pub struct CompareFacesFluentBuilder { /* private fields */ }Expand description
Fluent builder constructing a request to CompareFaces.
Compares a face in the source input image with each of the 100 largest faces detected in the target input image.
If the source image contains multiple faces, the service detects the largest face and compares it with each face detected in the target image.
CompareFaces uses machine learning algorithms, which are probabilistic. A false negative is an incorrect prediction that a face in the target image has a low similarity confidence score when compared to the face in the source image. To reduce the probability of false negatives, we recommend that you compare the target image against multiple source images. If you plan to use CompareFaces to make a decision that impacts an individual's rights, privacy, or access to services, we recommend that you pass the result to a human for review and further validation before taking action.
You pass the input and target images either as base64-encoded image bytes or as references to images in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes isn't supported. The image must be formatted as a PNG or JPEG file.
In response, the operation returns an array of face matches ordered by similarity score in descending order. For each face match, the response provides a bounding box of the face, facial landmarks, pose details (pitch, roll, and yaw), quality (brightness and sharpness), and confidence value (indicating the level of confidence that the bounding box contains a face). The response also provides a similarity score, which indicates how closely the faces match.
By default, only faces with a similarity score of greater than or equal to 80% are returned in the response. You can change this value by specifying the SimilarityThreshold parameter.
CompareFaces also returns an array of faces that don't match the source image. For each face, it returns a bounding box, confidence value, landmarks, pose details, and quality. The response also returns information about the face in the source image, including the bounding box of the face and confidence value.
The QualityFilter input parameter allows you to filter out detected faces that don’t meet a required quality bar. The quality bar is based on a variety of common use cases. Use QualityFilter to set the quality bar by specifying LOW, MEDIUM, or HIGH. If you do not want to filter detected faces, specify NONE. The default value is NONE.
If the image doesn't contain Exif metadata, CompareFaces returns orientation information for the source and target images. Use these values to display the images with the correct image orientation.
If no faces are detected in the source or target images, CompareFaces returns an InvalidParameterException error.
This is a stateless API operation. That is, data returned by this operation doesn't persist.
For an example, see Comparing Faces in Images in the Amazon Rekognition Developer Guide.
This operation requires permissions to perform the rekognition:CompareFaces action.
Implementations§
Source§impl CompareFacesFluentBuilder
impl CompareFacesFluentBuilder
Sourcepub fn as_input(&self) -> &CompareFacesInputBuilder
pub fn as_input(&self) -> &CompareFacesInputBuilder
Access the CompareFaces as a reference.
Sourcepub async fn send(
self,
) -> Result<CompareFacesOutput, SdkError<CompareFacesError, HttpResponse>>
pub async fn send( self, ) -> Result<CompareFacesOutput, SdkError<CompareFacesError, HttpResponse>>
Sends the request and returns the response.
If an error occurs, an SdkError will be returned with additional details that
can be matched against.
By default, any retryable failures will be retried twice. Retry behavior is configurable with the RetryConfig, which can be set when configuring the client.
Sourcepub fn customize(
self,
) -> CustomizableOperation<CompareFacesOutput, CompareFacesError, Self>
pub fn customize( self, ) -> CustomizableOperation<CompareFacesOutput, CompareFacesError, Self>
Consumes this builder, creating a customizable operation that can be modified before being sent.
Sourcepub fn source_image(self, input: Image) -> Self
pub fn source_image(self, input: Image) -> Self
The input image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing base64-encoded image bytes is not supported.
If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the Bytes field. For more information, see Images in the Amazon Rekognition developer guide.
Sourcepub fn set_source_image(self, input: Option<Image>) -> Self
pub fn set_source_image(self, input: Option<Image>) -> Self
The input image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing base64-encoded image bytes is not supported.
If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the Bytes field. For more information, see Images in the Amazon Rekognition developer guide.
Sourcepub fn get_source_image(&self) -> &Option<Image>
pub fn get_source_image(&self) -> &Option<Image>
The input image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing base64-encoded image bytes is not supported.
If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the Bytes field. For more information, see Images in the Amazon Rekognition developer guide.
Sourcepub fn target_image(self, input: Image) -> Self
pub fn target_image(self, input: Image) -> Self
The target image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing base64-encoded image bytes is not supported.
If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the Bytes field. For more information, see Images in the Amazon Rekognition developer guide.
