#[non_exhaustive]pub struct Builder { /* private fields */ }
Expand description
A builder for HyperParameterTuningJobConfig
Implementations
sourceimpl Builder
impl Builder
sourcepub fn strategy(self, input: HyperParameterTuningJobStrategyType) -> Self
pub fn strategy(self, input: HyperParameterTuningJobStrategyType) -> Self
Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. To use the Bayesian search strategy, set this to Bayesian
. To randomly search, set it to Random
. For information about search strategies, see How Hyperparameter Tuning Works.
sourcepub fn set_strategy(
self,
input: Option<HyperParameterTuningJobStrategyType>
) -> Self
pub fn set_strategy(
self,
input: Option<HyperParameterTuningJobStrategyType>
) -> Self
Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. To use the Bayesian search strategy, set this to Bayesian
. To randomly search, set it to Random
. For information about search strategies, see How Hyperparameter Tuning Works.
sourcepub fn hyper_parameter_tuning_job_objective(
self,
input: HyperParameterTuningJobObjective
) -> Self
pub fn hyper_parameter_tuning_job_objective(
self,
input: HyperParameterTuningJobObjective
) -> Self
The HyperParameterTuningJobObjective
object that specifies the objective metric for this tuning job.
sourcepub fn set_hyper_parameter_tuning_job_objective(
self,
input: Option<HyperParameterTuningJobObjective>
) -> Self
pub fn set_hyper_parameter_tuning_job_objective(
self,
input: Option<HyperParameterTuningJobObjective>
) -> Self
The HyperParameterTuningJobObjective
object that specifies the objective metric for this tuning job.
sourcepub fn resource_limits(self, input: ResourceLimits) -> Self
pub fn resource_limits(self, input: ResourceLimits) -> Self
The ResourceLimits
object that specifies the maximum number of training jobs and parallel training jobs for this tuning job.
sourcepub fn set_resource_limits(self, input: Option<ResourceLimits>) -> Self
pub fn set_resource_limits(self, input: Option<ResourceLimits>) -> Self
The ResourceLimits
object that specifies the maximum number of training jobs and parallel training jobs for this tuning job.
sourcepub fn parameter_ranges(self, input: ParameterRanges) -> Self
pub fn parameter_ranges(self, input: ParameterRanges) -> Self
The ParameterRanges
object that specifies the ranges of hyperparameters that this tuning job searches.
sourcepub fn set_parameter_ranges(self, input: Option<ParameterRanges>) -> Self
pub fn set_parameter_ranges(self, input: Option<ParameterRanges>) -> Self
The ParameterRanges
object that specifies the ranges of hyperparameters that this tuning job searches.
sourcepub fn training_job_early_stopping_type(
self,
input: TrainingJobEarlyStoppingType
) -> Self
pub fn training_job_early_stopping_type(
self,
input: TrainingJobEarlyStoppingType
) -> Self
Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. This can be one of the following values (the default value is OFF
):
- OFF
-
Training jobs launched by the hyperparameter tuning job do not use early stopping.
- AUTO
-
SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.
sourcepub fn set_training_job_early_stopping_type(
self,
input: Option<TrainingJobEarlyStoppingType>
) -> Self
pub fn set_training_job_early_stopping_type(
self,
input: Option<TrainingJobEarlyStoppingType>
) -> Self
Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. This can be one of the following values (the default value is OFF
):
- OFF
-
Training jobs launched by the hyperparameter tuning job do not use early stopping.
- AUTO
-
SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.
sourcepub fn tuning_job_completion_criteria(
self,
input: TuningJobCompletionCriteria
) -> Self
pub fn tuning_job_completion_criteria(
self,
input: TuningJobCompletionCriteria
) -> Self
The tuning job's completion criteria.
sourcepub fn set_tuning_job_completion_criteria(
self,
input: Option<TuningJobCompletionCriteria>
) -> Self
pub fn set_tuning_job_completion_criteria(
self,
input: Option<TuningJobCompletionCriteria>
) -> Self
The tuning job's completion criteria.
sourcepub fn build(self) -> HyperParameterTuningJobConfig
pub fn build(self) -> HyperParameterTuningJobConfig
Consumes the builder and constructs a HyperParameterTuningJobConfig
Trait Implementations
impl StructuralPartialEq for Builder
Auto Trait Implementations
impl RefUnwindSafe for Builder
impl Send for Builder
impl Sync for Builder
impl Unpin for Builder
impl UnwindSafe for Builder
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<T> Instrument for T
impl<T> Instrument for T
sourcefn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
sourcefn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
sourceimpl<T> ToOwned for T where
T: Clone,
impl<T> ToOwned for T where
T: Clone,
type Owned = T
type Owned = T
The resulting type after obtaining ownership.
sourcefn clone_into(&self, target: &mut T)
fn clone_into(&self, target: &mut T)
toowned_clone_into
)Uses borrowed data to replace owned data, usually by cloning. Read more
sourceimpl<T> WithSubscriber for T
impl<T> WithSubscriber for T
sourcefn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self> where
S: Into<Dispatch>,
fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self> where
S: Into<Dispatch>,
Attaches the provided Subscriber
to this type, returning a
WithDispatch
wrapper. Read more
sourcefn with_current_subscriber(self) -> WithDispatch<Self>
fn with_current_subscriber(self) -> WithDispatch<Self>
Attaches the current default Subscriber
to this type, returning a
WithDispatch
wrapper. Read more