#[non_exhaustive]pub struct AutoMlCandidateGenerationConfigBuilder { /* private fields */ }
Expand description
A builder for AutoMlCandidateGenerationConfig
.
Implementations§
source§impl AutoMlCandidateGenerationConfigBuilder
impl AutoMlCandidateGenerationConfigBuilder
sourcepub fn feature_specification_s3_uri(self, input: impl Into<String>) -> Self
pub fn feature_specification_s3_uri(self, input: impl Into<String>) -> Self
A URL to the Amazon S3 data source containing selected features from the input data source to run an Autopilot job. You can input FeatureAttributeNames
(optional) in JSON format as shown below:
{ "FeatureAttributeNames":["col1", "col2", ...] }
.
You can also specify the data type of the feature (optional) in the format shown below:
{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... } }
These column keys may not include the target column.
In ensembling mode, Autopilot only supports the following data types: numeric
, categorical
, text
, and datetime
. In HPO mode, Autopilot can support numeric
, categorical
, text
, datetime
, and sequence
.
If only FeatureDataTypes
is provided, the column keys (col1
, col2
,..) should be a subset of the column names in the input data.
If both FeatureDataTypes
and FeatureAttributeNames
are provided, then the column keys should be a subset of the column names provided in FeatureAttributeNames
.
The key name FeatureAttributeNames
is fixed. The values listed in ["col1", "col2", ...]
are case sensitive and should be a list of strings containing unique values that are a subset of the column names in the input data. The list of columns provided must not include the target column.
sourcepub fn set_feature_specification_s3_uri(self, input: Option<String>) -> Self
pub fn set_feature_specification_s3_uri(self, input: Option<String>) -> Self
A URL to the Amazon S3 data source containing selected features from the input data source to run an Autopilot job. You can input FeatureAttributeNames
(optional) in JSON format as shown below:
{ "FeatureAttributeNames":["col1", "col2", ...] }
.
You can also specify the data type of the feature (optional) in the format shown below:
{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... } }
These column keys may not include the target column.
In ensembling mode, Autopilot only supports the following data types: numeric
, categorical
, text
, and datetime
. In HPO mode, Autopilot can support numeric
, categorical
, text
, datetime
, and sequence
.
If only FeatureDataTypes
is provided, the column keys (col1
, col2
,..) should be a subset of the column names in the input data.
If both FeatureDataTypes
and FeatureAttributeNames
are provided, then the column keys should be a subset of the column names provided in FeatureAttributeNames
.
The key name FeatureAttributeNames
is fixed. The values listed in ["col1", "col2", ...]
are case sensitive and should be a list of strings containing unique values that are a subset of the column names in the input data. The list of columns provided must not include the target column.
sourcepub fn get_feature_specification_s3_uri(&self) -> &Option<String>
pub fn get_feature_specification_s3_uri(&self) -> &Option<String>
A URL to the Amazon S3 data source containing selected features from the input data source to run an Autopilot job. You can input FeatureAttributeNames
(optional) in JSON format as shown below:
{ "FeatureAttributeNames":["col1", "col2", ...] }
.
You can also specify the data type of the feature (optional) in the format shown below:
{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... } }
These column keys may not include the target column.
In ensembling mode, Autopilot only supports the following data types: numeric
, categorical
, text
, and datetime
. In HPO mode, Autopilot can support numeric
, categorical
, text
, datetime
, and sequence
.
If only FeatureDataTypes
is provided, the column keys (col1
, col2
,..) should be a subset of the column names in the input data.
If both FeatureDataTypes
and FeatureAttributeNames
are provided, then the column keys should be a subset of the column names provided in FeatureAttributeNames
.
The key name FeatureAttributeNames
is fixed. The values listed in ["col1", "col2", ...]
are case sensitive and should be a list of strings containing unique values that are a subset of the column names in the input data. The list of columns provided must not include the target column.
sourcepub fn algorithms_config(self, input: AutoMlAlgorithmConfig) -> Self
pub fn algorithms_config(self, input: AutoMlAlgorithmConfig) -> Self
Appends an item to algorithms_config
.
