Struct aws_sdk_sagemaker::input::CreateAutoMlJobInput
source · [−]#[non_exhaustive]pub struct CreateAutoMlJobInput {
pub auto_ml_job_name: Option<String>,
pub input_data_config: Option<Vec<AutoMlChannel>>,
pub output_data_config: Option<AutoMlOutputDataConfig>,
pub problem_type: Option<ProblemType>,
pub auto_ml_job_objective: Option<AutoMlJobObjective>,
pub auto_ml_job_config: Option<AutoMlJobConfig>,
pub role_arn: Option<String>,
pub generate_candidate_definitions_only: bool,
pub tags: Option<Vec<Tag>>,
pub model_deploy_config: Option<ModelDeployConfig>,
}
Fields (Non-exhaustive)
This struct is marked as non-exhaustive
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.auto_ml_job_name: Option<String>
Identifies an Autopilot job. The name must be unique to your account and is case-insensitive.
input_data_config: Option<Vec<AutoMlChannel>>
An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to InputDataConfig
supported by . Format(s) supported: CSV. Minimum of 500 rows.
output_data_config: Option<AutoMlOutputDataConfig>
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.
problem_type: Option<ProblemType>
Defines the type of supervised learning available for the candidates. Options include: BinaryClassification
, MulticlassClassification
, and Regression
. For more information, see Amazon SageMaker Autopilot problem types and algorithm support.
auto_ml_job_objective: Option<AutoMlJobObjective>
Defines the objective metric used to measure the predictive quality of an AutoML job. You provide an AutoMLJobObjective$MetricName
and Autopilot infers whether to minimize or maximize it.
auto_ml_job_config: Option<AutoMlJobConfig>
Contains CompletionCriteria
and SecurityConfig
settings for the AutoML job.
role_arn: Option<String>
The ARN of the role that is used to access the data.
generate_candidate_definitions_only: bool
Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
Each tag consists of a key and an optional value. Tag keys must be unique per resource.
model_deploy_config: Option<ModelDeployConfig>
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
Implementations
sourceimpl CreateAutoMlJobInput
impl CreateAutoMlJobInput
sourcepub async fn make_operation(
&self,
_config: &Config
) -> Result<Operation<CreateAutoMLJob, AwsErrorRetryPolicy>, BuildError>
pub async fn make_operation(
&self,
_config: &Config
) -> Result<Operation<CreateAutoMLJob, AwsErrorRetryPolicy>, BuildError>
Consumes the builder and constructs an Operation<CreateAutoMLJob
>
sourcepub fn builder() -> Builder
pub fn builder() -> Builder
Creates a new builder-style object to manufacture CreateAutoMlJobInput
sourceimpl CreateAutoMlJobInput
impl CreateAutoMlJobInput
sourcepub fn auto_ml_job_name(&self) -> Option<&str>
pub fn auto_ml_job_name(&self) -> Option<&str>
Identifies an Autopilot job. The name must be unique to your account and is case-insensitive.
sourcepub fn input_data_config(&self) -> Option<&[AutoMlChannel]>
pub fn input_data_config(&self) -> Option<&[AutoMlChannel]>
An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to InputDataConfig
supported by . Format(s) supported: CSV. Minimum of 500 rows.
sourcepub fn output_data_config(&self) -> Option<&AutoMlOutputDataConfig>
pub fn output_data_config(&self) -> Option<&AutoMlOutputDataConfig>
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.
sourcepub fn problem_type(&self) -> Option<&ProblemType>
pub fn problem_type(&self) -> Option<&ProblemType>
Defines the type of supervised learning available for the candidates. Options include: BinaryClassification
, MulticlassClassification
, and Regression
. For more information, see Amazon SageMaker Autopilot problem types and algorithm support.
sourcepub fn auto_ml_job_objective(&self) -> Option<&AutoMlJobObjective>
pub fn auto_ml_job_objective(&self) -> Option<&AutoMlJobObjective>
Defines the objective metric used to measure the predictive quality of an AutoML job. You provide an AutoMLJobObjective$MetricName
and Autopilot infers whether to minimize or maximize it.
sourcepub fn auto_ml_job_config(&self) -> Option<&AutoMlJobConfig>
pub fn auto_ml_job_config(&self) -> Option<&AutoMlJobConfig>
Contains CompletionCriteria
and SecurityConfig
settings for the AutoML job.
sourcepub fn generate_candidate_definitions_only(&self) -> bool
pub fn generate_candidate_definitions_only(&self) -> bool
Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
Each tag consists of a key and an optional value. Tag keys must be unique per resource.
sourcepub fn model_deploy_config(&self) -> Option<&ModelDeployConfig>
pub fn model_deploy_config(&self) -> Option<&ModelDeployConfig>
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
Trait Implementations
sourceimpl Clone for CreateAutoMlJobInput
impl Clone for CreateAutoMlJobInput
sourcefn clone(&self) -> CreateAutoMlJobInput
fn clone(&self) -> CreateAutoMlJobInput
Returns a copy of the value. Read more
1.0.0 · sourcefn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from source
. Read more
sourceimpl Debug for CreateAutoMlJobInput
impl Debug for CreateAutoMlJobInput
sourceimpl PartialEq<CreateAutoMlJobInput> for CreateAutoMlJobInput
impl PartialEq<CreateAutoMlJobInput> for CreateAutoMlJobInput
sourcefn eq(&self, other: &CreateAutoMlJobInput) -> bool
fn eq(&self, other: &CreateAutoMlJobInput) -> bool
This method tests for self
and other
values to be equal, and is used
by ==
. Read more
sourcefn ne(&self, other: &CreateAutoMlJobInput) -> bool
fn ne(&self, other: &CreateAutoMlJobInput) -> bool
This method tests for !=
.
impl StructuralPartialEq for CreateAutoMlJobInput
Auto Trait Implementations
impl RefUnwindSafe for CreateAutoMlJobInput
impl Send for CreateAutoMlJobInput
impl Sync for CreateAutoMlJobInput
impl Unpin for CreateAutoMlJobInput
impl UnwindSafe for CreateAutoMlJobInput
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcepub fn borrow_mut(&mut self) -> &mut T
pub fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<T> Instrument for T
impl<T> Instrument for T
sourcefn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
sourcefn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
sourceimpl<T> ToOwned for T where
T: Clone,
impl<T> ToOwned for T where
T: Clone,
type Owned = T
type Owned = T
The resulting type after obtaining ownership.
sourcepub fn to_owned(&self) -> T
pub fn to_owned(&self) -> T
Creates owned data from borrowed data, usually by cloning. Read more
sourcepub fn clone_into(&self, target: &mut T)
pub fn clone_into(&self, target: &mut T)
toowned_clone_into
)Uses borrowed data to replace owned data, usually by cloning. Read more
sourceimpl<T> WithSubscriber for T
impl<T> WithSubscriber for T
sourcefn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self> where
S: Into<Dispatch>,
fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self> where
S: Into<Dispatch>,
Attaches the provided Subscriber
to this type, returning a
WithDispatch
wrapper. Read more
sourcefn with_current_subscriber(self) -> WithDispatch<Self>
fn with_current_subscriber(self) -> WithDispatch<Self>
Attaches the current default Subscriber
to this type, returning a
WithDispatch
wrapper. Read more