CreateTenantDatabaseFluentBuilder

Struct CreateTenantDatabaseFluentBuilder 

Source
pub struct CreateTenantDatabaseFluentBuilder { /* private fields */ }
Expand description

Fluent builder constructing a request to CreateTenantDatabase.

Creates a tenant database in a DB instance that uses the multi-tenant configuration. Only RDS for Oracle container database (CDB) instances are supported.

Implementations§

Source§

impl CreateTenantDatabaseFluentBuilder

Source

pub fn as_input(&self) -> &CreateTenantDatabaseInputBuilder

Access the CreateTenantDatabase as a reference.

Source

pub async fn send( self, ) -> Result<CreateTenantDatabaseOutput, SdkError<CreateTenantDatabaseError, HttpResponse>>

Sends the request and returns the response.

If an error occurs, an SdkError will be returned with additional details that can be matched against.

By default, any retryable failures will be retried twice. Retry behavior is configurable with the RetryConfig, which can be set when configuring the client.

Source

pub fn customize( self, ) -> CustomizableOperation<CreateTenantDatabaseOutput, CreateTenantDatabaseError, Self>

Consumes this builder, creating a customizable operation that can be modified before being sent.

Source

pub fn db_instance_identifier(self, input: impl Into<String>) -> Self

The user-supplied DB instance identifier. RDS creates your tenant database in this DB instance. This parameter isn't case-sensitive.

Source

pub fn set_db_instance_identifier(self, input: Option<String>) -> Self

The user-supplied DB instance identifier. RDS creates your tenant database in this DB instance. This parameter isn't case-sensitive.

Source

pub fn get_db_instance_identifier(&self) -> &Option<String>

The user-supplied DB instance identifier. RDS creates your tenant database in this DB instance. This parameter isn't case-sensitive.

Source

pub fn tenant_db_name(self, input: impl Into<String>) -> Self

The user-supplied name of the tenant database that you want to create in your DB instance. This parameter has the same constraints as DBName in CreateDBInstance.

Source

pub fn set_tenant_db_name(self, input: Option<String>) -> Self

The user-supplied name of the tenant database that you want to create in your DB instance. This parameter has the same constraints as DBName in CreateDBInstance.

Source

pub fn get_tenant_db_name(&self) -> &Option<String>

The user-supplied name of the tenant database that you want to create in your DB instance. This parameter has the same constraints as DBName in CreateDBInstance.

Source

pub fn master_username(self, input: impl Into<String>) -> Self

The name for the master user account in your tenant database. RDS creates this user account in the tenant database and grants privileges to the master user. This parameter is case-sensitive.

Constraints:

  • Must be 1 to 16 letters, numbers, or underscores.

  • First character must be a letter.

  • Can't be a reserved word for the chosen database engine.

Source

pub fn set_master_username(self, input: Option<String>) -> Self

The name for the master user account in your tenant database. RDS creates this user account in the tenant database and grants privileges to the master user. This parameter is case-sensitive.

Constraints:

  • Must be 1 to 16 letters, numbers, or underscores.

  • First character must be a letter.

  • Can't be a reserved word for the chosen database engine.

Source

pub fn get_master_username(&self) -> &Option<String>

The name for the master user account in your tenant database. RDS creates this user account in the tenant database and grants privileges to the master user. This parameter is case-sensitive.

Constraints:

  • Must be 1 to 16 letters, numbers, or underscores.

  • First character must be a letter.

  • Can't be a reserved word for the chosen database engine.

Source

pub fn master_user_password(self, input: impl Into<String>) -> Self

The password for the master user in your tenant database.

Constraints:

  • Must be 8 to 30 characters.

  • Can include any printable ASCII character except forward slash (/), double quote ("), at symbol (@), ampersand (&), or single quote (').

  • Can't be specified when ManageMasterUserPassword is enabled.

Source

pub fn set_master_user_password(self, input: Option<String>) -> Self

The password for the master user in your tenant database.

Constraints:

  • Must be 8 to 30 characters.

  • Can include any printable ASCII character except forward slash (/), double quote ("), at symbol (@), ampersand (&), or single quote (').

  • Can't be specified when ManageMasterUserPassword is enabled.

Source

pub fn get_master_user_password(&self) -> &Option<String>

The password for the master user in your tenant database.

Constraints:

  • Must be 8 to 30 characters.

