#[non_exhaustive]pub struct CreateAutoMlJobV2InputBuilder { /* private fields */ }
Expand description
A builder for CreateAutoMlJobV2Input
.
Implementations§
Source§impl CreateAutoMlJobV2InputBuilder
impl CreateAutoMlJobV2InputBuilder
Sourcepub fn auto_ml_job_name(self, input: impl Into<String>) -> Self
pub fn auto_ml_job_name(self, input: impl Into<String>) -> Self
Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
This field is required.Sourcepub fn set_auto_ml_job_name(self, input: Option<String>) -> Self
pub fn set_auto_ml_job_name(self, input: Option<String>) -> Self
Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
Sourcepub fn get_auto_ml_job_name(&self) -> &Option<String>
pub fn get_auto_ml_job_name(&self) -> &Option<String>
Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
Sourcepub fn auto_ml_job_input_data_config(self, input: AutoMlJobChannel) -> Self
pub fn auto_ml_job_input_data_config(self, input: AutoMlJobChannel) -> Self
Appends an item to auto_ml_job_input_data_config
.
To override the contents of this collection use set_auto_ml_job_input_data_config
.
An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the InputDataConfig attribute in the CreateAutoMLJob
input parameters. The supported formats depend on the problem type:
-
For tabular problem types:
S3Prefix
,ManifestFile
. -
For image classification:
S3Prefix
,ManifestFile
,AugmentedManifestFile
. -
For text classification:
S3Prefix
. -
For time-series forecasting:
S3Prefix
. -
For text generation (LLMs fine-tuning):
S3Prefix
.
Sourcepub fn set_auto_ml_job_input_data_config(
self,
input: Option<Vec<AutoMlJobChannel>>,
) -> Self
pub fn set_auto_ml_job_input_data_config( self, input: Option<Vec<AutoMlJobChannel>>, ) -> Self
An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the InputDataConfig attribute in the CreateAutoMLJob
input parameters. The supported formats depend on the problem type:
-
For tabular problem types:
S3Prefix
,ManifestFile
. -
For image classification:
S3Prefix
,ManifestFile
,AugmentedManifestFile
. -
For text classification:
S3Prefix
. -
For time-series forecasting:
S3Prefix
. -
For text generation (LLMs fine-tuning):
S3Prefix
.
Sourcepub fn get_auto_ml_job_input_data_config(
&self,
) -> &Option<Vec<AutoMlJobChannel>>
pub fn get_auto_ml_job_input_data_config( &self, ) -> &Option<Vec<AutoMlJobChannel>>
An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the InputDataConfig attribute in the CreateAutoMLJob
input parameters. The supported formats depend on the problem type:
-
For tabular problem types:
S3Prefix
,ManifestFile
. -
For image classification:
S3Prefix
,ManifestFile
,AugmentedManifestFile
. -
For text classification:
S3Prefix
. -
For time-series forecasting:
S3Prefix
. -
For text generation (LLMs fine-tuning):
S3Prefix
.
Sourcepub fn output_data_config(self, input: AutoMlOutputDataConfig) -> Self
pub fn output_data_config(self, input: AutoMlOutputDataConfig) -> Self
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.
This field is required.Sourcepub fn set_output_data_config(
self,
input: Option<AutoMlOutputDataConfig>,
) -> Self
pub fn set_output_data_config( self, input: Option<AutoMlOutputDataConfig>, ) -> Self
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.
Sourcepub fn get_output_data_config(&self) -> &Option<AutoMlOutputDataConfig>
pub fn get_output_data_config(&self) -> &Option<AutoMlOutputDataConfig>
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.
Sourcepub fn auto_ml_problem_type_config(self, input: AutoMlProblemTypeConfig) -> Self
pub fn auto_ml_problem_type_config(self, input: AutoMlProblemTypeConfig) -> Self
Defines the configuration settings of one of the supported problem types.
This field is required.Sourcepub fn set_auto_ml_problem_type_config(
self,
input: Option<AutoMlProblemTypeConfig>,
) -> Self
pub fn set_auto_ml_problem_type_config( self, input: Option<AutoMlProblemTypeConfig>, ) -> Self
Defines the configuration settings of one of the supported problem types.
