Struct aws_sdk_sagemaker::model::AutoMlChannel
source · [−]#[non_exhaustive]pub struct AutoMlChannel {
pub data_source: Option<AutoMlDataSource>,
pub compression_type: Option<CompressionType>,
pub target_attribute_name: Option<String>,
pub content_type: Option<String>,
pub channel_type: Option<AutoMlChannelType>,
}
Expand description
A channel is a named input source that training algorithms can consume. The validation dataset size is limited to less than 2 GB. The training dataset size must be less than 100 GB. For more information, see .
A validation dataset must contain the same headers as the training dataset.
Fields (Non-exhaustive)
This struct is marked as non-exhaustive
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.data_source: Option<AutoMlDataSource>
The data source for an AutoML channel.
compression_type: Option<CompressionType>
You can use Gzip
or None
. The default value is None
.
target_attribute_name: Option<String>
The name of the target variable in supervised learning, usually represented by 'y'.
content_type: Option<String>
The content type of the data from the input source. You can use text/csv;header=present
or x-application/vnd.amazon+parquet
. The default value is text/csv;header=present
.
channel_type: Option<AutoMlChannelType>
The channel type (optional) is an enum
string. The default value is training
. Channels for training and validation must share the same ContentType
and TargetAttributeName
. For information on specifying training and validation channel types, see How to specify training and validation datasets
.
Implementations
sourceimpl AutoMlChannel
impl AutoMlChannel
sourcepub fn data_source(&self) -> Option<&AutoMlDataSource>
pub fn data_source(&self) -> Option<&AutoMlDataSource>
The data source for an AutoML channel.
sourcepub fn compression_type(&self) -> Option<&CompressionType>
pub fn compression_type(&self) -> Option<&CompressionType>
You can use Gzip
or None
. The default value is None
.
sourcepub fn target_attribute_name(&self) -> Option<&str>
pub fn target_attribute_name(&self) -> Option<&str>
The name of the target variable in supervised learning, usually represented by 'y'.
sourcepub fn content_type(&self) -> Option<&str>
pub fn content_type(&self) -> Option<&str>
The content type of the data from the input source. You can use text/csv;header=present
or x-application/vnd.amazon+parquet
. The default value is text/csv;header=present
.
sourcepub fn channel_type(&self) -> Option<&AutoMlChannelType>
pub fn channel_type(&self) -> Option<&AutoMlChannelType>
The channel type (optional) is an enum
string. The default value is training
. Channels for training and validation must share the same ContentType
and TargetAttributeName
. For information on specifying training and validation channel types, see How to specify training and validation datasets
.
sourceimpl AutoMlChannel
impl AutoMlChannel
sourcepub fn builder() -> Builder
pub fn builder() -> Builder
Creates a new builder-style object to manufacture AutoMlChannel
.
Trait Implementations
sourceimpl Clone for AutoMlChannel
impl Clone for AutoMlChannel
sourcefn clone(&self) -> AutoMlChannel
fn clone(&self) -> AutoMlChannel
Returns a copy of the value. Read more
1.0.0 · sourcefn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from source
. Read more
sourceimpl Debug for AutoMlChannel
impl Debug for AutoMlChannel
sourceimpl PartialEq<AutoMlChannel> for AutoMlChannel
impl PartialEq<AutoMlChannel> for AutoMlChannel
sourcefn eq(&self, other: &AutoMlChannel) -> bool
fn eq(&self, other: &AutoMlChannel) -> bool
This method tests for self
and other
values to be equal, and is used
by ==
. Read more
sourcefn ne(&self, other: &AutoMlChannel) -> bool
fn ne(&self, other: &AutoMlChannel) -> bool
This method tests for !=
.
impl StructuralPartialEq for AutoMlChannel
Auto Trait Implementations
impl RefUnwindSafe for AutoMlChannel
impl Send for AutoMlChannel
impl Sync for AutoMlChannel
impl Unpin for AutoMlChannel
impl UnwindSafe for AutoMlChannel
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<T> Instrument for T
impl<T> Instrument for T
sourcefn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
sourcefn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
sourceimpl<T> WithSubscriber for T
impl<T> WithSubscriber for T
sourcefn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self> where
S: Into<Dispatch>,
fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self> where
S: Into<Dispatch>,
Attaches the provided Subscriber
to this type, returning a
WithDispatch
wrapper. Read more
sourcefn with_current_subscriber(self) -> WithDispatch<Self>
fn with_current_subscriber(self) -> WithDispatch<Self>
Attaches the current default Subscriber
to this type, returning a
WithDispatch
wrapper. Read more