Struct aws_sdk_personalize::Client
source · pub struct Client { /* private fields */ }Expand description
Client for Amazon Personalize
Client for invoking operations on Amazon Personalize. Each operation on Amazon Personalize is a method on this
this struct. .send() MUST be invoked on the generated operations to dispatch the request to the service.
§Constructing a Client
A Config is required to construct a client. For most use cases, the aws-config
crate should be used to automatically resolve this config using
aws_config::load_from_env(), since this will resolve an SdkConfig which can be shared
across multiple different AWS SDK clients. This config resolution process can be customized
by calling aws_config::from_env() instead, which returns a ConfigLoader that uses
the builder pattern to customize the default config.
In the simplest case, creating a client looks as follows:
let config = aws_config::load_from_env().await;
let client = aws_sdk_personalize::Client::new(&config);Occasionally, SDKs may have additional service-specific values that can be set on the Config that
is absent from SdkConfig, or slightly different settings for a specific client may be desired.
The Config struct implements From<&SdkConfig>, so setting these specific settings can be
done as follows:
let sdk_config = ::aws_config::load_from_env().await;
let config = aws_sdk_personalize::config::Builder::from(&sdk_config)
.some_service_specific_setting("value")
.build();See the aws-config docs and Config for more information on customizing configuration.
Note: Client construction is expensive due to connection thread pool initialization, and should be done once at application start-up.
§Using the Client
A client has a function for every operation that can be performed by the service.
For example, the CreateBatchInferenceJob operation has
a Client::create_batch_inference_job, function which returns a builder for that operation.
The fluent builder ultimately has a send() function that returns an async future that
returns a result, as illustrated below:
let result = client.create_batch_inference_job()
.job_name("example")
.send()
.await;The underlying HTTP requests that get made by this can be modified with the customize_operation
function on the fluent builder. See the customize module for more
information.
Implementations§
source§impl Client
impl Client
sourcepub fn create_batch_inference_job(&self) -> CreateBatchInferenceJobFluentBuilder
pub fn create_batch_inference_job(&self) -> CreateBatchInferenceJobFluentBuilder
Constructs a fluent builder for the CreateBatchInferenceJob operation.
- The fluent builder is configurable:
job_name(impl Into<String>)/set_job_name(Option<String>):
required: trueThe name of the batch inference job to create.
solution_version_arn(impl Into<String>)/set_solution_version_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the solution version that will be used to generate the batch inference recommendations.
filter_arn(impl Into<String>)/set_filter_arn(Option<String>):
required: falseThe ARN of the filter to apply to the batch inference job. For more information on using filters, see Filtering batch recommendations.
num_results(i32)/set_num_results(Option<i32>):
required: falseThe number of recommendations to retrieve.
job_input(BatchInferenceJobInput)/set_job_input(Option<BatchInferenceJobInput>):
required: trueThe Amazon S3 path that leads to the input file to base your recommendations on. The input material must be in JSON format.
job_output(BatchInferenceJobOutput)/set_job_output(Option<BatchInferenceJobOutput>):
required: trueThe path to the Amazon S3 bucket where the job’s output will be stored.
role_arn(impl Into<String>)/set_role_arn(Option<String>):
required: trueThe ARN of the Amazon Identity and Access Management role that has permissions to read and write to your input and output Amazon S3 buckets respectively.
batch_inference_job_config(BatchInferenceJobConfig)/set_batch_inference_job_config(Option<BatchInferenceJobConfig>):
required: falseThe configuration details of a batch inference job.
tags(Tag)/set_tags(Option<Vec::<Tag>>):
required: falseA list of tags to apply to the batch inference job.
batch_inference_job_mode(BatchInferenceJobMode)/set_batch_inference_job_mode(Option<BatchInferenceJobMode>):
required: falseThe mode of the batch inference job. To generate descriptive themes for groups of similar items, set the job mode to
THEME_GENERATION. If you don’t want to generate themes, use the defaultBATCH_INFERENCE.When you get batch recommendations with themes, you will incur additional costs. For more information, see Amazon Personalize pricing.
theme_generation_config(ThemeGenerationConfig)/set_theme_generation_config(Option<ThemeGenerationConfig>):
required: falseFor theme generation jobs, specify the name of the column in your Items dataset that contains each item’s name.
