Struct aws_sdk_sagemaker::operation::create_auto_ml_job_v2::builders::CreateAutoMLJobV2FluentBuilder
source · pub struct CreateAutoMLJobV2FluentBuilder { /* private fields */ }
Expand description
Fluent builder constructing a request to CreateAutoMLJobV2
.
Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2.
CreateAutoMLJobV2 and DescribeAutoMLJobV2 are new versions of CreateAutoMLJob and DescribeAutoMLJob which offer backward compatibility.
CreateAutoMLJobV2
can manage tabular problem types identical to those of its previous version CreateAutoMLJob
, as well as time-series forecasting, and non-tabular problem types such as image or text classification.
Find guidelines about how to migrate a CreateAutoMLJob
to CreateAutoMLJobV2
in Migrate a CreateAutoMLJob to CreateAutoMLJobV2.
For the list of available problem types supported by CreateAutoMLJobV2
, see AutoMLProblemTypeConfig.
You can find the best-performing model after you run an AutoML job V2 by calling DescribeAutoMLJobV2.
Implementations§
source§impl CreateAutoMLJobV2FluentBuilder
impl CreateAutoMLJobV2FluentBuilder
sourcepub fn as_input(&self) -> &CreateAutoMlJobV2InputBuilder
pub fn as_input(&self) -> &CreateAutoMlJobV2InputBuilder
Access the CreateAutoMLJobV2 as a reference.
sourcepub async fn send(
self
) -> Result<CreateAutoMlJobV2Output, SdkError<CreateAutoMLJobV2Error, HttpResponse>>
pub async fn send( self ) -> Result<CreateAutoMlJobV2Output, SdkError<CreateAutoMLJobV2Error, HttpResponse>>
Sends the request and returns the response.
If an error occurs, an SdkError
will be returned with additional details that
can be matched against.
By default, any retryable failures will be retried twice. Retry behavior is configurable with the RetryConfig, which can be set when configuring the client.
sourcepub async fn customize(
self
) -> Result<CustomizableOperation<CreateAutoMlJobV2Output, CreateAutoMLJobV2Error, Self>, SdkError<CreateAutoMLJobV2Error>>
pub async fn customize( self ) -> Result<CustomizableOperation<CreateAutoMlJobV2Output, CreateAutoMLJobV2Error, Self>, SdkError<CreateAutoMLJobV2Error>>
Consumes this builder, creating a customizable operation that can be modified before being sent.
sourcepub fn auto_ml_job_name(self, input: impl Into<String>) -> Self
pub fn auto_ml_job_name(self, input: impl Into<String>) -> Self
Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
sourcepub fn set_auto_ml_job_name(self, input: Option<String>) -> Self
pub fn set_auto_ml_job_name(self, input: Option<String>) -> Self
Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
sourcepub fn get_auto_ml_job_name(&self) -> &Option<String>
pub fn get_auto_ml_job_name(&self) -> &Option<String>
Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
sourcepub fn auto_ml_job_input_data_config(self, input: AutoMlJobChannel) -> Self
pub fn auto_ml_job_input_data_config(self, input: AutoMlJobChannel) -> Self
Appends an item to AutoMLJobInputDataConfig
.
To override the contents of this collection use set_auto_ml_job_input_data_config
.
An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the InputDataConfig attribute in the CreateAutoMLJob
input parameters. The supported formats depend on the problem type:
-
For tabular problem types:
S3Prefix
,ManifestFile
. -
For image classification:
S3Prefix
,ManifestFile
,AugmentedManifestFile
. -
For text classification:
S3Prefix
. -
For time-series forecasting:
S3Prefix
.
sourcepub fn set_auto_ml_job_input_data_config(
self,
input: Option<Vec<AutoMlJobChannel>>
) -> Self
pub fn set_auto_ml_job_input_data_config( self, input: Option<Vec<AutoMlJobChannel>> ) -> Self
An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the InputDataConfig attribute in the CreateAutoMLJob
input parameters. The supported formats depend on the problem type:
-
For tabular problem types:
S3Prefix
,ManifestFile
. -
For image classification:
S3Prefix
,ManifestFile
,AugmentedManifestFile
. -
For text classification:
S3Prefix
. -
For time-series forecasting:
S3Prefix
.
sourcepub fn get_auto_ml_job_input_data_config(
&self
) -> &Option<Vec<AutoMlJobChannel>>
pub fn get_auto_ml_job_input_data_config( &self ) -> &Option<Vec<AutoMlJobChannel>>
An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the InputDataConfig attribute in the CreateAutoMLJob
input parameters. The supported formats depend on the problem type:
-
For tabular problem types:
S3Prefix
,ManifestFile
. -
For image classification:
S3Prefix
,ManifestFile
,AugmentedManifestFile
. -
For text classification:
S3Prefix
. -
For time-series forecasting:
S3Prefix
.
sourcepub fn output_data_config(self, input: AutoMlOutputDataConfig) -> Self
pub fn output_data_config(self, input: AutoMlOutputDataConfig) -> Self
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.
sourcepub fn set_output_data_config(
self,
input: Option<AutoMlOutputDataConfig>
) -> Self
pub fn set_output_data_config( self, input: Option<AutoMlOutputDataConfig> ) -> Self
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.
sourcepub fn get_output_data_config(&self) -> &Option<AutoMlOutputDataConfig>
pub fn get_output_data_config(&self) -> &Option<AutoMlOutputDataConfig>
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.
