#[non_exhaustive]pub struct CreateInferenceExperimentInput {
pub name: Option<String>,
pub type: Option<InferenceExperimentType>,
pub schedule: Option<InferenceExperimentSchedule>,
pub description: Option<String>,
pub role_arn: Option<String>,
pub endpoint_name: Option<String>,
pub model_variants: Option<Vec<ModelVariantConfig>>,
pub data_storage_config: Option<InferenceExperimentDataStorageConfig>,
pub shadow_mode_config: Option<ShadowModeConfig>,
pub kms_key: Option<String>,
pub tags: Option<Vec<Tag>>,
}
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.name: Option<String>
The name for the inference experiment.
type: Option<InferenceExperimentType>
The type of the inference experiment that you want to run. The following types of experiments are possible:
-
ShadowMode
: You can use this type to validate a shadow variant. For more information, see Shadow tests.
schedule: Option<InferenceExperimentSchedule>
The duration for which you want the inference experiment to run. If you don't specify this field, the experiment automatically starts immediately upon creation and concludes after 7 days.
description: Option<String>
A description for the inference experiment.
role_arn: Option<String>
The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images, and manage Amazon SageMaker Inference endpoints for model deployment.
endpoint_name: Option<String>
The name of the Amazon SageMaker endpoint on which you want to run the inference experiment.
model_variants: Option<Vec<ModelVariantConfig>>
An array of ModelVariantConfig
objects. There is one for each variant in the inference experiment. Each ModelVariantConfig
object in the array describes the infrastructure configuration for the corresponding variant.
data_storage_config: Option<InferenceExperimentDataStorageConfig>
The Amazon S3 location and configuration for storing inference request and response data.
This is an optional parameter that you can use for data capture. For more information, see Capture data.
shadow_mode_config: Option<ShadowModeConfig>
The configuration of ShadowMode
inference experiment type. Use this field to specify a production variant which takes all the inference requests, and a shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant also specify the percentage of requests that Amazon SageMaker replicates.
kms_key: Option<String>
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. The KmsKey
can be any of the following formats:
-
KMS key ID
"1234abcd-12ab-34cd-56ef-1234567890ab"
-
Amazon Resource Name (ARN) of a KMS key
"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
-
KMS key Alias
"alias/ExampleAlias"
-
Amazon Resource Name (ARN) of a KMS key Alias
"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
If you use a KMS key ID or an alias of your KMS key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt
. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS managed keys for OutputDataConfig
. If you use a bucket policy with an s3:PutObject
permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption
to "aws:kms"
. For more information, see KMS managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint
and UpdateEndpoint
requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.
Array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging your Amazon Web Services Resources.
Implementations§
Source§impl CreateInferenceExperimentInput
impl CreateInferenceExperimentInput
Sourcepub fn type(&self) -> Option<&InferenceExperimentType>
pub fn type(&self) -> Option<&InferenceExperimentType>
The type of the inference experiment that you want to run. The following types of experiments are possible:
-
ShadowMode
: You can use this type to validate a shadow variant. For more information, see Shadow tests.
Sourcepub fn schedule(&self) -> Option<&InferenceExperimentSchedule>
pub fn schedule(&self) -> Option<&InferenceExperimentSchedule>
The duration for which you want the inference experiment to run. If you don't specify this field, the experiment automatically starts immediately upon creation and concludes after 7 days.
Sourcepub fn description(&self) -> Option<&str>
pub fn description(&self) -> Option<&str>
A description for the inference experiment.
Sourcepub fn role_arn(&self) -> Option<&str>
pub fn role_arn(&self) -> Option<&str>
The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images, and manage Amazon SageMaker Inference endpoints for model deployment.
Sourcepub fn endpoint_name(&self) -> Option<&str>
pub fn endpoint_name(&self) -> Option<&str>
The name of the Amazon SageMaker endpoint on which you want to run the inference experiment.
