Struct CreateTransformJobInputBuilder

Source
#[non_exhaustive]
pub struct CreateTransformJobInputBuilder { /* private fields */ }
Expand description

A builder for CreateTransformJobInput.

Implementations§

Source§

impl CreateTransformJobInputBuilder

Source

pub fn transform_job_name(self, input: impl Into<String>) -> Self

The name of the transform job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.

This field is required.
Source

pub fn set_transform_job_name(self, input: Option<String>) -> Self

The name of the transform job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.

Source

pub fn get_transform_job_name(&self) -> &Option<String>

The name of the transform job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.

Source

pub fn model_name(self, input: impl Into<String>) -> Self

The name of the model that you want to use for the transform job. ModelName must be the name of an existing Amazon SageMaker model within an Amazon Web Services Region in an Amazon Web Services account.

This field is required.
Source

pub fn set_model_name(self, input: Option<String>) -> Self

The name of the model that you want to use for the transform job. ModelName must be the name of an existing Amazon SageMaker model within an Amazon Web Services Region in an Amazon Web Services account.

Source

pub fn get_model_name(&self) -> &Option<String>

The name of the model that you want to use for the transform job. ModelName must be the name of an existing Amazon SageMaker model within an Amazon Web Services Region in an Amazon Web Services account.

Source

pub fn max_concurrent_transforms(self, input: i32) -> Self

The maximum number of parallel requests that can be sent to each instance in a transform job. If MaxConcurrentTransforms is set to 0 or left unset, Amazon SageMaker checks the optional execution-parameters to determine the settings for your chosen algorithm. If the execution-parameters endpoint is not enabled, the default value is 1. For more information on execution-parameters, see How Containers Serve Requests. For built-in algorithms, you don't need to set a value for MaxConcurrentTransforms.

Source

pub fn set_max_concurrent_transforms(self, input: Option<i32>) -> Self

The maximum number of parallel requests that can be sent to each instance in a transform job. If MaxConcurrentTransforms is set to 0 or left unset, Amazon SageMaker checks the optional execution-parameters to determine the settings for your chosen algorithm. If the execution-parameters endpoint is not enabled, the default value is 1. For more information on execution-parameters, see How Containers Serve Requests. For built-in algorithms, you don't need to set a value for MaxConcurrentTransforms.

Source

pub fn get_max_concurrent_transforms(&self) -> &Option<i32>

The maximum number of parallel requests that can be sent to each instance in a transform job. If MaxConcurrentTransforms is set to 0 or left unset, Amazon SageMaker checks the optional execution-parameters to determine the settings for your chosen algorithm. If the execution-parameters endpoint is not enabled, the default value is 1. For more information on execution-parameters, see How Containers Serve Requests. For built-in algorithms, you don't need to set a value for MaxConcurrentTransforms.

Source

pub fn model_client_config(self, input: ModelClientConfig) -> Self

Configures the timeout and maximum number of retries for processing a transform job invocation.

Source

pub fn set_model_client_config(self, input: Option<ModelClientConfig>) -> Self

Configures the timeout and maximum number of retries for processing a transform job invocation.

Source

pub fn get_model_client_config(&self) -> &Option<ModelClientConfig>

Configures the timeout and maximum number of retries for processing a transform job invocation.

Source

pub fn max_payload_in_mb(self, input: i32) -> Self

The maximum allowed size of the payload, in MB. A payload is the data portion of a record (without metadata). The value in MaxPayloadInMB must be greater than, or equal to, the size of a single record. To estimate the size of a record in MB, divide the size of your dataset by the number of records. To ensure that the records fit within the maximum payload size, we recommend using a slightly larger value. The default value is 6 MB.

The value of MaxPayloadInMB cannot be greater than 100 MB. If you specify the MaxConcurrentTransforms parameter, the value of (MaxConcurrentTransforms * MaxPayloadInMB) also cannot exceed 100 MB.

For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked encoding, set the value to 0. This feature works only in supported algorithms. Currently, Amazon SageMaker built-in algorithms do not support HTTP chunked encoding.

Source

pub fn set_max_payload_in_mb(self, input: Option<i32>) -> Self

The maximum allowed size of the payload, in MB. A payload is the data portion of a record (without metadata). The value in MaxPayloadInMB must be greater than, or equal to, the size of a single record. To estimate the size of a record in MB, divide the size of your dataset by the number of records. To ensure that the records fit within the maximum payload size, we recommend using a slightly larger value. The default value is 6 MB.