  • Can include any printable ASCII character except forward slash (/), double quote ("), at symbol (@), ampersand (&), or single quote (').

  • Can't be specified when ManageMasterUserPassword is enabled.

Source

pub fn character_set_name(self, input: impl Into<String>) -> Self

The character set for your tenant database. If you don't specify a value, the character set name defaults to AL32UTF8.

Source

pub fn set_character_set_name(self, input: Option<String>) -> Self

The character set for your tenant database. If you don't specify a value, the character set name defaults to AL32UTF8.

Source

pub fn get_character_set_name(&self) -> &Option<String>

The character set for your tenant database. If you don't specify a value, the character set name defaults to AL32UTF8.

Source

pub fn nchar_character_set_name(self, input: impl Into<String>) -> Self

The NCHAR value for the tenant database.

Source

pub fn set_nchar_character_set_name(self, input: Option<String>) -> Self

The NCHAR value for the tenant database.

Source

pub fn get_nchar_character_set_name(&self) -> &Option<String>

The NCHAR value for the tenant database.

Source

pub fn manage_master_user_password(self, input: bool) -> Self

Specifies whether to manage the master user password with Amazon Web Services Secrets Manager.

For more information, see Password management with Amazon Web Services Secrets Manager in the Amazon RDS User Guide.

Constraints:

  • Can't manage the master user password with Amazon Web Services Secrets Manager if MasterUserPassword is specified.

Source

pub fn set_manage_master_user_password(self, input: Option<bool>) -> Self

Specifies whether to manage the master user password with Amazon Web Services Secrets Manager.

For more information, see Password management with Amazon Web Services Secrets Manager in the Amazon RDS User Guide.

Constraints:

  • Can't manage the master user password with Amazon Web Services Secrets Manager if MasterUserPassword is specified.

Source

pub fn get_manage_master_user_password(&self) -> &Option<bool>

Specifies whether to manage the master user password with Amazon Web Services Secrets Manager.

For more information, see Password management with Amazon Web Services Secrets Manager in the Amazon RDS User Guide.

Constraints:

  • Can't manage the master user password with Amazon Web Services Secrets Manager if MasterUserPassword is specified.

Source

pub fn master_user_secret_kms_key_id(self, input: impl Into<String>) -> Self

The Amazon Web Services KMS key identifier to encrypt a secret that is automatically generated and managed in Amazon Web Services Secrets Manager.

This setting is valid only if the master user password is managed by RDS in Amazon Web Services Secrets Manager for the DB instance.

The Amazon Web Services KMS key identifier is the key ARN, key ID, alias ARN, or alias name for the KMS key. To use a KMS key in a different Amazon Web Services account, specify the key ARN or alias ARN.

If you don't specify MasterUserSecretKmsKeyId, then the aws/secretsmanager KMS key is used to encrypt the secret. If the secret is in a different Amazon Web Services account, then you can't use the aws/secretsmanager KMS key to encrypt the secret, and you must use a customer managed KMS key.

There is a default KMS key for your Amazon Web Services account. Your Amazon Web Services account has a different default KMS key for each Amazon Web Services Region.

Source

pub fn set_master_user_secret_kms_key_id(self, input: Option<String>) -> Self

The Amazon Web Services KMS key identifier to encrypt a secret that is automatically generated and managed in Amazon Web Services Secrets Manager.

This setting is valid only if the master user password is managed by RDS in Amazon Web Services Secrets Manager for the DB instance.

The Amazon Web Services KMS key identifier is the key ARN, key ID, alias ARN, or alias name for the KMS key. To use a KMS key in a different Amazon Web Services account, specify the key ARN or alias ARN.

If you don't specify MasterUserSecretKmsKeyId, then the aws/secretsmanager KMS key is used to encrypt the secret. If the secret is in a different Amazon Web Services account, then you can't use the aws/secretsmanager KMS key to encrypt the secret, and you must use a customer managed KMS key.

There is a default KMS key for your Amazon Web Services account. Your Amazon Web Services account has a different default KMS key for each Amazon Web Services Region.

Source

pub fn get_master_user_secret_kms_key_id(&self) -> &Option<String>

The Amazon Web Services KMS key identifier to encrypt a secret that is automatically generated and managed in Amazon Web Services Secrets Manager.

