pub struct CreateDataset { /* private fields */ }
Expand description

Fluent builder constructing a request to CreateDataset.

Creates a new Amazon Rekognition Custom Labels dataset. You can create a dataset by using an Amazon Sagemaker format manifest file or by copying an existing Amazon Rekognition Custom Labels dataset.

To create a training dataset for a project, specify train for the value of DatasetType. To create the test dataset for a project, specify test for the value of DatasetType.

The response from CreateDataset is the Amazon Resource Name (ARN) for the dataset. Creating a dataset takes a while to complete. Use DescribeDataset to check the current status. The dataset created successfully if the value of Status is CREATE_COMPLETE.

To check if any non-terminal errors occurred, call ListDatasetEntries and check for the presence of errors lists in the JSON Lines.

Dataset creation fails if a terminal error occurs (Status = CREATE_FAILED). Currently, you can't access the terminal error information.

For more information, see Creating dataset in the Amazon Rekognition Custom Labels Developer Guide.

This operation requires permissions to perform the rekognition:CreateDataset action. If you want to copy an existing dataset, you also require permission to perform the rekognition:ListDatasetEntries action.

Implementations

Sends the request and returns the response.

If an error occurs, an SdkError will be returned with additional details that can be matched against.

By default, any retryable failures will be retried twice. Retry behavior is configurable with the RetryConfig, which can be set when configuring the client.

The source files for the dataset. You can specify the ARN of an existing dataset or specify the Amazon S3 bucket location of an Amazon Sagemaker format manifest file. If you don't specify datasetSource, an empty dataset is created. To add labeled images to the dataset, You can use the console or call UpdateDatasetEntries.

The source files for the dataset. You can specify the ARN of an existing dataset or specify the Amazon S3 bucket location of an Amazon Sagemaker format manifest file. If you don't specify datasetSource, an empty dataset is created. To add labeled images to the dataset, You can use the console or call UpdateDatasetEntries.

The type of the dataset. Specify train to create a training dataset. Specify test to create a test dataset.

The type of the dataset. Specify train to create a training dataset. Specify test to create a test dataset.

The ARN of the Amazon Rekognition Custom Labels project to which you want to asssign the dataset.

The ARN of the Amazon Rekognition Custom Labels project to which you want to asssign the dataset.

Trait Implementations

Returns a copy of the value. Read more

Performs copy-assignment from source. Read more

Formats the value using the given formatter. Read more

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more

Instruments this type with the current Span, returning an Instrumented wrapper. Read more

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The resulting type after obtaining ownership.

Creates owned data from borrowed data, usually by cloning. Read more

🔬 This is a nightly-only experimental API. (toowned_clone_into)

Uses borrowed data to replace owned data, usually by cloning. Read more

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more