Struct aws_sdk_sagemaker::input::CreateAutoMlJobInput [−][src]
#[non_exhaustive]pub struct CreateAutoMlJobInput {
pub auto_ml_job_name: Option<String>,
pub input_data_config: Option<Vec<AutoMlChannel>>,
pub output_data_config: Option<AutoMlOutputDataConfig>,
pub problem_type: Option<ProblemType>,
pub auto_ml_job_objective: Option<AutoMlJobObjective>,
pub auto_ml_job_config: Option<AutoMlJobConfig>,
pub role_arn: Option<String>,
pub generate_candidate_definitions_only: bool,
pub tags: Option<Vec<Tag>>,
pub model_deploy_config: Option<ModelDeployConfig>,
}
Fields (Non-exhaustive)
This struct is marked as non-exhaustive
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.auto_ml_job_name: Option<String>
Identifies an Autopilot job. The name must be unique to your account and is case-insensitive.
input_data_config: Option<Vec<AutoMlChannel>>
An array of channel objects that describes the input data and its location. Each channel
is a named input source. Similar to InputDataConfig
supported by . Format(s) supported: CSV. Minimum
of 500 rows.
output_data_config: Option<AutoMlOutputDataConfig>
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.
problem_type: Option<ProblemType>
Defines the type of supervised learning available for the candidates. Options include:
BinaryClassification
, MulticlassClassification
, and
Regression
. For more information, see
Amazon SageMaker Autopilot problem types and algorithm support.
auto_ml_job_objective: Option<AutoMlJobObjective>
Defines the objective metric used to measure the predictive quality of an AutoML job. You provide an AutoMLJobObjective$MetricName and Autopilot infers whether to minimize or maximize it.
auto_ml_job_config: Option<AutoMlJobConfig>
Contains CompletionCriteria
and SecurityConfig
settings for
the AutoML job.
role_arn: Option<String>
The ARN of the role that is used to access the data.
generate_candidate_definitions_only: bool
Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
Each tag consists of a key and an optional value. Tag keys must be unique per resource.
model_deploy_config: Option<ModelDeployConfig>
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
Implementations
pub fn make_operation(
&self,
_config: &Config
) -> Result<Operation<CreateAutoMLJob, AwsErrorRetryPolicy>, BuildError>
pub fn make_operation(
&self,
_config: &Config
) -> Result<Operation<CreateAutoMLJob, AwsErrorRetryPolicy>, BuildError>
Consumes the builder and constructs an Operation<CreateAutoMLJob
>
Creates a new builder-style object to manufacture CreateAutoMlJobInput
Trait Implementations
This method tests for self
and other
values to be equal, and is used
by ==
. Read more
This method tests for !=
.
Auto Trait Implementations
impl RefUnwindSafe for CreateAutoMlJobInput
impl Send for CreateAutoMlJobInput
impl Sync for CreateAutoMlJobInput
impl Unpin for CreateAutoMlJobInput
impl UnwindSafe for CreateAutoMlJobInput
Blanket Implementations
Mutably borrows from an owned value. Read more
Attaches the provided Subscriber
to this type, returning a
WithDispatch
wrapper. Read more
Attaches the current default Subscriber
to this type, returning a
WithDispatch
wrapper. Read more