Struct aws_sdk_sagemaker::client::fluent_builders::CreateAutoMLJob   
source · [−]pub struct CreateAutoMLJob { /* private fields */ }Expand description
Fluent builder constructing a request to CreateAutoMLJob.
Creates an Autopilot job.
Find the best-performing model after you run an Autopilot job by calling .
For information about how to use Autopilot, see Automate Model Development with Amazon SageMaker Autopilot.
Implementations
sourceimpl CreateAutoMLJob
 
impl CreateAutoMLJob
sourcepub async fn customize(
    self
) -> Result<CustomizableOperation<CreateAutoMLJob, AwsResponseRetryClassifier>, SdkError<CreateAutoMLJobError>>
 
pub async fn customize(
    self
) -> Result<CustomizableOperation<CreateAutoMLJob, AwsResponseRetryClassifier>, SdkError<CreateAutoMLJobError>>
Consume this builder, creating a customizable operation that can be modified before being sent. The operation’s inner http::Request can be modified as well.
sourcepub async fn send(
    self
) -> Result<CreateAutoMlJobOutput, SdkError<CreateAutoMLJobError>>
 
pub async fn send(
    self
) -> Result<CreateAutoMlJobOutput, SdkError<CreateAutoMLJobError>>
Sends the request and returns the response.
If an error occurs, an SdkError will be returned with additional details that
can be matched against.
By default, any retryable failures will be retried twice. Retry behavior is configurable with the RetryConfig, which can be set when configuring the client.
sourcepub fn auto_ml_job_name(self, input: impl Into<String>) -> Self
 
pub fn auto_ml_job_name(self, input: impl Into<String>) -> Self
Identifies an Autopilot job. The name must be unique to your account and is case-insensitive.
sourcepub fn set_auto_ml_job_name(self, input: Option<String>) -> Self
 
pub fn set_auto_ml_job_name(self, input: Option<String>) -> Self
Identifies an Autopilot job. The name must be unique to your account and is case-insensitive.
sourcepub fn input_data_config(self, input: AutoMlChannel) -> Self
 
pub fn input_data_config(self, input: AutoMlChannel) -> Self
Appends an item to InputDataConfig.
To override the contents of this collection use set_input_data_config.
An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to InputDataConfig supported by . Format(s) supported: CSV, Parquet. A minimum of 500 rows is required for the training dataset. There is not a minimum number of rows required for the validation dataset.
sourcepub fn set_input_data_config(self, input: Option<Vec<AutoMlChannel>>) -> Self
 
pub fn set_input_data_config(self, input: Option<Vec<AutoMlChannel>>) -> Self
An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to InputDataConfig supported by . Format(s) supported: CSV, Parquet. A minimum of 500 rows is required for the training dataset. There is not a minimum number of rows required for the validation dataset.
sourcepub fn output_data_config(self, input: AutoMlOutputDataConfig) -> Self
 
pub fn output_data_config(self, input: AutoMlOutputDataConfig) -> Self
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.
sourcepub fn set_output_data_config(
    self,
    input: Option<AutoMlOutputDataConfig>
) -> Self
 
pub fn set_output_data_config(
    self,
    input: Option<AutoMlOutputDataConfig>
) -> Self
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.
sourcepub fn problem_type(self, input: ProblemType) -> Self
 
pub fn problem_type(self, input: ProblemType) -> Self
Defines the type of supervised learning available for the candidates. For more information, see Amazon SageMaker Autopilot problem types and algorithm support.
sourcepub fn set_problem_type(self, input: Option<ProblemType>) -> Self
 
pub fn set_problem_type(self, input: Option<ProblemType>) -> Self
Defines the type of supervised learning available for the candidates. For more information, see Amazon SageMaker Autopilot problem types and algorithm support.
sourcepub fn auto_ml_job_objective(self, input: AutoMlJobObjective) -> Self
 
pub fn auto_ml_job_objective(self, input: AutoMlJobObjective) -> Self
Defines the objective metric used to measure the predictive quality of an AutoML job. You provide an AutoMLJobObjective$MetricName and Autopilot infers whether to minimize or maximize it.
sourcepub fn set_auto_ml_job_objective(self, input: Option<AutoMlJobObjective>) -> Self
 
pub fn set_auto_ml_job_objective(self, input: Option<AutoMlJobObjective>) -> Self
Defines the objective metric used to measure the predictive quality of an AutoML job. You provide an AutoMLJobObjective$MetricName and Autopilot infers whether to minimize or maximize it.
sourcepub fn auto_ml_job_config(self, input: AutoMlJobConfig) -> Self
 
pub fn auto_ml_job_config(self, input: AutoMlJobConfig) -> Self
A collection of settings used to configure an AutoML job.
sourcepub fn set_auto_ml_job_config(self, input: Option<AutoMlJobConfig>) -> Self
 
pub fn set_auto_ml_job_config(self, input: Option<AutoMlJobConfig>) -> Self
A collection of settings used to configure an AutoML job.
sourcepub fn role_arn(self, input: impl Into<String>) -> Self
 
pub fn role_arn(self, input: impl Into<String>) -> Self
The ARN of the role that is used to access the data.
sourcepub fn set_role_arn(self, input: Option<String>) -> Self
 
pub fn set_role_arn(self, input: Option<String>) -> Self
The ARN of the role that is used to access the data.
sourcepub fn generate_candidate_definitions_only(self, input: bool) -> Self
 
pub fn generate_candidate_definitions_only(self, input: bool) -> Self
Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
sourcepub fn set_generate_candidate_definitions_only(self, input: Option<bool>) -> Self
 
pub fn set_generate_candidate_definitions_only(self, input: Option<bool>) -> Self
Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
Appends an item to Tags.
To override the contents of this collection use set_tags.
Each tag consists of a key and an optional value. Tag keys must be unique per resource.
Each tag consists of a key and an optional value. Tag keys must be unique per resource.
sourcepub fn model_deploy_config(self, input: ModelDeployConfig) -> Self
 
pub fn model_deploy_config(self, input: ModelDeployConfig) -> Self
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
sourcepub fn set_model_deploy_config(self, input: Option<ModelDeployConfig>) -> Self
 
pub fn set_model_deploy_config(self, input: Option<ModelDeployConfig>) -> Self
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
Trait Implementations
sourceimpl Clone for CreateAutoMLJob
 
impl Clone for CreateAutoMLJob
sourcefn clone(&self) -> CreateAutoMLJob
 
fn clone(&self) -> CreateAutoMLJob
1.0.0 · sourcefn clone_from(&mut self, source: &Self)
 
fn clone_from(&mut self, source: &Self)
source. Read more