#[non_exhaustive]pub struct CreateAlgorithmInputBuilder { /* private fields */ }
Expand description
A builder for CreateAlgorithmInput
.
Implementations§
Source§impl CreateAlgorithmInputBuilder
impl CreateAlgorithmInputBuilder
Sourcepub fn algorithm_name(self, input: impl Into<String>) -> Self
pub fn algorithm_name(self, input: impl Into<String>) -> Self
The name of the algorithm.
This field is required.Sourcepub fn set_algorithm_name(self, input: Option<String>) -> Self
pub fn set_algorithm_name(self, input: Option<String>) -> Self
The name of the algorithm.
Sourcepub fn get_algorithm_name(&self) -> &Option<String>
pub fn get_algorithm_name(&self) -> &Option<String>
The name of the algorithm.
Sourcepub fn algorithm_description(self, input: impl Into<String>) -> Self
pub fn algorithm_description(self, input: impl Into<String>) -> Self
A description of the algorithm.
Sourcepub fn set_algorithm_description(self, input: Option<String>) -> Self
pub fn set_algorithm_description(self, input: Option<String>) -> Self
A description of the algorithm.
Sourcepub fn get_algorithm_description(&self) -> &Option<String>
pub fn get_algorithm_description(&self) -> &Option<String>
A description of the algorithm.
Sourcepub fn training_specification(self, input: TrainingSpecification) -> Self
pub fn training_specification(self, input: TrainingSpecification) -> Self
Specifies details about training jobs run by this algorithm, including the following:
-
The Amazon ECR path of the container and the version digest of the algorithm.
-
The hyperparameters that the algorithm supports.
-
The instance types that the algorithm supports for training.
-
Whether the algorithm supports distributed training.
-
The metrics that the algorithm emits to Amazon CloudWatch.
-
Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs.
-
The input channels that the algorithm supports for training data. For example, an algorithm might support
train
,validation
, andtest
channels.
Sourcepub fn set_training_specification(
self,
input: Option<TrainingSpecification>,
) -> Self
pub fn set_training_specification( self, input: Option<TrainingSpecification>, ) -> Self
Specifies details about training jobs run by this algorithm, including the following:
-
The Amazon ECR path of the container and the version digest of the algorithm.
-
The hyperparameters that the algorithm supports.
-
The instance types that the algorithm supports for training.
-
Whether the algorithm supports distributed training.
-
The metrics that the algorithm emits to Amazon CloudWatch.
-
Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs.
-
The input channels that the algorithm supports for training data. For example, an algorithm might support
train
,validation
, andtest
channels.
Sourcepub fn get_training_specification(&self) -> &Option<TrainingSpecification>
pub fn get_training_specification(&self) -> &Option<TrainingSpecification>
Specifies details about training jobs run by this algorithm, including the following:
-
The Amazon ECR path of the container and the version digest of the algorithm.
-
The hyperparameters that the algorithm supports.
-
The instance types that the algorithm supports for training.
-
Whether the algorithm supports distributed training.
-
The metrics that the algorithm emits to Amazon CloudWatch.
-
Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs.
-
The input channels that the algorithm supports for training data. For example, an algorithm might support
train
,validation
, andtest
channels.
Sourcepub fn inference_specification(self, input: InferenceSpecification) -> Self
pub fn inference_specification(self, input: InferenceSpecification) -> Self
Specifies details about inference jobs that the algorithm runs, including the following:
-
The Amazon ECR paths of containers that contain the inference code and model artifacts.
-
The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference.
-
The input and output content formats that the algorithm supports for inference.
Sourcepub fn set_inference_specification(
self,
input: Option<InferenceSpecification>,
) -> Self
pub fn set_inference_specification( self, input: Option<InferenceSpecification>, ) -> Self
Specifies details about inference jobs that the algorithm runs, including the following:
-
The Amazon ECR paths of containers that contain the inference code and model artifacts.
-
The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference.
-
The input and output content formats that the algorithm supports for inference.
Sourcepub fn get_inference_specification(&self) -> &Option<InferenceSpecification>
pub fn get_inference_specification(&self) -> &Option<InferenceSpecification>
Specifies details about inference jobs that the algorithm runs, including the following:
-
The Amazon ECR paths of containers that contain the inference code and model artifacts.
