Struct aws_sdk_sagemaker::model::training_specification::Builder
source · [−]#[non_exhaustive]pub struct Builder { /* private fields */ }
Expand description
A builder for TrainingSpecification
Implementations
sourceimpl Builder
impl Builder
sourcepub fn training_image(self, input: impl Into<String>) -> Self
pub fn training_image(self, input: impl Into<String>) -> Self
The Amazon ECR registry path of the Docker image that contains the training algorithm.
sourcepub fn set_training_image(self, input: Option<String>) -> Self
pub fn set_training_image(self, input: Option<String>) -> Self
The Amazon ECR registry path of the Docker image that contains the training algorithm.
sourcepub fn training_image_digest(self, input: impl Into<String>) -> Self
pub fn training_image_digest(self, input: impl Into<String>) -> Self
An MD5 hash of the training algorithm that identifies the Docker image used for training.
sourcepub fn set_training_image_digest(self, input: Option<String>) -> Self
pub fn set_training_image_digest(self, input: Option<String>) -> Self
An MD5 hash of the training algorithm that identifies the Docker image used for training.
sourcepub fn supported_hyper_parameters(
self,
input: HyperParameterSpecification
) -> Self
pub fn supported_hyper_parameters(
self,
input: HyperParameterSpecification
) -> Self
Appends an item to supported_hyper_parameters
.
To override the contents of this collection use set_supported_hyper_parameters
.
A list of the HyperParameterSpecification
objects, that define the supported hyperparameters. This is required if the algorithm supports automatic model tuning.>
sourcepub fn set_supported_hyper_parameters(
self,
input: Option<Vec<HyperParameterSpecification>>
) -> Self
pub fn set_supported_hyper_parameters(
self,
input: Option<Vec<HyperParameterSpecification>>
) -> Self
A list of the HyperParameterSpecification
objects, that define the supported hyperparameters. This is required if the algorithm supports automatic model tuning.>
sourcepub fn supported_training_instance_types(
self,
input: TrainingInstanceType
) -> Self
pub fn supported_training_instance_types(
self,
input: TrainingInstanceType
) -> Self
Appends an item to supported_training_instance_types
.
To override the contents of this collection use set_supported_training_instance_types
.
A list of the instance types that this algorithm can use for training.
sourcepub fn set_supported_training_instance_types(
self,
input: Option<Vec<TrainingInstanceType>>
) -> Self
pub fn set_supported_training_instance_types(
self,
input: Option<Vec<TrainingInstanceType>>
) -> Self
A list of the instance types that this algorithm can use for training.
sourcepub fn supports_distributed_training(self, input: bool) -> Self
pub fn supports_distributed_training(self, input: bool) -> Self
Indicates whether the algorithm supports distributed training. If set to false, buyers can't request more than one instance during training.
sourcepub fn set_supports_distributed_training(self, input: Option<bool>) -> Self
pub fn set_supports_distributed_training(self, input: Option<bool>) -> Self
Indicates whether the algorithm supports distributed training. If set to false, buyers can't request more than one instance during training.
sourcepub fn metric_definitions(self, input: MetricDefinition) -> Self
pub fn metric_definitions(self, input: MetricDefinition) -> Self
Appends an item to metric_definitions
.
To override the contents of this collection use set_metric_definitions
.
A list of MetricDefinition
objects, which are used for parsing metrics generated by the algorithm.
sourcepub fn set_metric_definitions(
self,
input: Option<Vec<MetricDefinition>>
) -> Self
pub fn set_metric_definitions(
self,
input: Option<Vec<MetricDefinition>>
) -> Self
A list of MetricDefinition
objects, which are used for parsing metrics generated by the algorithm.
sourcepub fn training_channels(self, input: ChannelSpecification) -> Self
pub fn training_channels(self, input: ChannelSpecification) -> Self
Appends an item to training_channels
.
To override the contents of this collection use set_training_channels
.
A list of ChannelSpecification
objects, which specify the input sources to be used by the algorithm.
sourcepub fn set_training_channels(
self,
input: Option<Vec<ChannelSpecification>>
) -> Self
pub fn set_training_channels(
self,
input: Option<Vec<ChannelSpecification>>
) -> Self
A list of ChannelSpecification
objects, which specify the input sources to be used by the algorithm.
sourcepub fn supported_tuning_job_objective_metrics(
self,
input: HyperParameterTuningJobObjective
) -> Self
pub fn supported_tuning_job_objective_metrics(
self,
input: HyperParameterTuningJobObjective
) -> Self
Appends an item to supported_tuning_job_objective_metrics
.
To override the contents of this collection use set_supported_tuning_job_objective_metrics
.
A list of the metrics that the algorithm emits that can be used as the objective metric in a hyperparameter tuning job.
sourcepub fn set_supported_tuning_job_objective_metrics(
self,
input: Option<Vec<HyperParameterTuningJobObjective>>
) -> Self
pub fn set_supported_tuning_job_objective_metrics(
self,
input: Option<Vec<HyperParameterTuningJobObjective>>
) -> Self
A list of the metrics that the algorithm emits that can be used as the objective metric in a hyperparameter tuning job.
sourcepub fn build(self) -> TrainingSpecification
pub fn build(self) -> TrainingSpecification
Consumes the builder and constructs a TrainingSpecification
Trait Implementations
impl StructuralPartialEq for Builder
Auto Trait Implementations
impl RefUnwindSafe for Builder
impl Send for Builder
impl Sync for Builder
impl Unpin for Builder
impl UnwindSafe for Builder
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcepub fn borrow_mut(&mut self) -> &mut T
pub fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<T> Instrument for T
impl<T> Instrument for T
sourcefn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
sourcefn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
sourceimpl<T> ToOwned for T where
T: Clone,
impl<T> ToOwned for T where
T: Clone,
type Owned = T
type Owned = T
The resulting type after obtaining ownership.
sourcepub fn to_owned(&self) -> T
pub fn to_owned(&self) -> T
Creates owned data from borrowed data, usually by cloning. Read more
sourcepub fn clone_into(&self, target: &mut T)
pub fn clone_into(&self, target: &mut T)
toowned_clone_into
)Uses borrowed data to replace owned data, usually by cloning. Read more
sourceimpl<T> WithSubscriber for T
impl<T> WithSubscriber for T
sourcefn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self> where
S: Into<Dispatch>,
fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self> where
S: Into<Dispatch>,
Attaches the provided Subscriber
to this type, returning a
WithDispatch
wrapper. Read more
sourcefn with_current_subscriber(self) -> WithDispatch<Self>
fn with_current_subscriber(self) -> WithDispatch<Self>
Attaches the current default Subscriber
to this type, returning a
WithDispatch
wrapper. Read more