Sourcepub fn set_target_image(self, input: Option<Image>) -> Self
pub fn set_target_image(self, input: Option<Image>) -> Self
The target image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing base64-encoded image bytes is not supported.
If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the Bytes field. For more information, see Images in the Amazon Rekognition developer guide.
Sourcepub fn get_target_image(&self) -> &Option<Image>
pub fn get_target_image(&self) -> &Option<Image>
The target image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing base64-encoded image bytes is not supported.
If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the Bytes field. For more information, see Images in the Amazon Rekognition developer guide.
Sourcepub fn similarity_threshold(self, input: f32) -> Self
pub fn similarity_threshold(self, input: f32) -> Self
The minimum level of confidence in the face matches that a match must meet to be included in the FaceMatches array.
Sourcepub fn set_similarity_threshold(self, input: Option<f32>) -> Self
pub fn set_similarity_threshold(self, input: Option<f32>) -> Self
The minimum level of confidence in the face matches that a match must meet to be included in the FaceMatches array.
Sourcepub fn get_similarity_threshold(&self) -> &Option<f32>
pub fn get_similarity_threshold(&self) -> &Option<f32>
The minimum level of confidence in the face matches that a match must meet to be included in the FaceMatches array.
Sourcepub fn quality_filter(self, input: QualityFilter) -> Self
pub fn quality_filter(self, input: QualityFilter) -> Self
A filter that specifies a quality bar for how much filtering is done to identify faces. Filtered faces aren't compared. If you specify AUTO, Amazon Rekognition chooses the quality bar. If you specify LOW, MEDIUM, or HIGH, filtering removes all faces that don’t meet the chosen quality bar. The quality bar is based on a variety of common use cases. Low-quality detections can occur for a number of reasons. Some examples are an object that's misidentified as a face, a face that's too blurry, or a face with a pose that's too extreme to use. If you specify NONE, no filtering is performed. The default value is NONE.
To use quality filtering, the collection you are using must be associated with version 3 of the face model or higher.
Sourcepub fn set_quality_filter(self, input: Option<QualityFilter>) -> Self
pub fn set_quality_filter(self, input: Option<QualityFilter>) -> Self
A filter that specifies a quality bar for how much filtering is done to identify faces. Filtered faces aren't compared. If you specify AUTO, Amazon Rekognition chooses the quality bar. If you specify LOW, MEDIUM, or HIGH, filtering removes all faces that don’t meet the chosen quality bar. The quality bar is based on a variety of common use cases. Low-quality detections can occur for a number of reasons. Some examples are an object that's misidentified as a face, a face that's too blurry, or a face with a pose that's too extreme to use. If you specify NONE, no filtering is performed. The default value is NONE.
To use quality filtering, the collection you are using must be associated with version 3 of the face model or higher.
Sourcepub fn get_quality_filter(&self) -> &Option<QualityFilter>
pub fn get_quality_filter(&self) -> &Option<QualityFilter>
A filter that specifies a quality bar for how much filtering is done to identify faces. Filtered faces aren't compared. If you specify AUTO, Amazon Rekognition chooses the quality bar. If you specify LOW, MEDIUM, or HIGH, filtering removes all faces that don’t meet the chosen quality bar. The quality bar is based on a variety of common use cases. Low-quality detections can occur for a number of reasons. Some examples are an object that's misidentified as a face, a face that's too blurry, or a face with a pose that's too extreme to use. If you specify NONE, no filtering is performed. The default value is NONE.
To use quality filtering, the collection you are using must be associated with version 3 of the face model or higher.
Trait Implementations§
Source§impl Clone for CompareFacesFluentBuilder
impl Clone for CompareFacesFluentBuilder
Source§fn clone(&self) -> CompareFacesFluentBuilder
fn clone(&self) -> CompareFacesFluentBuilder
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moreAuto Trait Implementations§
impl Freeze for CompareFacesFluentBuilder
impl !RefUnwindSafe for CompareFacesFluentBuilder
impl Send for CompareFacesFluentBuilder
impl Sync for CompareFacesFluentBuilder
impl Unpin for CompareFacesFluentBuilder
impl !UnwindSafe for CompareFacesFluentBuilder
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Paint for Twhere
T: ?Sized,
impl<T> Paint for Twhere
T: ?Sized,
Source§fn fg(&self, value: Color) -> Painted<&T>
fn fg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self with the foreground set to
value.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like red() and
green(), which have the same functionality but are
pithier.