-
The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference.
-
The input and output content formats that the algorithm supports for inference.
Sourcepub fn validation_specification(
self,
input: AlgorithmValidationSpecification,
) -> Self
pub fn validation_specification( self, input: AlgorithmValidationSpecification, ) -> Self
Specifies configurations for one or more training jobs and that SageMaker runs to test the algorithm's training code and, optionally, one or more batch transform jobs that SageMaker runs to test the algorithm's inference code.
Sourcepub fn set_validation_specification(
self,
input: Option<AlgorithmValidationSpecification>,
) -> Self
pub fn set_validation_specification( self, input: Option<AlgorithmValidationSpecification>, ) -> Self
Specifies configurations for one or more training jobs and that SageMaker runs to test the algorithm's training code and, optionally, one or more batch transform jobs that SageMaker runs to test the algorithm's inference code.
Sourcepub fn get_validation_specification(
&self,
) -> &Option<AlgorithmValidationSpecification>
pub fn get_validation_specification( &self, ) -> &Option<AlgorithmValidationSpecification>
Specifies configurations for one or more training jobs and that SageMaker runs to test the algorithm's training code and, optionally, one or more batch transform jobs that SageMaker runs to test the algorithm's inference code.
Sourcepub fn certify_for_marketplace(self, input: bool) -> Self
pub fn certify_for_marketplace(self, input: bool) -> Self
Whether to certify the algorithm so that it can be listed in Amazon Web Services Marketplace.
Sourcepub fn set_certify_for_marketplace(self, input: Option<bool>) -> Self
pub fn set_certify_for_marketplace(self, input: Option<bool>) -> Self
Whether to certify the algorithm so that it can be listed in Amazon Web Services Marketplace.
Sourcepub fn get_certify_for_marketplace(&self) -> &Option<bool>
pub fn get_certify_for_marketplace(&self) -> &Option<bool>
Whether to certify the algorithm so that it can be listed in Amazon Web Services Marketplace.
Appends an item to tags
.
To override the contents of this collection use set_tags
.
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
Sourcepub fn build(self) -> Result<CreateAlgorithmInput, BuildError>
pub fn build(self) -> Result<CreateAlgorithmInput, BuildError>
Consumes the builder and constructs a CreateAlgorithmInput
.
Source§impl CreateAlgorithmInputBuilder
impl CreateAlgorithmInputBuilder
Sourcepub async fn send_with(
self,
client: &Client,
) -> Result<CreateAlgorithmOutput, SdkError<CreateAlgorithmError, HttpResponse>>
pub async fn send_with( self, client: &Client, ) -> Result<CreateAlgorithmOutput, SdkError<CreateAlgorithmError, HttpResponse>>
Sends a request with this input using the given client.
Trait Implementations§
Source§impl Clone for CreateAlgorithmInputBuilder
impl Clone for CreateAlgorithmInputBuilder
Source§fn clone(&self) -> CreateAlgorithmInputBuilder
fn clone(&self) -> CreateAlgorithmInputBuilder
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl Debug for CreateAlgorithmInputBuilder
impl Debug for CreateAlgorithmInputBuilder
Source§impl Default for CreateAlgorithmInputBuilder
impl Default for CreateAlgorithmInputBuilder
Source§fn default() -> CreateAlgorithmInputBuilder
fn default() -> CreateAlgorithmInputBuilder
impl StructuralPartialEq for CreateAlgorithmInputBuilder
Auto Trait Implementations§
impl Freeze for CreateAlgorithmInputBuilder
impl RefUnwindSafe for CreateAlgorithmInputBuilder
impl Send for CreateAlgorithmInputBuilder
impl Sync for CreateAlgorithmInputBuilder
impl Unpin for CreateAlgorithmInputBuilder
impl UnwindSafe for CreateAlgorithmInputBuilder
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Paint for Twhere
T: ?Sized,
impl<T> Paint for Twhere
T: ?Sized,
Source§fn fg(&self, value: Color) -> Painted<&T>
fn fg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the foreground set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like red()
and
green()
, which have the same functionality but are
pithier.
