#[non_exhaustive]pub struct CompareFacesInput {
pub source_image: Option<Image>,
pub target_image: Option<Image>,
pub similarity_threshold: Option<f32>,
pub quality_filter: Option<QualityFilter>,
}
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.source_image: Option<Image>
The input image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing base64-encoded image bytes is not supported.
If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the Bytes
field. For more information, see Images in the Amazon Rekognition developer guide.
target_image: Option<Image>
The target image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing base64-encoded image bytes is not supported.
If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the Bytes
field. For more information, see Images in the Amazon Rekognition developer guide.
similarity_threshold: Option<f32>
The minimum level of confidence in the face matches that a match must meet to be included in the FaceMatches
array.
quality_filter: Option<QualityFilter>
A filter that specifies a quality bar for how much filtering is done to identify faces. Filtered faces aren't compared. If you specify AUTO
, Amazon Rekognition chooses the quality bar. If you specify LOW
, MEDIUM
, or HIGH
, filtering removes all faces that don’t meet the chosen quality bar. The quality bar is based on a variety of common use cases. Low-quality detections can occur for a number of reasons. Some examples are an object that's misidentified as a face, a face that's too blurry, or a face with a pose that's too extreme to use. If you specify NONE
, no filtering is performed. The default value is NONE
.
To use quality filtering, the collection you are using must be associated with version 3 of the face model or higher.
Implementations§
Source§impl CompareFacesInput
impl CompareFacesInput
Sourcepub fn source_image(&self) -> Option<&Image>
pub fn source_image(&self) -> Option<&Image>
The input image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing base64-encoded image bytes is not supported.
If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the Bytes
field. For more information, see Images in the Amazon Rekognition developer guide.
Sourcepub fn target_image(&self) -> Option<&Image>
pub fn target_image(&self) -> Option<&Image>
The target image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing base64-encoded image bytes is not supported.
If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the Bytes
field. For more information, see Images in the Amazon Rekognition developer guide.
Sourcepub fn similarity_threshold(&self) -> Option<f32>
pub fn similarity_threshold(&self) -> Option<f32>
The minimum level of confidence in the face matches that a match must meet to be included in the FaceMatches
array.
Sourcepub fn quality_filter(&self) -> Option<&QualityFilter>
pub fn quality_filter(&self) -> Option<&QualityFilter>
A filter that specifies a quality bar for how much filtering is done to identify faces. Filtered faces aren't compared. If you specify AUTO
, Amazon Rekognition chooses the quality bar. If you specify LOW
, MEDIUM
, or HIGH
, filtering removes all faces that don’t meet the chosen quality bar. The quality bar is based on a variety of common use cases. Low-quality detections can occur for a number of reasons. Some examples are an object that's misidentified as a face, a face that's too blurry, or a face with a pose that's too extreme to use. If you specify NONE
, no filtering is performed. The default value is NONE
.
To use quality filtering, the collection you are using must be associated with version 3 of the face model or higher.
Source§impl CompareFacesInput
impl CompareFacesInput
Sourcepub fn builder() -> CompareFacesInputBuilder
pub fn builder() -> CompareFacesInputBuilder
Creates a new builder-style object to manufacture CompareFacesInput
.
Trait Implementations§
Source§impl Clone for CompareFacesInput
impl Clone for CompareFacesInput
Source§fn clone(&self) -> CompareFacesInput
fn clone(&self) -> CompareFacesInput
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl Debug for CompareFacesInput
impl Debug for CompareFacesInput
Source§impl PartialEq for CompareFacesInput
impl PartialEq for CompareFacesInput
impl StructuralPartialEq for CompareFacesInput
Auto Trait Implementations§
impl Freeze for CompareFacesInput
impl RefUnwindSafe for CompareFacesInput
impl Send for CompareFacesInput
impl Sync for CompareFacesInput
impl Unpin for CompareFacesInput
impl UnwindSafe for CompareFacesInput
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Paint for Twhere
T: ?Sized,
impl<T> Paint for Twhere
T: ?Sized,
Source§fn fg(&self, value: Color) -> Painted<&T>
fn fg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the foreground set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like red()
and
green()
, which have the same functionality but are
pithier.