The value of MaxPayloadInMB cannot be greater than 100 MB. If you specify the MaxConcurrentTransforms parameter, the value of (MaxConcurrentTransforms * MaxPayloadInMB) also cannot exceed 100 MB.

For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked encoding, set the value to 0. This feature works only in supported algorithms. Currently, Amazon SageMaker built-in algorithms do not support HTTP chunked encoding.

Source

pub fn get_max_payload_in_mb(&self) -> &Option<i32>

The maximum allowed size of the payload, in MB. A payload is the data portion of a record (without metadata). The value in MaxPayloadInMB must be greater than, or equal to, the size of a single record. To estimate the size of a record in MB, divide the size of your dataset by the number of records. To ensure that the records fit within the maximum payload size, we recommend using a slightly larger value. The default value is 6 MB.

The value of MaxPayloadInMB cannot be greater than 100 MB. If you specify the MaxConcurrentTransforms parameter, the value of (MaxConcurrentTransforms * MaxPayloadInMB) also cannot exceed 100 MB.

For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked encoding, set the value to 0. This feature works only in supported algorithms. Currently, Amazon SageMaker built-in algorithms do not support HTTP chunked encoding.

Source

pub fn batch_strategy(self, input: BatchStrategy) -> Self

Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.

To enable the batch strategy, you must set the SplitType property to Line, RecordIO, or TFRecord.

To use only one record when making an HTTP invocation request to a container, set BatchStrategy to SingleRecord and SplitType to Line.

To fit as many records in a mini-batch as can fit within the MaxPayloadInMB limit, set BatchStrategy to MultiRecord and SplitType to Line.

Source

pub fn set_batch_strategy(self, input: Option<BatchStrategy>) -> Self

Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.

To enable the batch strategy, you must set the SplitType property to Line, RecordIO, or TFRecord.

To use only one record when making an HTTP invocation request to a container, set BatchStrategy to SingleRecord and SplitType to Line.

To fit as many records in a mini-batch as can fit within the MaxPayloadInMB limit, set BatchStrategy to MultiRecord and SplitType to Line.

Source

pub fn get_batch_strategy(&self) -> &Option<BatchStrategy>

Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.

To enable the batch strategy, you must set the SplitType property to Line, RecordIO, or TFRecord.

To use only one record when making an HTTP invocation request to a container, set BatchStrategy to SingleRecord and SplitType to Line.

To fit as many records in a mini-batch as can fit within the MaxPayloadInMB limit, set BatchStrategy to MultiRecord and SplitType to Line.

Source

pub fn environment(self, k: impl Into<String>, v: impl Into<String>) -> Self

Adds a key-value pair to environment.

To override the contents of this collection use set_environment.

The environment variables to set in the Docker container. Don't include any sensitive data in your environment variables. We support up to 16 key and values entries in the map.

Source

pub fn set_environment(self, input: Option<HashMap<String, String>>) -> Self

The environment variables to set in the Docker container. Don't include any sensitive data in your environment variables. We support up to 16 key and values entries in the map.

Source

pub fn get_environment(&self) -> &Option<HashMap<String, String>>

The environment variables to set in the Docker container. Don't include any sensitive data in your environment variables. We support up to 16 key and values entries in the map.

Source

pub fn transform_input(self, input: TransformInput) -> Self

Describes the input source and the way the transform job consumes it.

This field is required.
Source

pub fn set_transform_input(self, input: Option<TransformInput>) -> Self

Describes the input source and the way the transform job consumes it.

Source

pub fn get_transform_input(&self) -> &Option<TransformInput>

Describes the input source and the way the transform job consumes it.

Source

pub fn transform_output(self, input: TransformOutput) -> Self

Describes the results of the transform job.

This field is required.
Source

pub fn set_transform_output(self, input: Option<TransformOutput>) -> Self

Describes the results of the transform job.

Source

pub fn get_transform_output(&self) -> &Option<TransformOutput>

Describes the results of the transform job.

Source

pub fn data_capture_config(self, input: BatchDataCaptureConfig) -> Self

Configuration to control how SageMaker captures inference data.

Source

pub fn set_data_capture_config( self, input: Option<BatchDataCaptureConfig>, ) -> Self

Configuration to control how SageMaker captures inference data.

Source

pub fn get_data_capture_config(&self) -> &Option<BatchDataCaptureConfig>

Configuration to control how SageMaker captures inference data.

Source

pub fn transform_resources(self, input: TransformResources) -> Self

Describes the resources, including ML instance types and ML instance count, to use for the transform job.