Sourcepub fn model_variants(&self) -> &[ModelVariantConfig]
pub fn model_variants(&self) -> &[ModelVariantConfig]
An array of ModelVariantConfig
objects. There is one for each variant in the inference experiment. Each ModelVariantConfig
object in the array describes the infrastructure configuration for the corresponding variant.
If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .model_variants.is_none()
.
Sourcepub fn data_storage_config(
&self,
) -> Option<&InferenceExperimentDataStorageConfig>
pub fn data_storage_config( &self, ) -> Option<&InferenceExperimentDataStorageConfig>
The Amazon S3 location and configuration for storing inference request and response data.
This is an optional parameter that you can use for data capture. For more information, see Capture data.
Sourcepub fn shadow_mode_config(&self) -> Option<&ShadowModeConfig>
pub fn shadow_mode_config(&self) -> Option<&ShadowModeConfig>
The configuration of ShadowMode
inference experiment type. Use this field to specify a production variant which takes all the inference requests, and a shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant also specify the percentage of requests that Amazon SageMaker replicates.
Sourcepub fn kms_key(&self) -> Option<&str>
pub fn kms_key(&self) -> Option<&str>
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. The KmsKey
can be any of the following formats:
-
KMS key ID
"1234abcd-12ab-34cd-56ef-1234567890ab"
-
Amazon Resource Name (ARN) of a KMS key
"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
-
KMS key Alias
"alias/ExampleAlias"
-
Amazon Resource Name (ARN) of a KMS key Alias
"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
If you use a KMS key ID or an alias of your KMS key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt
. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS managed keys for OutputDataConfig
. If you use a bucket policy with an s3:PutObject
permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption
to "aws:kms"
. For more information, see KMS managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint
and UpdateEndpoint
requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.
Array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging your Amazon Web Services Resources.
If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .tags.is_none()
.
Source§impl CreateInferenceExperimentInput
impl CreateInferenceExperimentInput
Sourcepub fn builder() -> CreateInferenceExperimentInputBuilder
pub fn builder() -> CreateInferenceExperimentInputBuilder
Creates a new builder-style object to manufacture CreateInferenceExperimentInput
.
Trait Implementations§
Source§impl Clone for CreateInferenceExperimentInput
impl Clone for CreateInferenceExperimentInput
Source§fn clone(&self) -> CreateInferenceExperimentInput
fn clone(&self) -> CreateInferenceExperimentInput
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl PartialEq for CreateInferenceExperimentInput
impl PartialEq for CreateInferenceExperimentInput
Source§fn eq(&self, other: &CreateInferenceExperimentInput) -> bool
fn eq(&self, other: &CreateInferenceExperimentInput) -> bool
self
and other
values to be equal, and is used by ==
.impl StructuralPartialEq for CreateInferenceExperimentInput
Auto Trait Implementations§
impl Freeze for CreateInferenceExperimentInput
impl RefUnwindSafe for CreateInferenceExperimentInput
impl Send for CreateInferenceExperimentInput
impl Sync for CreateInferenceExperimentInput
impl Unpin for CreateInferenceExperimentInput
impl UnwindSafe for CreateInferenceExperimentInput
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Paint for Twhere
T: ?Sized,
impl<T> Paint for Twhere
T: ?Sized,
Source§fn fg(&self, value: Color) -> Painted<&T>
fn fg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the foreground set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like red()
and
green()
, which have the same functionality but are
pithier.
