#[non_exhaustive]pub struct HyperParameterTuningJobConfig {
pub strategy: Option<HyperParameterTuningJobStrategyType>,
pub hyper_parameter_tuning_job_objective: Option<HyperParameterTuningJobObjective>,
pub resource_limits: Option<ResourceLimits>,
pub parameter_ranges: Option<ParameterRanges>,
pub training_job_early_stopping_type: Option<TrainingJobEarlyStoppingType>,
pub tuning_job_completion_criteria: Option<TuningJobCompletionCriteria>,
}
Expand description
Configures a hyperparameter tuning job.
Fields (Non-exhaustive)
This struct is marked as non-exhaustive
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.strategy: Option<HyperParameterTuningJobStrategyType>
Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. To use the Bayesian search strategy, set this to Bayesian
. To randomly search, set it to Random
. For information about search strategies, see How Hyperparameter Tuning Works.
hyper_parameter_tuning_job_objective: Option<HyperParameterTuningJobObjective>
The HyperParameterTuningJobObjective
object that specifies the objective metric for this tuning job.
resource_limits: Option<ResourceLimits>
The ResourceLimits
object that specifies the maximum number of training jobs and parallel training jobs for this tuning job.
parameter_ranges: Option<ParameterRanges>
The ParameterRanges
object that specifies the ranges of hyperparameters that this tuning job searches.
training_job_early_stopping_type: Option<TrainingJobEarlyStoppingType>
Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. This can be one of the following values (the default value is OFF
):
- OFF
-
Training jobs launched by the hyperparameter tuning job do not use early stopping.
- AUTO
-
Amazon SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.
tuning_job_completion_criteria: Option<TuningJobCompletionCriteria>
The tuning job's completion criteria.
Implementations
sourceimpl HyperParameterTuningJobConfig
impl HyperParameterTuningJobConfig
sourcepub fn strategy(&self) -> Option<&HyperParameterTuningJobStrategyType>
pub fn strategy(&self) -> Option<&HyperParameterTuningJobStrategyType>
Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. To use the Bayesian search strategy, set this to Bayesian
. To randomly search, set it to Random
. For information about search strategies, see How Hyperparameter Tuning Works.
sourcepub fn hyper_parameter_tuning_job_objective(
&self
) -> Option<&HyperParameterTuningJobObjective>
pub fn hyper_parameter_tuning_job_objective(
&self
) -> Option<&HyperParameterTuningJobObjective>
The HyperParameterTuningJobObjective
object that specifies the objective metric for this tuning job.
sourcepub fn resource_limits(&self) -> Option<&ResourceLimits>
pub fn resource_limits(&self) -> Option<&ResourceLimits>
The ResourceLimits
object that specifies the maximum number of training jobs and parallel training jobs for this tuning job.
sourcepub fn parameter_ranges(&self) -> Option<&ParameterRanges>
pub fn parameter_ranges(&self) -> Option<&ParameterRanges>
The ParameterRanges
object that specifies the ranges of hyperparameters that this tuning job searches.
sourcepub fn training_job_early_stopping_type(
&self
) -> Option<&TrainingJobEarlyStoppingType>
pub fn training_job_early_stopping_type(
&self
) -> Option<&TrainingJobEarlyStoppingType>
Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. This can be one of the following values (the default value is OFF
):
- OFF
-
Training jobs launched by the hyperparameter tuning job do not use early stopping.
- AUTO
-
Amazon SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.
sourcepub fn tuning_job_completion_criteria(
&self
) -> Option<&TuningJobCompletionCriteria>
pub fn tuning_job_completion_criteria(
&self
) -> Option<&TuningJobCompletionCriteria>
The tuning job's completion criteria.
sourceimpl HyperParameterTuningJobConfig
impl HyperParameterTuningJobConfig
sourcepub fn builder() -> Builder
pub fn builder() -> Builder
Creates a new builder-style object to manufacture HyperParameterTuningJobConfig
Trait Implementations
sourceimpl Clone for HyperParameterTuningJobConfig
impl Clone for HyperParameterTuningJobConfig
sourcefn clone(&self) -> HyperParameterTuningJobConfig
fn clone(&self) -> HyperParameterTuningJobConfig
Returns a copy of the value. Read more
1.0.0 · sourcefn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from source
. Read more
sourceimpl Debug for HyperParameterTuningJobConfig
impl Debug for HyperParameterTuningJobConfig
sourceimpl PartialEq<HyperParameterTuningJobConfig> for HyperParameterTuningJobConfig
impl PartialEq<HyperParameterTuningJobConfig> for HyperParameterTuningJobConfig
sourcefn eq(&self, other: &HyperParameterTuningJobConfig) -> bool
fn eq(&self, other: &HyperParameterTuningJobConfig) -> bool
This method tests for self
and other
values to be equal, and is used
by ==
. Read more
sourcefn ne(&self, other: &HyperParameterTuningJobConfig) -> bool
fn ne(&self, other: &HyperParameterTuningJobConfig) -> bool
This method tests for !=
.
impl StructuralPartialEq for HyperParameterTuningJobConfig
Auto Trait Implementations
impl RefUnwindSafe for HyperParameterTuningJobConfig
impl Send for HyperParameterTuningJobConfig
impl Sync for HyperParameterTuningJobConfig
impl Unpin for HyperParameterTuningJobConfig
impl UnwindSafe for HyperParameterTuningJobConfig
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcepub fn borrow_mut(&mut self) -> &mut T
pub fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<T> Instrument for T
impl<T> Instrument for T
sourcefn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
sourcefn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
sourceimpl<T> ToOwned for T where
T: Clone,
impl<T> ToOwned for T where
T: Clone,
type Owned = T
type Owned = T
The resulting type after obtaining ownership.
sourcepub fn to_owned(&self) -> T
pub fn to_owned(&self) -> T
Creates owned data from borrowed data, usually by cloning. Read more
sourcepub fn clone_into(&self, target: &mut T)
pub fn clone_into(&self, target: &mut T)
toowned_clone_into
)Uses borrowed data to replace owned data, usually by cloning. Read more
sourceimpl<T> WithSubscriber for T
impl<T> WithSubscriber for T
sourcefn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self> where
S: Into<Dispatch>,
fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self> where
S: Into<Dispatch>,
Attaches the provided Subscriber
to this type, returning a
WithDispatch
wrapper. Read more
sourcefn with_current_subscriber(self) -> WithDispatch<Self>
fn with_current_subscriber(self) -> WithDispatch<Self>
Attaches the current default Subscriber
to this type, returning a
WithDispatch
wrapper. Read more