Struct aws_sdk_sagemaker::client::fluent_builders::CreateAutoMLJob
source · [−]pub struct CreateAutoMLJob { /* private fields */ }
Expand description
Fluent builder constructing a request to CreateAutoMLJob
.
Creates an Autopilot job.
Find the best-performing model after you run an Autopilot job by calling .
For information about how to use Autopilot, see Automate Model Development with Amazon SageMaker Autopilot.
Implementations
sourceimpl CreateAutoMLJob
impl CreateAutoMLJob
sourcepub async fn send(
self
) -> Result<CreateAutoMlJobOutput, SdkError<CreateAutoMLJobError>>
pub async fn send(
self
) -> Result<CreateAutoMlJobOutput, SdkError<CreateAutoMLJobError>>
Sends the request and returns the response.
If an error occurs, an SdkError
will be returned with additional details that
can be matched against.
By default, any retryable failures will be retried twice. Retry behavior is configurable with the RetryConfig, which can be set when configuring the client.
sourcepub fn auto_ml_job_name(self, input: impl Into<String>) -> Self
pub fn auto_ml_job_name(self, input: impl Into<String>) -> Self
Identifies an Autopilot job. The name must be unique to your account and is case-insensitive.
sourcepub fn set_auto_ml_job_name(self, input: Option<String>) -> Self
pub fn set_auto_ml_job_name(self, input: Option<String>) -> Self
Identifies an Autopilot job. The name must be unique to your account and is case-insensitive.
sourcepub fn input_data_config(self, input: AutoMlChannel) -> Self
pub fn input_data_config(self, input: AutoMlChannel) -> Self
Appends an item to InputDataConfig
.
To override the contents of this collection use set_input_data_config
.
An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to InputDataConfig
supported by . Format(s) supported: CSV. Minimum of 500 rows.
sourcepub fn set_input_data_config(self, input: Option<Vec<AutoMlChannel>>) -> Self
pub fn set_input_data_config(self, input: Option<Vec<AutoMlChannel>>) -> Self
An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to InputDataConfig
supported by . Format(s) supported: CSV. Minimum of 500 rows.
sourcepub fn output_data_config(self, input: AutoMlOutputDataConfig) -> Self
pub fn output_data_config(self, input: AutoMlOutputDataConfig) -> Self
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.
sourcepub fn set_output_data_config(
self,
input: Option<AutoMlOutputDataConfig>
) -> Self
pub fn set_output_data_config(
self,
input: Option<AutoMlOutputDataConfig>
) -> Self
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.
sourcepub fn problem_type(self, input: ProblemType) -> Self
pub fn problem_type(self, input: ProblemType) -> Self
Defines the type of supervised learning available for the candidates. Options include: BinaryClassification
, MulticlassClassification
, and Regression
. For more information, see Amazon SageMaker Autopilot problem types and algorithm support.
sourcepub fn set_problem_type(self, input: Option<ProblemType>) -> Self
pub fn set_problem_type(self, input: Option<ProblemType>) -> Self
Defines the type of supervised learning available for the candidates. Options include: BinaryClassification
, MulticlassClassification
, and Regression
. For more information, see Amazon SageMaker Autopilot problem types and algorithm support.
sourcepub fn auto_ml_job_objective(self, input: AutoMlJobObjective) -> Self
pub fn auto_ml_job_objective(self, input: AutoMlJobObjective) -> Self
Defines the objective metric used to measure the predictive quality of an AutoML job. You provide an AutoMLJobObjective$MetricName
and Autopilot infers whether to minimize or maximize it.
sourcepub fn set_auto_ml_job_objective(
self,
input: Option<AutoMlJobObjective>
) -> Self
pub fn set_auto_ml_job_objective(
self,
input: Option<AutoMlJobObjective>
) -> Self
Defines the objective metric used to measure the predictive quality of an AutoML job. You provide an AutoMLJobObjective$MetricName
and Autopilot infers whether to minimize or maximize it.
sourcepub fn auto_ml_job_config(self, input: AutoMlJobConfig) -> Self
pub fn auto_ml_job_config(self, input: AutoMlJobConfig) -> Self
Contains CompletionCriteria
and SecurityConfig
settings for the AutoML job.
sourcepub fn set_auto_ml_job_config(self, input: Option<AutoMlJobConfig>) -> Self
pub fn set_auto_ml_job_config(self, input: Option<AutoMlJobConfig>) -> Self
Contains CompletionCriteria
and SecurityConfig
settings for the AutoML job.
sourcepub fn role_arn(self, input: impl Into<String>) -> Self
pub fn role_arn(self, input: impl Into<String>) -> Self
The ARN of the role that is used to access the data.
sourcepub fn set_role_arn(self, input: Option<String>) -> Self
pub fn set_role_arn(self, input: Option<String>) -> Self
The ARN of the role that is used to access the data.
sourcepub fn generate_candidate_definitions_only(self, input: bool) -> Self
pub fn generate_candidate_definitions_only(self, input: bool) -> Self
Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
sourcepub fn set_generate_candidate_definitions_only(
self,
input: Option<bool>
) -> Self
pub fn set_generate_candidate_definitions_only(
self,
input: Option<bool>
) -> Self
Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
Appends an item to Tags
.
To override the contents of this collection use set_tags
.
Each tag consists of a key and an optional value. Tag keys must be unique per resource.
Each tag consists of a key and an optional value. Tag keys must be unique per resource.
sourcepub fn model_deploy_config(self, input: ModelDeployConfig) -> Self
pub fn model_deploy_config(self, input: ModelDeployConfig) -> Self
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
sourcepub fn set_model_deploy_config(self, input: Option<ModelDeployConfig>) -> Self
pub fn set_model_deploy_config(self, input: Option<ModelDeployConfig>) -> Self
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
Trait Implementations
sourceimpl Clone for CreateAutoMLJob
impl Clone for CreateAutoMLJob
sourcefn clone(&self) -> CreateAutoMLJob
fn clone(&self) -> CreateAutoMLJob
Returns a copy of the value. Read more
1.0.0 · sourcefn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from source
. Read more
Auto Trait Implementations
impl !RefUnwindSafe for CreateAutoMLJob
impl Send for CreateAutoMLJob
impl Sync for CreateAutoMLJob
impl Unpin for CreateAutoMLJob
impl !UnwindSafe for CreateAutoMLJob
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcepub fn borrow_mut(&mut self) -> &mut T
pub fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<T> Instrument for T
impl<T> Instrument for T
sourcefn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
sourcefn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
sourceimpl<T> ToOwned for T where
T: Clone,
impl<T> ToOwned for T where
T: Clone,
type Owned = T
type Owned = T
The resulting type after obtaining ownership.
sourcepub fn to_owned(&self) -> T
pub fn to_owned(&self) -> T
Creates owned data from borrowed data, usually by cloning. Read more
sourcepub fn clone_into(&self, target: &mut T)
pub fn clone_into(&self, target: &mut T)
toowned_clone_into
)Uses borrowed data to replace owned data, usually by cloning. Read more
sourceimpl<T> WithSubscriber for T
impl<T> WithSubscriber for T
sourcefn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self> where
S: Into<Dispatch>,
fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self> where
S: Into<Dispatch>,
Attaches the provided Subscriber
to this type, returning a
WithDispatch
wrapper. Read more
sourcefn with_current_subscriber(self) -> WithDispatch<Self>
fn with_current_subscriber(self) -> WithDispatch<Self>
Attaches the current default Subscriber
to this type, returning a
WithDispatch
wrapper. Read more