This setting is valid only if the master user password is managed by RDS in Amazon Web Services Secrets Manager for the DB instance.

The Amazon Web Services KMS key identifier is the key ARN, key ID, alias ARN, or alias name for the KMS key. To use a KMS key in a different Amazon Web Services account, specify the key ARN or alias ARN.

If you don't specify MasterUserSecretKmsKeyId, then the aws/secretsmanager KMS key is used to encrypt the secret. If the secret is in a different Amazon Web Services account, then you can't use the aws/secretsmanager KMS key to encrypt the secret, and you must use a customer managed KMS key.

There is a default KMS key for your Amazon Web Services account. Your Amazon Web Services account has a different default KMS key for each Amazon Web Services Region.

Source

pub fn tags(self, input: Tag) -> Self

Appends an item to Tags.

To override the contents of this collection use set_tags.

A list of tags.

For more information, see Tagging Amazon RDS resources in the Amazon RDS User Guide or Tagging Amazon Aurora and Amazon RDS resources in the Amazon Aurora User Guide.

Source

pub fn set_tags(self, input: Option<Vec<Tag>>) -> Self

A list of tags.

For more information, see Tagging Amazon RDS resources in the Amazon RDS User Guide or Tagging Amazon Aurora and Amazon RDS resources in the Amazon Aurora User Guide.

Source

pub fn get_tags(&self) -> &Option<Vec<Tag>>

A list of tags.

For more information, see Tagging Amazon RDS resources in the Amazon RDS User Guide or Tagging Amazon Aurora and Amazon RDS resources in the Amazon Aurora User Guide.

Trait Implementations§

Source§

impl Clone for CreateTenantDatabaseFluentBuilder

Source§

fn clone(&self) -> CreateTenantDatabaseFluentBuilder

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for CreateTenantDatabaseFluentBuilder

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

Source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
Source§

impl<T> Paint for T
where T: ?Sized,

Source§

fn fg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the foreground set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like red() and green(), which have the same functionality but are pithier.

§Example

Set foreground color to white using fg():

use yansi::{Paint, Color};

painted.fg(Color::White);

Set foreground color to white using white().

use yansi::Paint;

painted.white();
Source§

fn primary(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Primary].

§Example
println!("{}", value.primary());
Source§

fn fixed(&self, color: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Fixed].

§Example
println!("{}", value.fixed(color));
Source§

fn rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Rgb].

§Example
println!("{}", value.rgb(r, g, b));
Source§

fn black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Black].

§Example
println!("{}", value.black());
Source§

fn red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Red].

§Example
println!("{}", value.red());
Source§

fn green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Green].

§Example
println!("{}", value.green());
Source§

fn yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Yellow].

§Example
println!("{}", value.yellow());
Source§

fn blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Blue].

§Example
println!("{}", value.blue());
Source§

fn magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Magenta].

§Example
println!("{}", value.magenta());
Source§

fn cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Cyan].

§Example
println!("{}", value.cyan());
Source§

fn white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: White].

§Example
println!("{}", value.white());
Source§

fn bright_black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlack].

§Example
println!("{}", value.bright_black());
Source§

fn bright_red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightRed].

§Example
println!("{}", value.bright_red());
Source§

fn bright_green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightGreen].

§Example
println!("{}", value.bright_green());
Source§

fn bright_yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightYellow].

§Example
println!("{}", value.bright_yellow());
Source§

fn bright_blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlue].

§Example
println!("{}", value.bright_blue());
Source§

fn bright_magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.bright_magenta());
Source§

fn bright_cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightCyan].

§Example
println!("{}", value.bright_cyan());
Source§

fn bright_white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightWhite].

§Example
println!("{}", value.bright_white());
Source§

fn bg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the background set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like on_red() and on_green(), which have the same functionality but are pithier.

§Example

Set background color to red using fg():

use yansi::{Paint, Color};

painted.bg(Color::Red);

Set background color to red using on_red().

use yansi::Paint;

painted.on_red();
Source§

fn on_primary(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Primary].

§Example
println!("{}", value.on_primary());
Source§

fn on_fixed(&self, color: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Fixed].

§Example
println!("{}", value.on_fixed(color));
Source§

fn on_rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Rgb].

§Example
println!("{}", value.on_rgb(r, g, b));
Source§

fn on_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Black].

