Struct aws_sdk_sagemaker::model::training_specification::Builder
source · pub struct Builder { /* private fields */ }
Expand description
A builder for TrainingSpecification
.
Implementations§
source§impl Builder
impl Builder
sourcepub fn training_image(self, input: impl Into<String>) -> Self
pub fn training_image(self, input: impl Into<String>) -> Self
The Amazon ECR registry path of the Docker image that contains the training algorithm.
sourcepub fn set_training_image(self, input: Option<String>) -> Self
pub fn set_training_image(self, input: Option<String>) -> Self
The Amazon ECR registry path of the Docker image that contains the training algorithm.
sourcepub fn training_image_digest(self, input: impl Into<String>) -> Self
pub fn training_image_digest(self, input: impl Into<String>) -> Self
An MD5 hash of the training algorithm that identifies the Docker image used for training.
sourcepub fn set_training_image_digest(self, input: Option<String>) -> Self
pub fn set_training_image_digest(self, input: Option<String>) -> Self
An MD5 hash of the training algorithm that identifies the Docker image used for training.
sourcepub fn supported_hyper_parameters(
self,
input: HyperParameterSpecification
) -> Self
pub fn supported_hyper_parameters(
self,
input: HyperParameterSpecification
) -> Self
Appends an item to supported_hyper_parameters
.
To override the contents of this collection use set_supported_hyper_parameters
.
A list of the HyperParameterSpecification
objects, that define the supported hyperparameters. This is required if the algorithm supports automatic model tuning.>
sourcepub fn set_supported_hyper_parameters(
self,
input: Option<Vec<HyperParameterSpecification>>
) -> Self
pub fn set_supported_hyper_parameters(
self,
input: Option<Vec<HyperParameterSpecification>>
) -> Self
A list of the HyperParameterSpecification
objects, that define the supported hyperparameters. This is required if the algorithm supports automatic model tuning.>
sourcepub fn supported_training_instance_types(
self,
input: TrainingInstanceType
) -> Self
pub fn supported_training_instance_types(
self,
input: TrainingInstanceType
) -> Self
Appends an item to supported_training_instance_types
.
To override the contents of this collection use set_supported_training_instance_types
.
A list of the instance types that this algorithm can use for training.
sourcepub fn set_supported_training_instance_types(
self,
input: Option<Vec<TrainingInstanceType>>
) -> Self
pub fn set_supported_training_instance_types(
self,
input: Option<Vec<TrainingInstanceType>>
) -> Self
A list of the instance types that this algorithm can use for training.
sourcepub fn supports_distributed_training(self, input: bool) -> Self
pub fn supports_distributed_training(self, input: bool) -> Self
Indicates whether the algorithm supports distributed training. If set to false, buyers can't request more than one instance during training.
sourcepub fn set_supports_distributed_training(self, input: Option<bool>) -> Self
pub fn set_supports_distributed_training(self, input: Option<bool>) -> Self
Indicates whether the algorithm supports distributed training. If set to false, buyers can't request more than one instance during training.
sourcepub fn metric_definitions(self, input: MetricDefinition) -> Self
pub fn metric_definitions(self, input: MetricDefinition) -> Self
Appends an item to metric_definitions
.
To override the contents of this collection use set_metric_definitions
.
A list of MetricDefinition
objects, which are used for parsing metrics generated by the algorithm.
sourcepub fn set_metric_definitions(self, input: Option<Vec<MetricDefinition>>) -> Self
pub fn set_metric_definitions(self, input: Option<Vec<MetricDefinition>>) -> Self
A list of MetricDefinition
objects, which are used for parsing metrics generated by the algorithm.
sourcepub fn training_channels(self, input: ChannelSpecification) -> Self
pub fn training_channels(self, input: ChannelSpecification) -> Self
Appends an item to training_channels
.
To override the contents of this collection use set_training_channels
.
A list of ChannelSpecification
objects, which specify the input sources to be used by the algorithm.
sourcepub fn set_training_channels(
self,
input: Option<Vec<ChannelSpecification>>
) -> Self
pub fn set_training_channels(
self,
input: Option<Vec<ChannelSpecification>>
) -> Self
A list of ChannelSpecification
objects, which specify the input sources to be used by the algorithm.
sourcepub fn supported_tuning_job_objective_metrics(
self,
input: HyperParameterTuningJobObjective
) -> Self
pub fn supported_tuning_job_objective_metrics(
self,
input: HyperParameterTuningJobObjective
) -> Self
Appends an item to supported_tuning_job_objective_metrics
.
To override the contents of this collection use set_supported_tuning_job_objective_metrics
.
A list of the metrics that the algorithm emits that can be used as the objective metric in a hyperparameter tuning job.
sourcepub fn set_supported_tuning_job_objective_metrics(
self,
input: Option<Vec<HyperParameterTuningJobObjective>>
) -> Self
pub fn set_supported_tuning_job_objective_metrics(
self,
input: Option<Vec<HyperParameterTuningJobObjective>>
) -> Self
A list of the metrics that the algorithm emits that can be used as the objective metric in a hyperparameter tuning job.
sourcepub fn build(self) -> TrainingSpecification
pub fn build(self) -> TrainingSpecification
Consumes the builder and constructs a TrainingSpecification
.