§Example
Set foreground color to white using fg()
:
use yansi::{Paint, Color};
painted.fg(Color::White);
Set foreground color to white using white()
.
use yansi::Paint;
painted.white();
Source§fn bright_black(&self) -> Painted<&T>
fn bright_black(&self) -> Painted<&T>
Source§fn bright_red(&self) -> Painted<&T>
fn bright_red(&self) -> Painted<&T>
Source§fn bright_green(&self) -> Painted<&T>
fn bright_green(&self) -> Painted<&T>
Source§fn bright_yellow(&self) -> Painted<&T>
fn bright_yellow(&self) -> Painted<&T>
Source§fn bright_blue(&self) -> Painted<&T>
fn bright_blue(&self) -> Painted<&T>
Source§fn bright_magenta(&self) -> Painted<&T>
fn bright_magenta(&self) -> Painted<&T>
Source§fn bright_cyan(&self) -> Painted<&T>
fn bright_cyan(&self) -> Painted<&T>
Source§fn bright_white(&self) -> Painted<&T>
fn bright_white(&self) -> Painted<&T>
Source§fn bg(&self, value: Color) -> Painted<&T>
fn bg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the background set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like on_red()
and
on_green()
, which have the same functionality but
are pithier.
§Example
Set background color to red using fg()
:
use yansi::{Paint, Color};
painted.bg(Color::Red);
Set background color to red using on_red()
.
use yansi::Paint;
painted.on_red();
Source§fn on_primary(&self) -> Painted<&T>
fn on_primary(&self) -> Painted<&T>
Source§fn on_magenta(&self) -> Painted<&T>
fn on_magenta(&self) -> Painted<&T>
Source§fn on_bright_black(&self) -> Painted<&T>
fn on_bright_black(&self) -> Painted<&T>
Source§fn on_bright_red(&self) -> Painted<&T>
fn on_bright_red(&self) -> Painted<&T>
Source§fn on_bright_green(&self) -> Painted<&T>
fn on_bright_green(&self) -> Painted<&T>
Source§fn on_bright_yellow(&self) -> Painted<&T>
fn on_bright_yellow(&self) -> Painted<&T>
Source§fn on_bright_blue(&self) -> Painted<&T>
fn on_bright_blue(&self) -> Painted<&T>
Source§fn on_bright_magenta(&self) -> Painted<&T>
fn on_bright_magenta(&self) -> Painted<&T>
Source§fn on_bright_cyan(&self) -> Painted<&T>
fn on_bright_cyan(&self) -> Painted<&T>
Source§fn on_bright_white(&self) -> Painted<&T>
fn on_bright_white(&self) -> Painted<&T>
Source§fn attr(&self, value: Attribute) -> Painted<&T>
fn attr(&self, value: Attribute) -> Painted<&T>
Enables the styling Attribute
value
.
This method should be used rarely. Instead, prefer to use
attribute-specific builder methods like bold()
and
underline()
, which have the same functionality
but are pithier.
§Example
Make text bold using attr()
:
use yansi::{Paint, Attribute};
painted.attr(Attribute::Bold);
Make text bold using using bold()
.
use yansi::Paint;
painted.bold();
Source§fn rapid_blink(&self) -> Painted<&T>
fn rapid_blink(&self) -> Painted<&T>
Source§fn quirk(&self, value: Quirk) -> Painted<&T>
fn quirk(&self, value: Quirk) -> Painted<&T>
Enables the yansi
Quirk
value
.
This method should be used rarely. Instead, prefer to use quirk-specific
builder methods like mask()
and
wrap()
, which have the same functionality but are
pithier.
§Example
Enable wrapping using .quirk()
:
use yansi::{Paint, Quirk};
painted.quirk(Quirk::Wrap);
Enable wrapping using wrap()
.
use yansi::Paint;
painted.wrap();
Source§fn clear(&self) -> Painted<&T>
👎Deprecated since 1.0.1: renamed to resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.
fn clear(&self) -> Painted<&T>
resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.Source§fn whenever(&self, value: Condition) -> Painted<&T>
fn whenever(&self, value: Condition) -> Painted<&T>
Conditionally enable styling based on whether the Condition
value
applies. Replaces any previous condition.
See the crate level docs for more details.
§Example
Enable styling painted
only when both stdout
and stderr
are TTYs:
use yansi::{Paint, Condition};
painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);