- On success, responds with
CreateBatchInferenceJobOutputwith field(s):batch_inference_job_arn(Option<String>):The ARN of the batch inference job.
- On failure, responds with
SdkError<CreateBatchInferenceJobError>
source§impl Client
impl Client
sourcepub fn create_batch_segment_job(&self) -> CreateBatchSegmentJobFluentBuilder
pub fn create_batch_segment_job(&self) -> CreateBatchSegmentJobFluentBuilder
Constructs a fluent builder for the CreateBatchSegmentJob operation.
- The fluent builder is configurable:
job_name(impl Into<String>)/set_job_name(Option<String>):
required: trueThe name of the batch segment job to create.
solution_version_arn(impl Into<String>)/set_solution_version_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the solution version you want the batch segment job to use to generate batch segments.
filter_arn(impl Into<String>)/set_filter_arn(Option<String>):
required: falseThe ARN of the filter to apply to the batch segment job. For more information on using filters, see Filtering batch recommendations.
num_results(i32)/set_num_results(Option<i32>):
required: falseThe number of predicted users generated by the batch segment job for each line of input data. The maximum number of users per segment is 5 million.
job_input(BatchSegmentJobInput)/set_job_input(Option<BatchSegmentJobInput>):
required: trueThe Amazon S3 path for the input data used to generate the batch segment job.
job_output(BatchSegmentJobOutput)/set_job_output(Option<BatchSegmentJobOutput>):
required: trueThe Amazon S3 path for the bucket where the job’s output will be stored.
role_arn(impl Into<String>)/set_role_arn(Option<String>):
required: trueThe ARN of the Amazon Identity and Access Management role that has permissions to read and write to your input and output Amazon S3 buckets respectively.
tags(Tag)/set_tags(Option<Vec::<Tag>>):
required: falseA list of tags to apply to the batch segment job.
- On success, responds with
CreateBatchSegmentJobOutputwith field(s):batch_segment_job_arn(Option<String>):The ARN of the batch segment job.
- On failure, responds with
SdkError<CreateBatchSegmentJobError>
source§impl Client
impl Client
sourcepub fn create_campaign(&self) -> CreateCampaignFluentBuilder
pub fn create_campaign(&self) -> CreateCampaignFluentBuilder
Constructs a fluent builder for the CreateCampaign operation.
- The fluent builder is configurable:
name(impl Into<String>)/set_name(Option<String>):
required: trueA name for the new campaign. The campaign name must be unique within your account.
solution_version_arn(impl Into<String>)/set_solution_version_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the trained model to deploy with the campaign. To specify the latest solution version of your solution, specify the ARN of your solution in
SolutionArn/$LATESTformat. You must use this format if you setsyncWithLatestSolutionVersiontoTruein the CampaignConfig.To deploy a model that isn’t the latest solution version of your solution, specify the ARN of the solution version.
For more information about automatic campaign updates, see Enabling automatic campaign updates.
min_provisioned_tps(i32)/set_min_provisioned_tps(Option<i32>):
required: falseSpecifies the requested minimum provisioned transactions (recommendations) per second that Amazon Personalize will support. A high
minProvisionedTPSwill increase your bill. We recommend starting with 1 forminProvisionedTPS(the default). Track your usage using Amazon CloudWatch metrics, and increase theminProvisionedTPSas necessary.campaign_config(CampaignConfig)/set_campaign_config(Option<CampaignConfig>):
required: falseThe configuration details of a campaign.
tags(Tag)/set_tags(Option<Vec::<Tag>>):
required: falseA list of tags to apply to the campaign.
- On success, responds with
CreateCampaignOutputwith field(s):campaign_arn(Option<String>):The Amazon Resource Name (ARN) of the campaign.
- On failure, responds with
SdkError<CreateCampaignError>
source§impl Client
impl Client
sourcepub fn create_data_deletion_job(&self) -> CreateDataDeletionJobFluentBuilder
pub fn create_data_deletion_job(&self) -> CreateDataDeletionJobFluentBuilder
Constructs a fluent builder for the CreateDataDeletionJob operation.
