#[non_exhaustive]pub struct CreateAutoMlJobInput { /* private fields */ }
Implementations§
source§impl CreateAutoMlJobInput
impl CreateAutoMlJobInput
sourcepub fn auto_ml_job_name(&self) -> Option<&str>
pub fn auto_ml_job_name(&self) -> Option<&str>
Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
sourcepub fn input_data_config(&self) -> Option<&[AutoMlChannel]>
pub fn input_data_config(&self) -> Option<&[AutoMlChannel]>
An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to InputDataConfig
supported by HyperParameterTrainingJobDefinition. Format(s) supported: CSV, Parquet. A minimum of 500 rows is required for the training dataset. There is not a minimum number of rows required for the validation dataset.
sourcepub fn output_data_config(&self) -> Option<&AutoMlOutputDataConfig>
pub fn output_data_config(&self) -> Option<&AutoMlOutputDataConfig>
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.
sourcepub fn problem_type(&self) -> Option<&ProblemType>
pub fn problem_type(&self) -> Option<&ProblemType>
Defines the type of supervised learning problem available for the candidates. For more information, see Amazon SageMaker Autopilot problem types.
sourcepub fn auto_ml_job_objective(&self) -> Option<&AutoMlJobObjective>
pub fn auto_ml_job_objective(&self) -> Option<&AutoMlJobObjective>
Defines the objective metric used to measure the predictive quality of an AutoML job. You provide an AutoMLJobObjective$MetricName and Autopilot infers whether to minimize or maximize it. For CreateAutoMLJobV2, only Accuracy
is supported.
sourcepub fn auto_ml_job_config(&self) -> Option<&AutoMlJobConfig>
pub fn auto_ml_job_config(&self) -> Option<&AutoMlJobConfig>
A collection of settings used to configure an AutoML job.
sourcepub fn generate_candidate_definitions_only(&self) -> Option<bool>
pub fn generate_candidate_definitions_only(&self) -> Option<bool>
Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
sourcepub fn model_deploy_config(&self) -> Option<&ModelDeployConfig>
pub fn model_deploy_config(&self) -> Option<&ModelDeployConfig>
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
source§impl CreateAutoMlJobInput
impl CreateAutoMlJobInput
sourcepub fn builder() -> CreateAutoMlJobInputBuilder
pub fn builder() -> CreateAutoMlJobInputBuilder
Creates a new builder-style object to manufacture CreateAutoMlJobInput
.
source§impl CreateAutoMlJobInput
impl CreateAutoMlJobInput
sourcepub async fn make_operation(
&self,
_config: &Config
) -> Result<Operation<CreateAutoMLJob, AwsResponseRetryClassifier>, BuildError>
pub async fn make_operation( &self, _config: &Config ) -> Result<Operation<CreateAutoMLJob, AwsResponseRetryClassifier>, BuildError>
Consumes the builder and constructs an Operation<CreateAutoMLJob
>
Trait Implementations§
source§impl Clone for CreateAutoMlJobInput
impl Clone for CreateAutoMlJobInput
source§fn clone(&self) -> CreateAutoMlJobInput
fn clone(&self) -> CreateAutoMlJobInput
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for CreateAutoMlJobInput
impl Debug for CreateAutoMlJobInput
source§impl PartialEq<CreateAutoMlJobInput> for CreateAutoMlJobInput
impl PartialEq<CreateAutoMlJobInput> for CreateAutoMlJobInput
source§fn eq(&self, other: &CreateAutoMlJobInput) -> bool
fn eq(&self, other: &CreateAutoMlJobInput) -> bool
self
and other
values to be equal, and is used
by ==
.