To override the contents of this collection use set_algorithms_config
.
Stores the configuration information for the selection of algorithms used to train the model candidates.
The list of available algorithms to choose from depends on the training mode set in AutoMLJobConfig.Mode
.
-
AlgorithmsConfig
should not be set inAUTO
training mode. -
When
AlgorithmsConfig
is provided, oneAutoMLAlgorithms
attribute must be set and one only.If the list of algorithms provided as values for
AutoMLAlgorithms
is empty,AutoMLCandidateGenerationConfig
uses the full set of algorithms for the given training mode. -
When
AlgorithmsConfig
is not provided,AutoMLCandidateGenerationConfig
uses the full set of algorithms for the given training mode.
For the list of all algorithms per training mode, see AutoMLAlgorithmConfig.
For more information on each algorithm, see the Algorithm support section in Autopilot developer guide.
sourcepub fn set_algorithms_config(
self,
input: Option<Vec<AutoMlAlgorithmConfig>>
) -> Self
pub fn set_algorithms_config( self, input: Option<Vec<AutoMlAlgorithmConfig>> ) -> Self
Stores the configuration information for the selection of algorithms used to train the model candidates.
The list of available algorithms to choose from depends on the training mode set in AutoMLJobConfig.Mode
.
-
AlgorithmsConfig
should not be set inAUTO
training mode. -
When
AlgorithmsConfig
is provided, oneAutoMLAlgorithms
attribute must be set and one only.If the list of algorithms provided as values for
AutoMLAlgorithms
is empty,AutoMLCandidateGenerationConfig
uses the full set of algorithms for the given training mode. -
When
AlgorithmsConfig
is not provided,AutoMLCandidateGenerationConfig
uses the full set of algorithms for the given training mode.
For the list of all algorithms per training mode, see AutoMLAlgorithmConfig.
For more information on each algorithm, see the Algorithm support section in Autopilot developer guide.
sourcepub fn get_algorithms_config(&self) -> &Option<Vec<AutoMlAlgorithmConfig>>
pub fn get_algorithms_config(&self) -> &Option<Vec<AutoMlAlgorithmConfig>>
Stores the configuration information for the selection of algorithms used to train the model candidates.
The list of available algorithms to choose from depends on the training mode set in AutoMLJobConfig.Mode
.
-
AlgorithmsConfig
should not be set inAUTO
training mode. -
When
AlgorithmsConfig
is provided, oneAutoMLAlgorithms
attribute must be set and one only.If the list of algorithms provided as values for
AutoMLAlgorithms
is empty,AutoMLCandidateGenerationConfig
uses the full set of algorithms for the given training mode. -
When
AlgorithmsConfig
is not provided,AutoMLCandidateGenerationConfig
uses the full set of algorithms for the given training mode.
For the list of all algorithms per training mode, see AutoMLAlgorithmConfig.
For more information on each algorithm, see the Algorithm support section in Autopilot developer guide.
sourcepub fn build(self) -> AutoMlCandidateGenerationConfig
pub fn build(self) -> AutoMlCandidateGenerationConfig
Consumes the builder and constructs a AutoMlCandidateGenerationConfig
.
Trait Implementations§
source§impl Clone for AutoMlCandidateGenerationConfigBuilder
impl Clone for AutoMlCandidateGenerationConfigBuilder
source§fn clone(&self) -> AutoMlCandidateGenerationConfigBuilder
fn clone(&self) -> AutoMlCandidateGenerationConfigBuilder
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Default for AutoMlCandidateGenerationConfigBuilder
impl Default for AutoMlCandidateGenerationConfigBuilder
source§fn default() -> AutoMlCandidateGenerationConfigBuilder
fn default() -> AutoMlCandidateGenerationConfigBuilder
source§impl PartialEq for AutoMlCandidateGenerationConfigBuilder
impl PartialEq for AutoMlCandidateGenerationConfigBuilder
source§fn eq(&self, other: &AutoMlCandidateGenerationConfigBuilder) -> bool
fn eq(&self, other: &AutoMlCandidateGenerationConfigBuilder) -> bool
self
and other
values to be equal, and is used
by ==
.