Struct aws_sdk_sagemaker::operation::create_auto_ml_job::builders::CreateAutoMLJobFluentBuilder
source · pub struct CreateAutoMLJobFluentBuilder { /* private fields */ }
Expand description
Fluent builder constructing a request to CreateAutoMLJob
.
Creates an Autopilot job.
Find the best-performing model after you run an Autopilot job by calling DescribeAutoMLJob.
For information about how to use Autopilot, see Automate Model Development with Amazon SageMaker Autopilot.
Implementations§
source§impl CreateAutoMLJobFluentBuilder
impl CreateAutoMLJobFluentBuilder
sourcepub async fn send(
self
) -> Result<CreateAutoMlJobOutput, SdkError<CreateAutoMLJobError>>
pub async fn send( self ) -> Result<CreateAutoMlJobOutput, SdkError<CreateAutoMLJobError>>
Sends the request and returns the response.
If an error occurs, an SdkError
will be returned with additional details that
can be matched against.
By default, any retryable failures will be retried twice. Retry behavior is configurable with the RetryConfig, which can be set when configuring the client.
sourcepub async fn customize(
self
) -> Result<CustomizableOperation<CreateAutoMLJob, AwsResponseRetryClassifier>, SdkError<CreateAutoMLJobError>>
pub async fn customize( self ) -> Result<CustomizableOperation<CreateAutoMLJob, AwsResponseRetryClassifier>, SdkError<CreateAutoMLJobError>>
Consumes this builder, creating a customizable operation that can be modified before being sent. The operation’s inner http::Request can be modified as well.
sourcepub fn auto_ml_job_name(self, input: impl Into<String>) -> Self
pub fn auto_ml_job_name(self, input: impl Into<String>) -> Self
Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
sourcepub fn set_auto_ml_job_name(self, input: Option<String>) -> Self
pub fn set_auto_ml_job_name(self, input: Option<String>) -> Self
Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
sourcepub fn input_data_config(self, input: AutoMlChannel) -> Self
pub fn input_data_config(self, input: AutoMlChannel) -> Self
Appends an item to InputDataConfig
.
To override the contents of this collection use set_input_data_config
.
An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to InputDataConfig
supported by HyperParameterTrainingJobDefinition. Format(s) supported: CSV, Parquet. A minimum of 500 rows is required for the training dataset. There is not a minimum number of rows required for the validation dataset.
sourcepub fn set_input_data_config(self, input: Option<Vec<AutoMlChannel>>) -> Self
pub fn set_input_data_config(self, input: Option<Vec<AutoMlChannel>>) -> Self
An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to InputDataConfig
supported by HyperParameterTrainingJobDefinition. Format(s) supported: CSV, Parquet. A minimum of 500 rows is required for the training dataset. There is not a minimum number of rows required for the validation dataset.
sourcepub fn output_data_config(self, input: AutoMlOutputDataConfig) -> Self
pub fn output_data_config(self, input: AutoMlOutputDataConfig) -> Self
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.
sourcepub fn set_output_data_config(
self,
input: Option<AutoMlOutputDataConfig>
) -> Self
pub fn set_output_data_config( self, input: Option<AutoMlOutputDataConfig> ) -> Self
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.
sourcepub fn problem_type(self, input: ProblemType) -> Self
pub fn problem_type(self, input: ProblemType) -> Self
Defines the type of supervised learning problem available for the candidates. For more information, see Amazon SageMaker Autopilot problem types.
sourcepub fn set_problem_type(self, input: Option<ProblemType>) -> Self
pub fn set_problem_type(self, input: Option<ProblemType>) -> Self
Defines the type of supervised learning problem available for the candidates. For more information, see Amazon SageMaker Autopilot problem types.
sourcepub fn auto_ml_job_objective(self, input: AutoMlJobObjective) -> Self
pub fn auto_ml_job_objective(self, input: AutoMlJobObjective) -> Self
Defines the objective metric used to measure the predictive quality of an AutoML job. You provide an AutoMLJobObjective$MetricName and Autopilot infers whether to minimize or maximize it. For CreateAutoMLJobV2, only Accuracy
is supported.
sourcepub fn set_auto_ml_job_objective(
self,
input: Option<AutoMlJobObjective>
) -> Self
pub fn set_auto_ml_job_objective( self, input: Option<AutoMlJobObjective> ) -> Self
Defines the objective metric used to measure the predictive quality of an AutoML job. You provide an AutoMLJobObjective$MetricName and Autopilot infers whether to minimize or maximize it. For CreateAutoMLJobV2, only Accuracy
is supported.
sourcepub fn auto_ml_job_config(self, input: AutoMlJobConfig) -> Self
pub fn auto_ml_job_config(self, input: AutoMlJobConfig) -> Self
A collection of settings used to configure an AutoML job.
sourcepub fn set_auto_ml_job_config(self, input: Option<AutoMlJobConfig>) -> Self
pub fn set_auto_ml_job_config(self, input: Option<AutoMlJobConfig>) -> Self
A collection of settings used to configure an AutoML job.
sourcepub fn role_arn(self, input: impl Into<String>) -> Self
pub fn role_arn(self, input: impl Into<String>) -> Self
The ARN of the role that is used to access the data.
sourcepub fn set_role_arn(self, input: Option<String>) -> Self
pub fn set_role_arn(self, input: Option<String>) -> Self
The ARN of the role that is used to access the data.
sourcepub fn generate_candidate_definitions_only(self, input: bool) -> Self
pub fn generate_candidate_definitions_only(self, input: bool) -> Self
Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
sourcepub fn set_generate_candidate_definitions_only(
self,
input: Option<bool>
) -> Self
pub fn set_generate_candidate_definitions_only( self, input: Option<bool> ) -> Self
Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
Appends an item to Tags
.
To override the contents of this collection use set_tags
.
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
sourcepub fn model_deploy_config(self, input: ModelDeployConfig) -> Self
pub fn model_deploy_config(self, input: ModelDeployConfig) -> Self
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
sourcepub fn set_model_deploy_config(self, input: Option<ModelDeployConfig>) -> Self
pub fn set_model_deploy_config(self, input: Option<ModelDeployConfig>) -> Self
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
Trait Implementations§
source§impl Clone for CreateAutoMLJobFluentBuilder
impl Clone for CreateAutoMLJobFluentBuilder
source§fn clone(&self) -> CreateAutoMLJobFluentBuilder
fn clone(&self) -> CreateAutoMLJobFluentBuilder
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read more