Sourcepub fn get_auto_ml_problem_type_config(
&self,
) -> &Option<AutoMlProblemTypeConfig>
pub fn get_auto_ml_problem_type_config( &self, ) -> &Option<AutoMlProblemTypeConfig>
Defines the configuration settings of one of the supported problem types.
Sourcepub fn role_arn(self, input: impl Into<String>) -> Self
pub fn role_arn(self, input: impl Into<String>) -> Self
The ARN of the role that is used to access the data.
This field is required.Sourcepub fn set_role_arn(self, input: Option<String>) -> Self
pub fn set_role_arn(self, input: Option<String>) -> Self
The ARN of the role that is used to access the data.
Sourcepub fn get_role_arn(&self) -> &Option<String>
pub fn get_role_arn(&self) -> &Option<String>
The ARN of the role that is used to access the data.
Appends an item to tags
.
To override the contents of this collection use set_tags
.
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
Sourcepub fn security_config(self, input: AutoMlSecurityConfig) -> Self
pub fn security_config(self, input: AutoMlSecurityConfig) -> Self
The security configuration for traffic encryption or Amazon VPC settings.
Sourcepub fn set_security_config(self, input: Option<AutoMlSecurityConfig>) -> Self
pub fn set_security_config(self, input: Option<AutoMlSecurityConfig>) -> Self
The security configuration for traffic encryption or Amazon VPC settings.
Sourcepub fn get_security_config(&self) -> &Option<AutoMlSecurityConfig>
pub fn get_security_config(&self) -> &Option<AutoMlSecurityConfig>
The security configuration for traffic encryption or Amazon VPC settings.
Sourcepub fn auto_ml_job_objective(self, input: AutoMlJobObjective) -> Self
pub fn auto_ml_job_objective(self, input: AutoMlJobObjective) -> Self
Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see AutoMLJobObjective.
-
For tabular problem types: You must either provide both the
AutoMLJobObjective
and indicate the type of supervised learning problem inAutoMLProblemTypeConfig
(TabularJobConfig.ProblemType
), or none at all. -
For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the
AutoMLJobObjective
field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see Metrics for fine-tuning LLMs in Autopilot.
Sourcepub fn set_auto_ml_job_objective(
self,
input: Option<AutoMlJobObjective>,
) -> Self
pub fn set_auto_ml_job_objective( self, input: Option<AutoMlJobObjective>, ) -> Self
Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see AutoMLJobObjective.
-
For tabular problem types: You must either provide both the
AutoMLJobObjective
and indicate the type of supervised learning problem inAutoMLProblemTypeConfig
(TabularJobConfig.ProblemType
), or none at all. -
For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the
AutoMLJobObjective
field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see Metrics for fine-tuning LLMs in Autopilot.
Sourcepub fn get_auto_ml_job_objective(&self) -> &Option<AutoMlJobObjective>
pub fn get_auto_ml_job_objective(&self) -> &Option<AutoMlJobObjective>
Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see AutoMLJobObjective.
-
For tabular problem types: You must either provide both the
AutoMLJobObjective
and indicate the type of supervised learning problem inAutoMLProblemTypeConfig
(TabularJobConfig.ProblemType
), or none at all. -
For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the
AutoMLJobObjective
field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see Metrics for fine-tuning LLMs in Autopilot.
Sourcepub fn model_deploy_config(self, input: ModelDeployConfig) -> Self
pub fn model_deploy_config(self, input: ModelDeployConfig) -> Self
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
Sourcepub fn set_model_deploy_config(self, input: Option<ModelDeployConfig>) -> Self
pub fn set_model_deploy_config(self, input: Option<ModelDeployConfig>) -> Self
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
Sourcepub fn get_model_deploy_config(&self) -> &Option<ModelDeployConfig>
pub fn get_model_deploy_config(&self) -> &Option<ModelDeployConfig>
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
Sourcepub fn data_split_config(self, input: AutoMlDataSplitConfig) -> Self
pub fn data_split_config(self, input: AutoMlDataSplitConfig) -> Self
This structure specifies how to split the data into train and validation datasets.
The validation and training datasets must contain the same headers. For jobs created by calling CreateAutoMLJob
, the validation dataset must be less than 2 GB in size.
This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.