- The fluent builder is configurable:
job_name(impl Into<String>)/set_job_name(Option<String>):
required: trueThe name for the data deletion job.
dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the dataset group that has the datasets you want to delete records from.
data_source(DataSource)/set_data_source(Option<DataSource>):
required: trueThe Amazon S3 bucket that contains the list of userIds of the users to delete.
role_arn(impl Into<String>)/set_role_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the IAM role that has permissions to read from the Amazon S3 data source.
tags(Tag)/set_tags(Option<Vec::<Tag>>):
required: falseA list of tags to apply to the data deletion job.
- On success, responds with
CreateDataDeletionJobOutputwith field(s):data_deletion_job_arn(Option<String>):The Amazon Resource Name (ARN) of the data deletion job.
- On failure, responds with
SdkError<CreateDataDeletionJobError>
source§impl Client
impl Client
sourcepub fn create_dataset(&self) -> CreateDatasetFluentBuilder
pub fn create_dataset(&self) -> CreateDatasetFluentBuilder
Constructs a fluent builder for the CreateDataset operation.
- The fluent builder is configurable:
name(impl Into<String>)/set_name(Option<String>):
required: trueThe name for the dataset.
schema_arn(impl Into<String>)/set_schema_arn(Option<String>):
required: trueThe ARN of the schema to associate with the dataset. The schema defines the dataset fields.
dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the dataset group to add the dataset to.
dataset_type(impl Into<String>)/set_dataset_type(Option<String>):
required: trueThe type of dataset.
One of the following (case insensitive) values:
-
Interactions
-
Items
-
Users
-
Actions
-
Action_Interactions
-
tags(Tag)/set_tags(Option<Vec::<Tag>>):
required: falseA list of tags to apply to the dataset.
- On success, responds with
CreateDatasetOutputwith field(s):dataset_arn(Option<String>):The ARN of the dataset.
- On failure, responds with
SdkError<CreateDatasetError>
source§impl Client
impl Client
sourcepub fn create_dataset_export_job(&self) -> CreateDatasetExportJobFluentBuilder
pub fn create_dataset_export_job(&self) -> CreateDatasetExportJobFluentBuilder
Constructs a fluent builder for the CreateDatasetExportJob operation.
- The fluent builder is configurable:
job_name(impl Into<String>)/set_job_name(Option<String>):
required: trueThe name for the dataset export job.
dataset_arn(impl Into<String>)/set_dataset_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the dataset that contains the data to export.
ingestion_mode(IngestionMode)/set_ingestion_mode(Option<IngestionMode>):
required: falseThe data to export, based on how you imported the data. You can choose to export only
BULKdata that you imported using a dataset import job, onlyPUTdata that you imported incrementally (using the console, PutEvents, PutUsers and PutItems operations), orALLfor both types. The default value isPUT.role_arn(impl Into<String>)/set_role_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the IAM service role that has permissions to add data to your output Amazon S3 bucket.
job_output(DatasetExportJobOutput)/set_job_output(Option<DatasetExportJobOutput>):
required: trueThe path to the Amazon S3 bucket where the job’s output is stored.
tags(Tag)/set_tags(Option<Vec::<Tag>>):
required: falseA list of tags to apply to the dataset export job.
- On success, responds with
CreateDatasetExportJobOutputwith field(s):dataset_export_job_arn(Option<String>):The Amazon Resource Name (ARN) of the dataset export job.
- On failure, responds with
SdkError<CreateDatasetExportJobError>
source§impl Client
impl Client
sourcepub fn create_dataset_group(&self) -> CreateDatasetGroupFluentBuilder
pub fn create_dataset_group(&self) -> CreateDatasetGroupFluentBuilder
Constructs a fluent builder for the CreateDatasetGroup operation.