§Example
Set foreground color to white using fg():
use yansi::{Paint, Color};
painted.fg(Color::White);Set foreground color to white using white().
use yansi::Paint;
painted.white();Source§fn bright_black(&self) -> Painted<&T>
fn bright_black(&self) -> Painted<&T>
Source§fn bright_red(&self) -> Painted<&T>
fn bright_red(&self) -> Painted<&T>
Source§fn bright_green(&self) -> Painted<&T>
fn bright_green(&self) -> Painted<&T>
Source§fn bright_yellow(&self) -> Painted<&T>
fn bright_yellow(&self) -> Painted<&T>
Source§fn bright_blue(&self) -> Painted<&T>
fn bright_blue(&self) -> Painted<&T>
Source§fn bright_magenta(&self) -> Painted<&T>
fn bright_magenta(&self) -> Painted<&T>
Source§fn bright_cyan(&self) -> Painted<&T>
fn bright_cyan(&self) -> Painted<&T>
Source§fn bright_white(&self) -> Painted<&T>
fn bright_white(&self) -> Painted<&T>
Source§fn bg(&self, value: Color) -> Painted<&T>
fn bg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self with the background set to
value.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like on_red() and
on_green(), which have the same functionality but
are pithier.
§Example
Set background color to red using fg():
use yansi::{Paint, Color};
painted.bg(Color::Red);Set background color to red using on_red().
use yansi::Paint;
painted.on_red();Source§fn on_primary(&self) -> Painted<&T>
fn on_primary(&self) -> Painted<&T>
Source§fn on_magenta(&self) -> Painted<&T>
fn on_magenta(&self) -> Painted<&T>
Source§fn on_bright_black(&self) -> Painted<&T>
fn on_bright_black(&self) -> Painted<&T>
Source§fn on_bright_red(&self) -> Painted<&T>
fn on_bright_red(&self) -> Painted<&T>
Source§fn on_bright_green(&self) -> Painted<&T>
fn on_bright_green(&self) -> Painted<&T>
Source§fn on_bright_yellow(&self) -> Painted<&T>
fn on_bright_yellow(&self) -> Painted<&T>
Source§fn on_bright_blue(&self) -> Painted<&T>
fn on_bright_blue(&self) -> Painted<&T>
Source§fn on_bright_magenta(&self) -> Painted<&T>
fn on_bright_magenta(&self) -> Painted<&T>
Source§fn on_bright_cyan(&self) -> Painted<&T>
fn on_bright_cyan(&self) -> Painted<&T>
Source§fn on_bright_white(&self) -> Painted<&T>
fn on_bright_white(&self) -> Painted<&T>
Source§fn attr(&self, value: Attribute) -> Painted<&T>
fn attr(&self, value: Attribute) -> Painted<&T>
Enables the styling Attribute value.
This method should be used rarely. Instead, prefer to use
attribute-specific builder methods like bold() and
underline(), which have the same functionality
but are pithier.
§Example
Make text bold using attr():
use yansi::{Paint, Attribute};
painted.attr(Attribute::Bold);Make text bold using using bold().
use yansi::Paint;
painted.bold();Source§fn rapid_blink(&self) -> Painted<&T>
fn rapid_blink(&self) -> Painted<&T>
Source§fn quirk(&self, value: Quirk) -> Painted<&T>
fn quirk(&self, value: Quirk) -> Painted<&T>
Enables the yansi Quirk value.
This method should be used rarely. Instead, prefer to use quirk-specific
builder methods like mask() and
wrap(), which have the same functionality but are
pithier.
§Example
Enable wrapping using .quirk():
use yansi::{Paint, Quirk};
painted.quirk(Quirk::Wrap);Enable wrapping using wrap().
use yansi::Paint;
painted.wrap();Source§fn clear(&self) -> Painted<&T>
👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear().
The clear() method will be removed in a future release.
fn clear(&self) -> Painted<&T>
resetting() due to conflicts with Vec::clear().
The clear() method will be removed in a future release.Source§fn whenever(&self, value: Condition) -> Painted<&T>
fn whenever(&self, value: Condition) -> Painted<&T>
Conditionally enable styling based on whether the Condition value
applies. Replaces any previous condition.
See the crate level docs for more details.
§Example
Enable styling painted only when both stdout and stderr are TTYs:
use yansi::{Paint, Condition};
painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);