#[non_exhaustive]pub struct HyperParameterTuningInstanceConfig {
pub instance_type: Option<TrainingInstanceType>,
pub instance_count: Option<i32>,
pub volume_size_in_gb: Option<i32>,
}
Expand description
The configuration for hyperparameter tuning resources for use in training jobs launched by the tuning job. These resources include compute instances and storage volumes. Specify one or more compute instance configurations and allocation strategies to select resources (optional).
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.instance_type: Option<TrainingInstanceType>
The instance type used for processing of hyperparameter optimization jobs. Choose from general purpose (no GPUs) instance types: ml.m5.xlarge, ml.m5.2xlarge, and ml.m5.4xlarge or compute optimized (no GPUs) instance types: ml.c5.xlarge and ml.c5.2xlarge. For more information about instance types, see instance type descriptions.
instance_count: Option<i32>
The number of instances of the type specified by InstanceType
. Choose an instance count larger than 1 for distributed training algorithms. See Step 2: Launch a SageMaker Distributed Training Job Using the SageMaker Python SDK for more information.
volume_size_in_gb: Option<i32>
The volume size in GB of the data to be processed for hyperparameter optimization (optional).
Implementations§
source§impl HyperParameterTuningInstanceConfig
impl HyperParameterTuningInstanceConfig
sourcepub fn instance_type(&self) -> Option<&TrainingInstanceType>
pub fn instance_type(&self) -> Option<&TrainingInstanceType>
The instance type used for processing of hyperparameter optimization jobs. Choose from general purpose (no GPUs) instance types: ml.m5.xlarge, ml.m5.2xlarge, and ml.m5.4xlarge or compute optimized (no GPUs) instance types: ml.c5.xlarge and ml.c5.2xlarge. For more information about instance types, see instance type descriptions.
sourcepub fn instance_count(&self) -> Option<i32>
pub fn instance_count(&self) -> Option<i32>
The number of instances of the type specified by InstanceType
. Choose an instance count larger than 1 for distributed training algorithms. See Step 2: Launch a SageMaker Distributed Training Job Using the SageMaker Python SDK for more information.
sourcepub fn volume_size_in_gb(&self) -> Option<i32>
pub fn volume_size_in_gb(&self) -> Option<i32>
The volume size in GB of the data to be processed for hyperparameter optimization (optional).
source§impl HyperParameterTuningInstanceConfig
impl HyperParameterTuningInstanceConfig
sourcepub fn builder() -> HyperParameterTuningInstanceConfigBuilder
pub fn builder() -> HyperParameterTuningInstanceConfigBuilder
Creates a new builder-style object to manufacture HyperParameterTuningInstanceConfig
.
Trait Implementations§
source§impl Clone for HyperParameterTuningInstanceConfig
impl Clone for HyperParameterTuningInstanceConfig
source§fn clone(&self) -> HyperParameterTuningInstanceConfig
fn clone(&self) -> HyperParameterTuningInstanceConfig
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl PartialEq for HyperParameterTuningInstanceConfig
impl PartialEq for HyperParameterTuningInstanceConfig
source§fn eq(&self, other: &HyperParameterTuningInstanceConfig) -> bool
fn eq(&self, other: &HyperParameterTuningInstanceConfig) -> bool
self
and other
values to be equal, and is used
by ==
.