Struct aws_sdk_sagemaker::types::AutoMlJobChannel
source · #[non_exhaustive]pub struct AutoMlJobChannel {
pub channel_type: Option<AutoMlChannelType>,
pub content_type: Option<String>,
pub compression_type: Option<CompressionType>,
pub data_source: Option<AutoMlDataSource>,
}
Expand description
A channel is a named input source that training algorithms can consume. This channel is used for AutoML jobs V2 (jobs created by calling CreateAutoMLJobV2).
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.channel_type: Option<AutoMlChannelType>
The type of channel. Defines whether the data are used for training or validation. The default value is training
. Channels for training
and validation
must share the same ContentType
The type of channel defaults to training
for the time-series forecasting problem type.
content_type: Option<String>
The content type of the data from the input source. The following are the allowed content types for different problems:
-
For tabular problem types:
text/csv;header=present
orx-application/vnd.amazon+parquet
. The default value istext/csv;header=present
. -
For image classification:
image/png
,image/jpeg
, orimage/*
. The default value isimage/*
. -
For text classification:
text/csv;header=present
orx-application/vnd.amazon+parquet
. The default value istext/csv;header=present
. -
For time-series forecasting:
text/csv;header=present
orx-application/vnd.amazon+parquet
. The default value istext/csv;header=present
.
compression_type: Option<CompressionType>
The allowed compression types depend on the input format and problem type. We allow the compression type Gzip
for S3Prefix
inputs on tabular data only. For all other inputs, the compression type should be None
. If no compression type is provided, we default to None
.
data_source: Option<AutoMlDataSource>
The data source for an AutoML channel (Required).
Implementations§
source§impl AutoMlJobChannel
impl AutoMlJobChannel
sourcepub fn channel_type(&self) -> Option<&AutoMlChannelType>
pub fn channel_type(&self) -> Option<&AutoMlChannelType>
The type of channel. Defines whether the data are used for training or validation. The default value is training
. Channels for training
and validation
must share the same ContentType
The type of channel defaults to training
for the time-series forecasting problem type.
sourcepub fn content_type(&self) -> Option<&str>
pub fn content_type(&self) -> Option<&str>
The content type of the data from the input source. The following are the allowed content types for different problems:
-
For tabular problem types:
text/csv;header=present
orx-application/vnd.amazon+parquet
. The default value istext/csv;header=present
. -
For image classification:
image/png
,image/jpeg
, orimage/*
. The default value isimage/*
. -
For text classification:
text/csv;header=present
orx-application/vnd.amazon+parquet
. The default value istext/csv;header=present
. -
For time-series forecasting:
text/csv;header=present
orx-application/vnd.amazon+parquet
. The default value istext/csv;header=present
.
sourcepub fn compression_type(&self) -> Option<&CompressionType>
pub fn compression_type(&self) -> Option<&CompressionType>
The allowed compression types depend on the input format and problem type. We allow the compression type Gzip
for S3Prefix
inputs on tabular data only. For all other inputs, the compression type should be None
. If no compression type is provided, we default to None
.
sourcepub fn data_source(&self) -> Option<&AutoMlDataSource>
pub fn data_source(&self) -> Option<&AutoMlDataSource>
The data source for an AutoML channel (Required).
source§impl AutoMlJobChannel
impl AutoMlJobChannel
sourcepub fn builder() -> AutoMlJobChannelBuilder
pub fn builder() -> AutoMlJobChannelBuilder
Creates a new builder-style object to manufacture AutoMlJobChannel
.
Trait Implementations§
source§impl Clone for AutoMlJobChannel
impl Clone for AutoMlJobChannel
source§fn clone(&self) -> AutoMlJobChannel
fn clone(&self) -> AutoMlJobChannel
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for AutoMlJobChannel
impl Debug for AutoMlJobChannel
source§impl PartialEq<AutoMlJobChannel> for AutoMlJobChannel
impl PartialEq<AutoMlJobChannel> for AutoMlJobChannel
source§fn eq(&self, other: &AutoMlJobChannel) -> bool
fn eq(&self, other: &AutoMlJobChannel) -> bool
self
and other
values to be equal, and is used
by ==
.