pub struct Builder { /* private fields */ }
Expand description
A builder for ModelPackageContainerDefinition
.
Implementations§
source§impl Builder
impl Builder
sourcepub fn container_hostname(self, input: impl Into<String>) -> Self
pub fn container_hostname(self, input: impl Into<String>) -> Self
The DNS host name for the Docker container.
sourcepub fn set_container_hostname(self, input: Option<String>) -> Self
pub fn set_container_hostname(self, input: Option<String>) -> Self
The DNS host name for the Docker container.
sourcepub fn image(self, input: impl Into<String>) -> Self
pub fn image(self, input: impl Into<String>) -> Self
The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.
If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag]
and registry/repository[@digest]
image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
sourcepub fn set_image(self, input: Option<String>) -> Self
pub fn set_image(self, input: Option<String>) -> Self
The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.
If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag]
and registry/repository[@digest]
image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
sourcepub fn image_digest(self, input: impl Into<String>) -> Self
pub fn image_digest(self, input: impl Into<String>) -> Self
An MD5 hash of the training algorithm that identifies the Docker image used for training.
sourcepub fn set_image_digest(self, input: Option<String>) -> Self
pub fn set_image_digest(self, input: Option<String>) -> Self
An MD5 hash of the training algorithm that identifies the Docker image used for training.
sourcepub fn model_data_url(self, input: impl Into<String>) -> Self
pub fn model_data_url(self, input: impl Into<String>) -> Self
The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip
compressed tar archive (.tar.gz
suffix).
The model artifacts must be in an S3 bucket that is in the same region as the model package.
sourcepub fn set_model_data_url(self, input: Option<String>) -> Self
pub fn set_model_data_url(self, input: Option<String>) -> Self
The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip
compressed tar archive (.tar.gz
suffix).
The model artifacts must be in an S3 bucket that is in the same region as the model package.
sourcepub fn product_id(self, input: impl Into<String>) -> Self
pub fn product_id(self, input: impl Into<String>) -> Self
The Amazon Web Services Marketplace product ID of the model package.
sourcepub fn set_product_id(self, input: Option<String>) -> Self
pub fn set_product_id(self, input: Option<String>) -> Self
The Amazon Web Services Marketplace product ID of the model package.
sourcepub fn environment(self, k: impl Into<String>, v: impl Into<String>) -> Self
pub fn environment(self, k: impl Into<String>, v: impl Into<String>) -> Self
Adds a key-value pair to environment
.
To override the contents of this collection use set_environment
.
The environment variables to set in the Docker container. Each key and value in the Environment
string to string map can have length of up to 1024. We support up to 16 entries in the map.
sourcepub fn set_environment(self, input: Option<HashMap<String, String>>) -> Self
pub fn set_environment(self, input: Option<HashMap<String, String>>) -> Self
The environment variables to set in the Docker container. Each key and value in the Environment
string to string map can have length of up to 1024. We support up to 16 entries in the map.
sourcepub fn model_input(self, input: ModelInput) -> Self
pub fn model_input(self, input: ModelInput) -> Self
A structure with Model Input details.
sourcepub fn set_model_input(self, input: Option<ModelInput>) -> Self
pub fn set_model_input(self, input: Option<ModelInput>) -> Self
A structure with Model Input details.
sourcepub fn framework(self, input: impl Into<String>) -> Self
pub fn framework(self, input: impl Into<String>) -> Self
The machine learning framework of the model package container image.
sourcepub fn set_framework(self, input: Option<String>) -> Self
pub fn set_framework(self, input: Option<String>) -> Self
The machine learning framework of the model package container image.
sourcepub fn framework_version(self, input: impl Into<String>) -> Self
pub fn framework_version(self, input: impl Into<String>) -> Self
The framework version of the Model Package Container Image.
sourcepub fn set_framework_version(self, input: Option<String>) -> Self
pub fn set_framework_version(self, input: Option<String>) -> Self
The framework version of the Model Package Container Image.
sourcepub fn nearest_model_name(self, input: impl Into<String>) -> Self
pub fn nearest_model_name(self, input: impl Into<String>) -> Self
The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata
.
sourcepub fn set_nearest_model_name(self, input: Option<String>) -> Self
pub fn set_nearest_model_name(self, input: Option<String>) -> Self
The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata
.
sourcepub fn build(self) -> ModelPackageContainerDefinition
pub fn build(self) -> ModelPackageContainerDefinition
Consumes the builder and constructs a ModelPackageContainerDefinition
.