fn generate_candidate_definitions_only(self, input: bool) -> Self
Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
Sourcepub fn set_generate_candidate_definitions_only(
self,
input: Option<bool>,
) -> Self
pub fn set_generate_candidate_definitions_only( self, input: Option<bool>, ) -> Self
Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
Sourcepub fn get_generate_candidate_definitions_only(&self) -> &Option<bool>
pub fn get_generate_candidate_definitions_only(&self) -> &Option<bool>
Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
Appends an item to Tags
.
To override the contents of this collection use set_tags
.
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
Sourcepub fn model_deploy_config(self, input: ModelDeployConfig) -> Self
pub fn model_deploy_config(self, input: ModelDeployConfig) -> Self
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
Sourcepub fn set_model_deploy_config(self, input: Option<ModelDeployConfig>) -> Self
pub fn set_model_deploy_config(self, input: Option<ModelDeployConfig>) -> Self
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
Sourcepub fn get_model_deploy_config(&self) -> &Option<ModelDeployConfig>
pub fn get_model_deploy_config(&self) -> &Option<ModelDeployConfig>
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
Trait Implementations§
Source§impl Clone for CreateAutoMLJobFluentBuilder
impl Clone for CreateAutoMLJobFluentBuilder
Source§fn clone(&self) -> CreateAutoMLJobFluentBuilder
fn clone(&self) -> CreateAutoMLJobFluentBuilder
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moreAuto Trait Implementations§
impl Freeze for CreateAutoMLJobFluentBuilder
impl !RefUnwindSafe for CreateAutoMLJobFluentBuilder
impl Send for CreateAutoMLJobFluentBuilder
impl Sync for CreateAutoMLJobFluentBuilder
impl Unpin for CreateAutoMLJobFluentBuilder
impl !UnwindSafe for CreateAutoMLJobFluentBuilder
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Paint for Twhere
T: ?Sized,
impl<T> Paint for Twhere
T: ?Sized,
Source§fn fg(&self, value: Color) -> Painted<&T>
fn fg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the foreground set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like red()
and
green()
, which have the same functionality but are
pithier.
§Example
Set foreground color to white using fg()
:
use yansi::{Paint, Color};
painted.fg(Color::White);
Set foreground color to white using white()
.
use yansi::Paint;
painted.white();
Source§fn bright_black(&self) -> Painted<&T>
fn bright_black(&self) -> Painted<&T>
Source§fn bright_red(&self) -> Painted<&T>
fn bright_red(&self) -> Painted<&T>
Source§fn bright_green(&self) -> Painted<&T>
fn bright_green(&self) -> Painted<&T>
Source§fn bright_yellow(&self) -> Painted<&T>
fn bright_yellow(&self) -> Painted<&T>
Source§fn bright_blue(&self) -> Painted<&T>
fn bright_blue(&self) -> Painted<&T>
Source§fn bright_magenta(&self) -> Painted<&T>
fn bright_magenta(&self) -> Painted<&T>
Source§fn bright_cyan(&self) -> Painted<&T>
fn bright_cyan(&self) -> Painted<&T>
Source§fn bright_white(&self) -> Painted<&T>
fn bright_white(&self) -> Painted<&T>
Source§fn bg(&self, value: Color) -> Painted<&T>
fn bg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the background set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like on_red()
and
on_green()
, which have the same functionality but
are pithier.
§Example
Set background color to red using fg()
:
use yansi::{Paint, Color};
painted.bg(Color::Red);
Set background color to red using on_red()
.
use yansi::Paint;
painted.on_red();
Source§fn on_primary(&self) -> Painted<&T>
fn on_primary(&self) -> Painted<&T>
Source§fn on_magenta(&self) -> Painted<&T>
fn on_magenta(&self) -> Painted<&T>
Source§fn on_bright_black(&self) -> Painted<&T>
fn on_bright_black(&self) -> Painted<&T>
Source§fn on_bright_red(&self) -> Painted<&T>
fn on_bright_red(&self) -> Painted<&T>
Source§fn on_bright_green(&self) -> Painted<&T>
fn on_bright_green(&self) -> Painted<&T>
Source§fn on_bright_yellow(&self) -> Painted<&T>
fn on_bright_yellow(&self) -> Painted<&T>
Source§fn on_bright_blue(&self) -> Painted<&T>
fn on_bright_blue(&self) -> Painted<&T>
Source§fn on_bright_magenta(&self) -> Painted<&T>
fn on_bright_magenta(&self) -> Painted<&T>
Source§fn on_bright_cyan(&self) -> Painted<&T>
fn on_bright_cyan(&self) -> Painted<&T>
Source§fn on_bright_white(&self) -> Painted<&T>
fn on_bright_white(&self) -> Painted<&T>
Source§fn attr(&self, value: Attribute) -> Painted<&T>
fn attr(&self, value: Attribute) -> Painted<&T>
Enables the styling Attribute
value
.
This method should be used rarely. Instead, prefer to use
attribute-specific builder methods like bold()
and
underline()
, which have the same functionality
but are pithier.
§Example
Make text bold using attr()
:
use yansi::{Paint, Attribute};
painted.attr(Attribute::Bold);
Make text bold using using bold()
.
use yansi::Paint;
painted.bold();
Source§fn rapid_blink(&self) -> Painted<&T>
fn rapid_blink(&self) -> Painted<&T>
Source§fn quirk(&self, value: Quirk) -> Painted<&T>
fn quirk(&self, value: Quirk) -> Painted<&T>
Enables the yansi
Quirk
value
.
This method should be used rarely. Instead, prefer to use quirk-specific
builder methods like mask()
and
wrap()
, which have the same functionality but are
pithier.
§Example
Enable wrapping using .quirk()
:
use yansi::{Paint, Quirk};
painted.quirk(Quirk::Wrap);
Enable wrapping using wrap()
.
use yansi::Paint;
painted.wrap();
Source§fn clear(&self) -> Painted<&T>
👎Deprecated since 1.0.1: renamed to resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.
fn clear(&self) -> Painted<&T>
resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.Source§fn whenever(&self, value: Condition) -> Painted<&T>
fn whenever(&self, value: Condition) -> Painted<&T>
Conditionally enable styling based on whether the Condition
value
applies. Replaces any previous condition.
See the crate level docs for more details.
§Example
Enable styling painted
only when both stdout
and stderr
are TTYs:
use yansi::{Paint, Condition};
painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);