Sourcepub fn set_data_split_config(self, input: Option<AutoMlDataSplitConfig>) -> Self
pub fn set_data_split_config(self, input: Option<AutoMlDataSplitConfig>) -> Self
This structure specifies how to split the data into train and validation datasets.
The validation and training datasets must contain the same headers. For jobs created by calling CreateAutoMLJob
, the validation dataset must be less than 2 GB in size.
This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.
Sourcepub fn get_data_split_config(&self) -> &Option<AutoMlDataSplitConfig>
pub fn get_data_split_config(&self) -> &Option<AutoMlDataSplitConfig>
This structure specifies how to split the data into train and validation datasets.
The validation and training datasets must contain the same headers. For jobs created by calling CreateAutoMLJob
, the validation dataset must be less than 2 GB in size.
This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.
Sourcepub fn auto_ml_compute_config(self, input: AutoMlComputeConfig) -> Self
pub fn auto_ml_compute_config(self, input: AutoMlComputeConfig) -> Self
Specifies the compute configuration for the AutoML job V2.
Sourcepub fn set_auto_ml_compute_config(
self,
input: Option<AutoMlComputeConfig>,
) -> Self
pub fn set_auto_ml_compute_config( self, input: Option<AutoMlComputeConfig>, ) -> Self
Specifies the compute configuration for the AutoML job V2.
Sourcepub fn get_auto_ml_compute_config(&self) -> &Option<AutoMlComputeConfig>
pub fn get_auto_ml_compute_config(&self) -> &Option<AutoMlComputeConfig>
Specifies the compute configuration for the AutoML job V2.
Sourcepub fn build(self) -> Result<CreateAutoMlJobV2Input, BuildError>
pub fn build(self) -> Result<CreateAutoMlJobV2Input, BuildError>
Consumes the builder and constructs a CreateAutoMlJobV2Input
.
Source§impl CreateAutoMlJobV2InputBuilder
impl CreateAutoMlJobV2InputBuilder
Sourcepub async fn send_with(
self,
client: &Client,
) -> Result<CreateAutoMlJobV2Output, SdkError<CreateAutoMLJobV2Error, HttpResponse>>
pub async fn send_with( self, client: &Client, ) -> Result<CreateAutoMlJobV2Output, SdkError<CreateAutoMLJobV2Error, HttpResponse>>
Sends a request with this input using the given client.
Trait Implementations§
Source§impl Clone for CreateAutoMlJobV2InputBuilder
impl Clone for CreateAutoMlJobV2InputBuilder
Source§fn clone(&self) -> CreateAutoMlJobV2InputBuilder
fn clone(&self) -> CreateAutoMlJobV2InputBuilder
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl Default for CreateAutoMlJobV2InputBuilder
impl Default for CreateAutoMlJobV2InputBuilder
Source§fn default() -> CreateAutoMlJobV2InputBuilder
fn default() -> CreateAutoMlJobV2InputBuilder
Source§impl PartialEq for CreateAutoMlJobV2InputBuilder
impl PartialEq for CreateAutoMlJobV2InputBuilder
Source§fn eq(&self, other: &CreateAutoMlJobV2InputBuilder) -> bool
fn eq(&self, other: &CreateAutoMlJobV2InputBuilder) -> bool
self
and other
values to be equal, and is used by ==
.impl StructuralPartialEq for CreateAutoMlJobV2InputBuilder
Auto Trait Implementations§
impl Freeze for CreateAutoMlJobV2InputBuilder
impl RefUnwindSafe for CreateAutoMlJobV2InputBuilder
impl Send for CreateAutoMlJobV2InputBuilder
impl Sync for CreateAutoMlJobV2InputBuilder
impl Unpin for CreateAutoMlJobV2InputBuilder
impl UnwindSafe for CreateAutoMlJobV2InputBuilder
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Paint for Twhere
T: ?Sized,
impl<T> Paint for Twhere
T: ?Sized,
Source§fn fg(&self, value: Color) -> Painted<&T>
fn fg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the foreground set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like red()
and
green()
, which have the same functionality but are
pithier.