§Example
println!("{}", value.on_black());
Source§

fn on_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Red].

§Example
println!("{}", value.on_red());
Source§

fn on_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Green].

§Example
println!("{}", value.on_green());
Source§

fn on_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Yellow].

§Example
println!("{}", value.on_yellow());
Source§

fn on_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Blue].

§Example
println!("{}", value.on_blue());
Source§

fn on_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Magenta].

§Example
println!("{}", value.on_magenta());
Source§

fn on_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Cyan].

§Example
println!("{}", value.on_cyan());
Source§

fn on_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: White].

§Example
println!("{}", value.on_white());
Source§

fn on_bright_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlack].

§Example
println!("{}", value.on_bright_black());
Source§

fn on_bright_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightRed].

§Example
println!("{}", value.on_bright_red());
Source§

fn on_bright_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightGreen].

§Example
println!("{}", value.on_bright_green());
Source§

fn on_bright_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightYellow].

§Example
println!("{}", value.on_bright_yellow());
Source§

fn on_bright_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlue].

§Example
println!("{}", value.on_bright_blue());
Source§

fn on_bright_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.on_bright_magenta());
Source§

fn on_bright_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightCyan].

§Example
println!("{}", value.on_bright_cyan());
Source§

fn on_bright_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightWhite].

§Example
println!("{}", value.on_bright_white());
Source§

fn attr(&self, value: Attribute) -> Painted<&T>

Enables the styling Attribute value.

This method should be used rarely. Instead, prefer to use attribute-specific builder methods like bold() and underline(), which have the same functionality but are pithier.

§Example

Make text bold using attr():

use yansi::{Paint, Attribute};

painted.attr(Attribute::Bold);

Make text bold using using bold().

use yansi::Paint;

painted.bold();
Source§

fn bold(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Bold].

§Example
println!("{}", value.bold());
Source§

fn dim(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Dim].

§Example
println!("{}", value.dim());
Source§

fn italic(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Italic].

§Example
println!("{}", value.italic());
Source§

fn underline(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Underline].

§Example
println!("{}", value.underline());

Returns self with the attr() set to [Attribute :: Blink].

§Example
println!("{}", value.blink());

Returns self with the attr() set to [Attribute :: RapidBlink].

§Example
println!("{}", value.rapid_blink());
Source§

fn invert(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Invert].

§Example
println!("{}", value.invert());
Source§

fn conceal(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Conceal].

§Example
println!("{}", value.conceal());
Source§

fn strike(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Strike].

§Example
println!("{}", value.strike());
Source§

fn quirk(&self, value: Quirk) -> Painted<&T>

Enables the yansi Quirk value.

This method should be used rarely. Instead, prefer to use quirk-specific builder methods like mask() and wrap(), which have the same functionality but are pithier.

§Example

Enable wrapping using .quirk():

use yansi::{Paint, Quirk};

painted.quirk(Quirk::Wrap);

Enable wrapping using wrap().

use yansi::Paint;

painted.wrap();
Source§

fn mask(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Mask].

§Example
println!("{}", value.mask());
Source§

fn wrap(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Wrap].

§Example
println!("{}", value.wrap());
Source§

fn linger(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Linger].

§Example
println!("{}", value.linger());
Source§

fn clear(&self) -> Painted<&T>

👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear(). The clear() method will be removed in a future release.

Returns self with the quirk() set to [Quirk :: Clear].

§Example
println!("{}", value.clear());
Source§

fn resetting(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Resetting].

§Example
println!("{}", value.resetting());
Source§

fn bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Bright].

§Example
println!("{}", value.bright());
Source§

fn on_bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: OnBright].

§Example
println!("{}", value.on_bright());
Source§

fn whenever(&self, value: Condition) -> Painted<&T>

Conditionally enable styling based on whether the Condition value applies. Replaces any previous condition.

See the crate level docs for more details.

§Example

Enable styling painted only when both stdout and stderr are TTYs:

use yansi::{Paint, Condition};

painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);
Source§

fn new(self) -> Painted<Self>
where Self: Sized,

Create a new Painted with a default Style. Read more
Source§

fn paint<S>(&self, style: S) -> Painted<&Self>
where S: Into<Style>,

Apply a style wholesale to self. Any previous style is replaced. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> ErasedDestructor for T
where T: 'static,