§Example
Set foreground color to white using fg()
:
use yansi::{Paint, Color};
painted.fg(Color::White);
Set foreground color to white using white()
.
use yansi::Paint;
painted.white();
Source§fn bright_black(&self) -> Painted<&T>
fn bright_black(&self) -> Painted<&T>
Source§fn bright_red(&self) -> Painted<&T>
fn bright_red(&self) -> Painted<&T>
Source§fn bright_green(&self) -> Painted<&T>
fn bright_green(&self) -> Painted<&T>
Source§fn bright_yellow(&self) -> Painted<&T>
fn bright_yellow(&self) -> Painted<&T>
Source§fn bright_blue(&self) -> Painted<&T>
fn bright_blue(&self) -> Painted<&T>
Source§fn bright_magenta(&self) -> Painted<&T>
fn bright_magenta(&self) -> Painted<&T>
Source§fn bright_cyan(&self) -> Painted<&T>
fn bright_cyan(&self) -> Painted<&T>
Source§fn bright_white(&self) -> Painted<&T>
fn bright_white(&self) -> Painted<&T>
Source§fn bg(&self, value: Color) -> Painted<&T>
fn bg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the background set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like on_red()
and
on_green()
, which have the same functionality but
are pithier.
§Example
Set background color to red using fg()
:
use yansi::{Paint, Color};
painted.bg(Color::Red);
Set background color to red using on_red()
.
use yansi::Paint;
painted.on_red();
Source§fn on_primary(&self) -> Painted<&T>
fn on_primary(&self) -> Painted<&T>
Source§fn on_magenta(&self) -> Painted<&T>
fn on_magenta(&self) -> Painted<&T>
Source§fn on_bright_black(&self) -> Painted<&T>
fn on_bright_black(&self) -> Painted<&T>
Source§fn on_bright_red(&self) -> Painted<&T>
fn on_bright_red(&self) -> Painted<&T>
Source§fn on_bright_green(&self) -> Painted<&T>
fn on_bright_green(&self) -> Painted<&T>
Source§fn on_bright_yellow(&self) -> Painted<&T>
fn on_bright_yellow(&self) -> Painted<&T>
Source§fn on_bright_blue(&self) -> Painted<&T>
fn on_bright_blue(&self) -> Painted<&T>
Source§fn on_bright_magenta(&self) -> Painted<&T>
fn on_bright_magenta(&self) -> Painted<&T>
Source§fn on_bright_cyan(&self) -> Painted<&T>
fn on_bright_cyan(&self) -> Painted<&T>
Source§fn on_bright_white(&self) -> Painted<&T>
fn on_bright_white(&self) -> Painted<&T>
Source§fn attr(&self, value: Attribute) -> Painted<&T>
fn attr(&self, value: Attribute) -> Painted<&T>
Enables the styling Attribute
value
.
This method should be used rarely. Instead, prefer to use
attribute-specific builder methods like bold()
and
underline()
, which have the same functionality
but are pithier.
§Example
Make text bold using attr()
:
use yansi::{Paint, Attribute};
painted.attr(Attribute::Bold);
Make text bold using using bold()
.
use yansi::Paint;
painted.bold();
Source§fn rapid_blink(&self) -> Painted<&T>
fn rapid_blink(&self) -> Painted<&T>
Source§fn quirk(&self, value: Quirk) -> Painted<&T>
fn quirk(&self, value: Quirk) -> Painted<&T>
Enables the yansi
Quirk
value
.
This method should be used rarely. Instead, prefer to use quirk-specific
builder methods like mask()
and
wrap()
, which have the same functionality but are
pithier.
§Example
Enable wrapping using .quirk()
:
use yansi::{Paint, Quirk};
painted.quirk(Quirk::Wrap);
Enable wrapping using wrap()
.
use yansi::Paint;
painted.wrap();
Source§fn clear(&self) -> Painted<&T>
👎Deprecated since 1.0.1: renamed to resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.
fn clear(&self) -> Painted<&T>
resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.Source§fn whenever(&self, value: Condition) -> Painted<&T>
fn whenever(&self, value: Condition) -> Painted<&T>
Conditionally enable styling based on whether the Condition
value
applies. Replaces any previous condition.
See the crate level docs for more details.
§Example
Enable styling painted
only when both stdout
and stderr
are TTYs:
use yansi::{Paint, Condition};
painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);