§Example
Set foreground color to white using fg()
:
use yansi::{Paint, Color};
painted.fg(Color::White);
Set foreground color to white using white()
.
use yansi::Paint;
painted.white();
Source§fn bright_black(&self) -> Painted<&T>
fn bright_black(&self) -> Painted<&T>
Source§fn bright_red(&self) -> Painted<&T>
fn bright_red(&self) -> Painted<&T>
Source§fn bright_green(&self) -> Painted<&T>
fn bright_green(&self) -> Painted<&T>
Source§fn bright_yellow(&self) -> Painted<&T>
fn bright_yellow(&self) -> Painted<&T>
Source§fn bright_blue(&self) -> Painted<&T>
fn bright_blue(&self) -> Painted<&T>
Source§fn bright_magenta(&self) -> Painted<&T>
fn bright_magenta(&self) -> Painted<&T>
Source§fn bright_cyan(&self) -> Painted<&T>
fn bright_cyan(&self) -> Painted<&T>
Source§fn bright_white(&self) -> Painted<&T>
fn bright_white(&self) -> Painted<&T>
Source§fn bg(&self, value: Color) -> Painted<&T>
fn bg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the background set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like on_red()
and
on_green()
, which have the same functionality but
are pithier.
§Example
Set background color to red using fg()
:
use yansi::{Paint, Color};
painted.bg(Color::Red);
Set background color to red using on_red()
.
use yansi::Paint;
painted.on_red();
Source§fn on_primary(&self) -> Painted<&T>
fn on_primary(&self) -> Painted<&T>
Source§fn on_magenta(&self) -> Painted<&T>
fn on_magenta(&self) -> Painted<&T>
Source§fn on_bright_black(&self) -> Painted<&T>
fn on_bright_black(&self) -> Painted<&T>
Source§fn on_bright_red(&self) -> Painted<&T>
fn on_bright_red(&self) -> Painted<&T>
Source§fn on_bright_green(&self) -> Painted<&T>
fn on_bright_green(&self) -> Painted<&T>
Source§fn on_bright_yellow(&self) -> Painted<&T>
fn on_bright_yellow(&self) -> Painted<&T>
Source§fn on_bright_blue(&self) -> Painted<&T>
fn on_bright_blue(&self) -> Painted<&T>
Source§fn on_bright_magenta(&self) -> Painted<&T>
fn on_bright_magenta(&self) -> Painted<&T>
Source§fn on_bright_cyan(&self) -> Painted<&T>
fn on_bright_cyan(&self) -> Painted<&T>
Source§fn on_bright_white(&self) -> Painted<&T>
fn on_bright_white(&self) -> Painted<&T>
Source§fn attr(&self, value: Attribute) -> Painted<&T>
fn attr(&self, value: Attribute) -> Painted<&T>
Enables the styling Attribute
value
.
This method should be used rarely. Instead, prefer to use
attribute-specific builder methods like bold()
and
underline()
, which have the same functionality
but are pithier.
§Example
Make text bold using attr()
:
use yansi::{Paint, Attribute};
painted.attr(Attribute::Bold);
Make text bold using using bold()
.
use yansi::Paint;
painted.bold();
Source§fn rapid_blink(&self) -> Painted<&T>
fn rapid_blink(&self) -> Painted<&T>
Source§fn quirk(&self, value: Quirk) -> Painted<&T>
fn quirk(&self, value: Quirk) -> Painted<&T>
Enables the yansi
Quirk
value
.
This method should be used rarely. Instead, prefer to use quirk-specific
builder methods like mask()
and
wrap()
, which have the same functionality but are
pithier.
§Example
Enable wrapping using .quirk()
:
use yansi::{Paint, Quirk};
painted.quirk(Quirk::Wrap);
Enable wrapping using wrap()
.
use yansi::Paint;
painted.wrap();
Source§fn clear(&self) -> Painted<&T>
👎Deprecated since 1.0.1: renamed to resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.
fn clear(&self) -> Painted<&T>
resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.Source§fn whenever(&self, value: Condition) -> Painted<&T>
fn whenever(&self, value: Condition) -> Painted<&T>
Conditionally enable styling based on whether the Condition
value
applies. Replaces any previous condition.
See the crate level docs for more details.
§Example
Enable styling painted
only when both stdout
and stderr
are TTYs:
use yansi::{Paint, Condition};
painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);