This field is required.
Source

pub fn set_transform_resources(self, input: Option<TransformResources>) -> Self

Describes the resources, including ML instance types and ML instance count, to use for the transform job.

Source

pub fn get_transform_resources(&self) -> &Option<TransformResources>

Describes the resources, including ML instance types and ML instance count, to use for the transform job.

Source

pub fn data_processing(self, input: DataProcessing) -> Self

The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records.

Source

pub fn set_data_processing(self, input: Option<DataProcessing>) -> Self

The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records.

Source

pub fn get_data_processing(&self) -> &Option<DataProcessing>

The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records.

Source

pub fn tags(self, input: Tag) -> Self

Appends an item to tags.

To override the contents of this collection use set_tags.

(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.

Source

pub fn set_tags(self, input: Option<Vec<Tag>>) -> Self

(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.

Source

pub fn get_tags(&self) -> &Option<Vec<Tag>>

(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.

Source

pub fn experiment_config(self, input: ExperimentConfig) -> Self

Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:

Source

pub fn set_experiment_config(self, input: Option<ExperimentConfig>) -> Self

Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:

Source

pub fn get_experiment_config(&self) -> &Option<ExperimentConfig>

Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:

Source

pub fn build(self) -> Result<CreateTransformJobInput, BuildError>

Consumes the builder and constructs a CreateTransformJobInput.

Source§

impl CreateTransformJobInputBuilder

Source

pub async fn send_with( self, client: &Client, ) -> Result<CreateTransformJobOutput, SdkError<CreateTransformJobError, HttpResponse>>

Sends a request with this input using the given client.

Trait Implementations§

Source§

impl Clone for CreateTransformJobInputBuilder

Source§

fn clone(&self) -> CreateTransformJobInputBuilder

Returns a duplicate of the value. Read more
1.0.0 · Source§

const fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for CreateTransformJobInputBuilder

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Default for CreateTransformJobInputBuilder

Source§

fn default() -> CreateTransformJobInputBuilder

Returns the “default value” for a type. Read more
Source§

impl PartialEq for CreateTransformJobInputBuilder

Source§

fn eq(&self, other: &CreateTransformJobInputBuilder) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

const fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl StructuralPartialEq for CreateTransformJobInputBuilder

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

Source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
Source§

impl<T> Paint for T
where T: ?Sized,

Source§

fn fg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the foreground set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like red() and green(), which have the same functionality but are pithier.

§Example

Set foreground color to white using fg():

use yansi::{Paint, Color};

painted.fg(Color::White);

Set foreground color to white using white().

use yansi::Paint;

painted.white();
Source§

fn primary(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Primary].

§Example
println!("{}", value.primary());
Source§

fn fixed(&self, color: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Fixed].

§Example
println!("{}", value.fixed(color));
Source§

fn rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Rgb].

§Example
println!("{}", value.rgb(r, g, b));
Source§

fn black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Black].

§Example
println!("{}", value.black());
Source§

fn red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Red].

§Example
println!("{}", value.red());
Source§

fn green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Green].

§Example
println!("{}", value.green());
Source§

fn yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Yellow].

§Example
println!("{}", value.yellow());
Source§

fn blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Blue].

§Example
println!("{}", value.blue());
Source§

fn magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Magenta].

§Example
println!("{}", value.magenta());
Source§

fn cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Cyan].

§Example
println!("{}", value.cyan());
Source§

fn white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: White].

§Example
println!("{}", value.white());
Source§

fn bright_black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlack].

§Example
println!("{}", value.bright_black());
Source§

fn bright_red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightRed].

§Example
println!("{}", value.bright_red());
Source§

fn bright_green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightGreen].

§Example
println!("{}", value.bright_green());
Source§

fn bright_yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightYellow].

§Example
println!("{}", value.bright_yellow());
Source§

fn bright_blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlue].

§Example
println!("{}", value.bright_blue());
Source§

fn bright_magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.bright_magenta());
Source§

fn bright_cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightCyan].

§Example
println!("{}", value.bright_cyan());
Source§

fn bright_white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightWhite].

§Example
println!("{}", value.bright_white());
Source§

fn bg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the background set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like on_red() and on_green(), which have the same functionality but are pithier.

§Example

Set background color to red using fg():

use yansi::{Paint, Color};

painted.bg(Color::Red);

Set background color to red using on_red().

use yansi::Paint;

painted.on_red();
Source§

fn on_primary(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Primary].

§Example
println!("{}", value.on_primary());
Source§

fn on_fixed(&self, color: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Fixed].