§Example
Set foreground color to white using fg()
:
use yansi::{Paint, Color};
painted.fg(Color::White);
Set foreground color to white using white()
.
use yansi::Paint;
painted.white();
Source§fn bright_black(&self) -> Painted<&T>
fn bright_black(&self) -> Painted<&T>
Source§fn bright_red(&self) -> Painted<&T>
fn bright_red(&self) -> Painted<&T>
Source§fn bright_green(&self) -> Painted<&T>
fn bright_green(&self) -> Painted<&T>
Source§fn bright_yellow(&self) -> Painted<&T>
fn bright_yellow(&self) -> Painted<&T>
Source§fn bright_blue(&self) -> Painted<&T>
fn bright_blue(&self) -> Painted<&T>
Source§fn bright_magenta(&self) -> Painted<&T>
fn bright_magenta(&self) -> Painted<&T>
Source§fn bright_cyan(&self) -> Painted<&T>
fn bright_cyan(&self) -> Painted<&T>
Source§fn bright_white(&self) -> Painted<&T>
fn bright_white(&self) -> Painted<&T>
Source§fn bg(&self, value: Color) -> Painted<&T>
fn bg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the background set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like on_red()
and
on_green()
, which have the same functionality but
are pithier.
§Example
Set background color to red using fg()
:
use yansi::{Paint, Color};
painted.bg(Color::Red);
Set background color to red using on_red()
.
use yansi::Paint;
painted.on_red();
Source§fn on_primary(&self) -> Painted<&T>
fn on_primary(&self) -> Painted<&T>
Source§fn on_magenta(&self) -> Painted<&T>
fn on_magenta(&self) -> Painted<&T>
Source§fn on_bright_black(&self) -> Painted<&T>
fn on_bright_black(&self) -> Painted<&T>
Source§fn on_bright_red(&self) -> Painted<&T>
fn on_bright_red(&self) -> Painted<&T>
Source§fn on_bright_green(&self) -> Painted<&T>
fn on_bright_green(&self) -> Painted<&T>
Source§fn on_bright_yellow(&self) -> Painted<&T>
fn on_bright_yellow(&self) -> Painted<&T>
Source§fn on_bright_blue(&self) -> Painted<&T>
fn on_bright_blue(&self) -> Painted<&T>
Source§fn on_bright_magenta(&self) -> Painted<&T>
fn on_bright_magenta(&self) -> Painted<&T>
Source§fn on_bright_cyan(&self) -> Painted<&T>
fn on_bright_cyan(&self) -> Painted<&T>
Source§fn on_bright_white(&self) -> Painted<&T>
fn on_bright_white(&self) -> Painted<&T>
Source§fn attr(&self, value: Attribute) -> Painted<&T>
fn attr(&self, value: Attribute) -> Painted<&T>
Enables the styling Attribute
value
.
This method should be used rarely. Instead, prefer to use
attribute-specific builder methods like bold()
and
underline()
, which have the same functionality
but are pithier.
§Example
Make text bold using attr()
:
use yansi::{Paint, Attribute};
painted.attr(Attribute::Bold);
Make text bold using using bold()
.
use yansi::Paint;
painted.bold();
Source§fn rapid_blink(&self) -> Painted<&T>
fn rapid_blink(&self) -> Painted<&T>
Source§fn quirk(&self, value: Quirk) -> Painted<&T>
fn quirk(&self, value: Quirk) -> Painted<&T>
Enables the yansi
Quirk
value
.
This method should be used rarely. Instead, prefer to use quirk-specific
builder methods like mask()
and
wrap()
, which have the same functionality but are
pithier.
§Example
Enable wrapping using .quirk()
:
use yansi::{Paint, Quirk};
painted.quirk(Quirk::Wrap);
Enable wrapping using wrap()
.
use yansi::Paint;
painted.wrap();
Source§fn clear(&self) -> Painted<&T>
👎Deprecated since 1.0.1: renamed to resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.
fn clear(&self) -> Painted<&T>
resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.Source§fn whenever(&self, value: Condition) -> Painted<&T>
fn whenever(&self, value: Condition) -> Painted<&T>
Conditionally enable styling based on whether the Condition
value
applies. Replaces any previous condition.
See the crate level docs for more details.
§Example
Enable styling painted
only when both stdout
and stderr
are TTYs:
use yansi::{Paint, Condition};
painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);