sourcepub fn auto_ml_problem_type_config(self, input: AutoMlProblemTypeConfig) -> Self
pub fn auto_ml_problem_type_config(self, input: AutoMlProblemTypeConfig) -> Self
Defines the configuration settings of one of the supported problem types.
sourcepub fn set_auto_ml_problem_type_config(
self,
input: Option<AutoMlProblemTypeConfig>
) -> Self
pub fn set_auto_ml_problem_type_config( self, input: Option<AutoMlProblemTypeConfig> ) -> Self
Defines the configuration settings of one of the supported problem types.
sourcepub fn get_auto_ml_problem_type_config(
&self
) -> &Option<AutoMlProblemTypeConfig>
pub fn get_auto_ml_problem_type_config( &self ) -> &Option<AutoMlProblemTypeConfig>
Defines the configuration settings of one of the supported problem types.
sourcepub fn role_arn(self, input: impl Into<String>) -> Self
pub fn role_arn(self, input: impl Into<String>) -> Self
The ARN of the role that is used to access the data.
sourcepub fn set_role_arn(self, input: Option<String>) -> Self
pub fn set_role_arn(self, input: Option<String>) -> Self
The ARN of the role that is used to access the data.
sourcepub fn get_role_arn(&self) -> &Option<String>
pub fn get_role_arn(&self) -> &Option<String>
The ARN of the role that is used to access the data.
Appends an item to Tags
.
To override the contents of this collection use set_tags
.
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
sourcepub fn security_config(self, input: AutoMlSecurityConfig) -> Self
pub fn security_config(self, input: AutoMlSecurityConfig) -> Self
The security configuration for traffic encryption or Amazon VPC settings.
sourcepub fn set_security_config(self, input: Option<AutoMlSecurityConfig>) -> Self
pub fn set_security_config(self, input: Option<AutoMlSecurityConfig>) -> Self
The security configuration for traffic encryption or Amazon VPC settings.
sourcepub fn get_security_config(&self) -> &Option<AutoMlSecurityConfig>
pub fn get_security_config(&self) -> &Option<AutoMlSecurityConfig>
The security configuration for traffic encryption or Amazon VPC settings.
sourcepub fn auto_ml_job_objective(self, input: AutoMlJobObjective) -> Self
pub fn auto_ml_job_objective(self, input: AutoMlJobObjective) -> Self
Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see AutoMLJobObjective.
For tabular problem types, you must either provide both the AutoMLJobObjective
and indicate the type of supervised learning problem in AutoMLProblemTypeConfig
(TabularJobConfig.ProblemType
), or none at all.
sourcepub fn set_auto_ml_job_objective(
self,
input: Option<AutoMlJobObjective>
) -> Self
pub fn set_auto_ml_job_objective( self, input: Option<AutoMlJobObjective> ) -> Self
Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see AutoMLJobObjective.
For tabular problem types, you must either provide both the AutoMLJobObjective
and indicate the type of supervised learning problem in AutoMLProblemTypeConfig
(TabularJobConfig.ProblemType
), or none at all.
sourcepub fn get_auto_ml_job_objective(&self) -> &Option<AutoMlJobObjective>
pub fn get_auto_ml_job_objective(&self) -> &Option<AutoMlJobObjective>
Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see AutoMLJobObjective.
For tabular problem types, you must either provide both the AutoMLJobObjective
and indicate the type of supervised learning problem in AutoMLProblemTypeConfig
(TabularJobConfig.ProblemType
), or none at all.
sourcepub fn model_deploy_config(self, input: ModelDeployConfig) -> Self
pub fn model_deploy_config(self, input: ModelDeployConfig) -> Self
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
sourcepub fn set_model_deploy_config(self, input: Option<ModelDeployConfig>) -> Self
pub fn set_model_deploy_config(self, input: Option<ModelDeployConfig>) -> Self
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
sourcepub fn get_model_deploy_config(&self) -> &Option<ModelDeployConfig>
pub fn get_model_deploy_config(&self) -> &Option<ModelDeployConfig>
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
sourcepub fn data_split_config(self, input: AutoMlDataSplitConfig) -> Self
pub fn data_split_config(self, input: AutoMlDataSplitConfig) -> Self
This structure specifies how to split the data into train and validation datasets.
The validation and training datasets must contain the same headers. For jobs created by calling CreateAutoMLJob
, the validation dataset must be less than 2 GB in size.
This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.
sourcepub fn set_data_split_config(self, input: Option<AutoMlDataSplitConfig>) -> Self
pub fn set_data_split_config(self, input: Option<AutoMlDataSplitConfig>) -> Self
This structure specifies how to split the data into train and validation datasets.
The validation and training datasets must contain the same headers. For jobs created by calling CreateAutoMLJob
, the validation dataset must be less than 2 GB in size.
This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.
sourcepub fn get_data_split_config(&self) -> &Option<AutoMlDataSplitConfig>
pub fn get_data_split_config(&self) -> &Option<AutoMlDataSplitConfig>
This structure specifies how to split the data into train and validation datasets.
The validation and training datasets must contain the same headers. For jobs created by calling CreateAutoMLJob
, the validation dataset must be less than 2 GB in size.
This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.
Trait Implementations§
source§impl Clone for CreateAutoMLJobV2FluentBuilder
impl Clone for CreateAutoMLJobV2FluentBuilder
source§fn clone(&self) -> CreateAutoMLJobV2FluentBuilder
fn clone(&self) -> CreateAutoMLJobV2FluentBuilder
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read more