§Example
println!("{}", value.on_fixed(color));
Source§

fn on_rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Rgb].

§Example
println!("{}", value.on_rgb(r, g, b));
Source§

fn on_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Black].

§Example
println!("{}", value.on_black());
Source§

fn on_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Red].

§Example
println!("{}", value.on_red());
Source§

fn on_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Green].

§Example
println!("{}", value.on_green());
Source§

fn on_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Yellow].

§Example
println!("{}", value.on_yellow());
Source§

fn on_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Blue].

§Example
println!("{}", value.on_blue());
Source§

fn on_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Magenta].

§Example
println!("{}", value.on_magenta());
Source§

fn on_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Cyan].

§Example
println!("{}", value.on_cyan());
Source§

fn on_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: White].

§Example
println!("{}", value.on_white());
Source§

fn on_bright_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlack].

§Example
println!("{}", value.on_bright_black());
Source§

fn on_bright_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightRed].

§Example
println!("{}", value.on_bright_red());
Source§

fn on_bright_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightGreen].

§Example
println!("{}", value.on_bright_green());
Source§

fn on_bright_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightYellow].

§Example
println!("{}", value.on_bright_yellow());
Source§

fn on_bright_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlue].

§Example
println!("{}", value.on_bright_blue());
Source§

fn on_bright_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.on_bright_magenta());
Source§

fn on_bright_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightCyan].

§Example
println!("{}", value.on_bright_cyan());
Source§

fn on_bright_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightWhite].

§Example
println!("{}", value.on_bright_white());
Source§

fn attr(&self, value: Attribute) -> Painted<&T>

Enables the styling Attribute value.

This method should be used rarely. Instead, prefer to use attribute-specific builder methods like bold() and underline(), which have the same functionality but are pithier.

§Example

Make text bold using attr():

use yansi::{Paint, Attribute};

painted.attr(Attribute::Bold);

Make text bold using using bold().

use yansi::Paint;

painted.bold();
Source§

fn bold(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Bold].

§Example
println!("{}", value.bold());
Source§

fn dim(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Dim].

§Example
println!("{}", value.dim());
Source§

fn italic(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Italic].

§Example
println!("{}", value.italic());
Source§

fn underline(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Underline].

§Example
println!("{}", value.underline());

Returns self with the attr() set to [Attribute :: Blink].

§Example
println!("{}", value.blink());

Returns self with the attr() set to [Attribute :: RapidBlink].

§Example
println!("{}", value.rapid_blink());
Source§

fn invert(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Invert].

§Example
println!("{}", value.invert());
Source§

fn conceal(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Conceal].

§Example
println!("{}", value.conceal());
Source§

fn strike(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Strike].

§Example
println!("{}", value.strike());
Source§

fn quirk(&self, value: Quirk) -> Painted<&T>

Enables the yansi Quirk value.

This method should be used rarely. Instead, prefer to use quirk-specific builder methods like mask() and wrap(), which have the same functionality but are pithier.

§Example

Enable wrapping using .quirk():

use yansi::{Paint, Quirk};

painted.quirk(Quirk::Wrap);

Enable wrapping using wrap().

use yansi::Paint;

painted.wrap();
Source§

fn mask(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Mask].

§Example
println!("{}", value.mask());
Source§

fn wrap(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Wrap].

§Example
println!("{}", value.wrap());
Source§

fn linger(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Linger].

§Example
println!("{}", value.linger());
Source§

fn clear(&self) -> Painted<&T>

👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear(). The clear() method will be removed in a future release.

Returns self with the quirk() set to [Quirk :: Clear].

§Example
println!("{}", value.clear());
Source§

fn resetting(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Resetting].

§Example
println!("{}", value.resetting());
Source§

fn bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Bright].

§Example
println!("{}", value.bright());
Source§

fn on_bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: OnBright].

§Example
println!("{}", value.on_bright());
Source§

fn whenever(&self, value: Condition) -> Painted<&T>

Conditionally enable styling based on whether the Condition value applies. Replaces any previous condition.

See the crate level docs for more details.

§Example

Enable styling painted only when both stdout and stderr are TTYs:

use yansi::{Paint, Condition};

painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);
Source§

fn new(self) -> Painted<Self>
where Self: Sized,

Create a new Painted with a default Style. Read more
Source§

fn paint<S>(&self, style: S) -> Painted<&Self>
where S: Into<Style>,

Apply a style wholesale to self. Any previous style is replaced. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> ErasedDestructor for T
where T: 'static,