Struct aws_sdk_sagemaker::input::create_auto_ml_job_input::Builder
source · [−]pub struct Builder { /* private fields */ }Expand description
A builder for CreateAutoMlJobInput.
Implementations
sourceimpl Builder
impl Builder
sourcepub fn auto_ml_job_name(self, input: impl Into<String>) -> Self
pub fn auto_ml_job_name(self, input: impl Into<String>) -> Self
Identifies an Autopilot job. The name must be unique to your account and is case-insensitive.
sourcepub fn set_auto_ml_job_name(self, input: Option<String>) -> Self
pub fn set_auto_ml_job_name(self, input: Option<String>) -> Self
Identifies an Autopilot job. The name must be unique to your account and is case-insensitive.
sourcepub fn input_data_config(self, input: AutoMlChannel) -> Self
pub fn input_data_config(self, input: AutoMlChannel) -> Self
Appends an item to input_data_config.
To override the contents of this collection use set_input_data_config.
An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to InputDataConfig supported by . Format(s) supported: CSV, Parquet. A minimum of 500 rows is required for the training dataset. There is not a minimum number of rows required for the validation dataset.
sourcepub fn set_input_data_config(self, input: Option<Vec<AutoMlChannel>>) -> Self
pub fn set_input_data_config(self, input: Option<Vec<AutoMlChannel>>) -> Self
An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to InputDataConfig supported by . Format(s) supported: CSV, Parquet. A minimum of 500 rows is required for the training dataset. There is not a minimum number of rows required for the validation dataset.
sourcepub fn output_data_config(self, input: AutoMlOutputDataConfig) -> Self
pub fn output_data_config(self, input: AutoMlOutputDataConfig) -> Self
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.
sourcepub fn set_output_data_config(
self,
input: Option<AutoMlOutputDataConfig>
) -> Self
pub fn set_output_data_config(
self,
input: Option<AutoMlOutputDataConfig>
) -> Self
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.
sourcepub fn problem_type(self, input: ProblemType) -> Self
pub fn problem_type(self, input: ProblemType) -> Self
Defines the type of supervised learning available for the candidates. For more information, see Amazon SageMaker Autopilot problem types and algorithm support.
sourcepub fn set_problem_type(self, input: Option<ProblemType>) -> Self
pub fn set_problem_type(self, input: Option<ProblemType>) -> Self
Defines the type of supervised learning available for the candidates. For more information, see Amazon SageMaker Autopilot problem types and algorithm support.
sourcepub fn auto_ml_job_objective(self, input: AutoMlJobObjective) -> Self
pub fn auto_ml_job_objective(self, input: AutoMlJobObjective) -> Self
Defines the objective metric used to measure the predictive quality of an AutoML job. You provide an AutoMLJobObjective$MetricName and Autopilot infers whether to minimize or maximize it.
sourcepub fn set_auto_ml_job_objective(self, input: Option<AutoMlJobObjective>) -> Self
pub fn set_auto_ml_job_objective(self, input: Option<AutoMlJobObjective>) -> Self
Defines the objective metric used to measure the predictive quality of an AutoML job. You provide an AutoMLJobObjective$MetricName and Autopilot infers whether to minimize or maximize it.
sourcepub fn auto_ml_job_config(self, input: AutoMlJobConfig) -> Self
pub fn auto_ml_job_config(self, input: AutoMlJobConfig) -> Self
A collection of settings used to configure an AutoML job.
sourcepub fn set_auto_ml_job_config(self, input: Option<AutoMlJobConfig>) -> Self
pub fn set_auto_ml_job_config(self, input: Option<AutoMlJobConfig>) -> Self
A collection of settings used to configure an AutoML job.
sourcepub fn role_arn(self, input: impl Into<String>) -> Self
pub fn role_arn(self, input: impl Into<String>) -> Self
The ARN of the role that is used to access the data.
sourcepub fn set_role_arn(self, input: Option<String>) -> Self
pub fn set_role_arn(self, input: Option<String>) -> Self
The ARN of the role that is used to access the data.
sourcepub fn generate_candidate_definitions_only(self, input: bool) -> Self
pub fn generate_candidate_definitions_only(self, input: bool) -> Self
Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
sourcepub fn set_generate_candidate_definitions_only(self, input: Option<bool>) -> Self
pub fn set_generate_candidate_definitions_only(self, input: Option<bool>) -> Self
Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
Appends an item to tags.
To override the contents of this collection use set_tags.
Each tag consists of a key and an optional value. Tag keys must be unique per resource.
Each tag consists of a key and an optional value. Tag keys must be unique per resource.
sourcepub fn model_deploy_config(self, input: ModelDeployConfig) -> Self
pub fn model_deploy_config(self, input: ModelDeployConfig) -> Self
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
sourcepub fn set_model_deploy_config(self, input: Option<ModelDeployConfig>) -> Self
pub fn set_model_deploy_config(self, input: Option<ModelDeployConfig>) -> Self
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
sourcepub fn build(self) -> Result<CreateAutoMlJobInput, BuildError>
pub fn build(self) -> Result<CreateAutoMlJobInput, BuildError>
Consumes the builder and constructs a CreateAutoMlJobInput.