- The fluent builder is configurable:
name(impl Into<String>)/set_name(Option<String>):
required: trueThe name for the new dataset group.
role_arn(impl Into<String>)/set_role_arn(Option<String>):
required: falseThe ARN of the Identity and Access Management (IAM) role that has permissions to access the Key Management Service (KMS) key. Supplying an IAM role is only valid when also specifying a KMS key.
kms_key_arn(impl Into<String>)/set_kms_key_arn(Option<String>):
required: falseThe Amazon Resource Name (ARN) of a Key Management Service (KMS) key used to encrypt the datasets.
domain(Domain)/set_domain(Option<Domain>):
required: falseThe domain of the dataset group. Specify a domain to create a Domain dataset group. The domain you specify determines the default schemas for datasets and the use cases available for recommenders. If you don’t specify a domain, you create a Custom dataset group with solution versions that you deploy with a campaign.
tags(Tag)/set_tags(Option<Vec::<Tag>>):
required: falseA list of tags to apply to the dataset group.
- On success, responds with
CreateDatasetGroupOutputwith field(s):dataset_group_arn(Option<String>):The Amazon Resource Name (ARN) of the new dataset group.
domain(Option<Domain>):The domain for the new Domain dataset group.
- On failure, responds with
SdkError<CreateDatasetGroupError>
source§impl Client
impl Client
sourcepub fn create_dataset_import_job(&self) -> CreateDatasetImportJobFluentBuilder
pub fn create_dataset_import_job(&self) -> CreateDatasetImportJobFluentBuilder
Constructs a fluent builder for the CreateDatasetImportJob operation.
- The fluent builder is configurable:
job_name(impl Into<String>)/set_job_name(Option<String>):
required: trueThe name for the dataset import job.
dataset_arn(impl Into<String>)/set_dataset_arn(Option<String>):
required: trueThe ARN of the dataset that receives the imported data.
data_source(DataSource)/set_data_source(Option<DataSource>):
required: trueThe Amazon S3 bucket that contains the training data to import.
role_arn(impl Into<String>)/set_role_arn(Option<String>):
required: trueThe ARN of the IAM role that has permissions to read from the Amazon S3 data source.
tags(Tag)/set_tags(Option<Vec::<Tag>>):
required: falseA list of tags to apply to the dataset import job.
import_mode(ImportMode)/set_import_mode(Option<ImportMode>):
required: falseSpecify how to add the new records to an existing dataset. The default import mode is
FULL. If you haven’t imported bulk records into the dataset previously, you can only specifyFULL.-
Specify
FULLto overwrite all existing bulk data in your dataset. Data you imported individually is not replaced. -
Specify
INCREMENTALto append the new records to the existing data in your dataset. Amazon Personalize replaces any record with the same ID with the new one.
-
publish_attribution_metrics_to_s3(bool)/set_publish_attribution_metrics_to_s3(Option<bool>):
required: falseIf you created a metric attribution, specify whether to publish metrics for this import job to Amazon S3
- On success, responds with
CreateDatasetImportJobOutputwith field(s):dataset_import_job_arn(Option<String>):The ARN of the dataset import job.
- On failure, responds with
SdkError<CreateDatasetImportJobError>
source§impl Client
impl Client
sourcepub fn create_event_tracker(&self) -> CreateEventTrackerFluentBuilder
pub fn create_event_tracker(&self) -> CreateEventTrackerFluentBuilder
Constructs a fluent builder for the CreateEventTracker operation.
- The fluent builder is configurable:
name(impl Into<String>)/set_name(Option<String>):
required: trueThe name for the event tracker.
dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the dataset group that receives the event data.
tags(Tag)/set_tags(Option<Vec::<Tag>>):
required: falseA list of tags to apply to the event tracker.
- On success, responds with
CreateEventTrackerOutputwith field(s):event_tracker_arn(Option<String>):The ARN of the event tracker.
tracking_id(Option<String>):The ID of the event tracker. Include this ID in requests to the PutEvents API.
- On failure, responds with
SdkError<CreateEventTrackerError>
source§impl Client
impl Client
sourcepub fn create_filter(&self) -> CreateFilterFluentBuilder
pub fn create_filter(&self) -> CreateFilterFluentBuilder
Constructs a fluent builder for the CreateFilter operation.
- The fluent builder is configurable:
name(impl Into<String>)/set_name(Option<String>):
required: trueThe name of the filter to create.
dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):
required: trueThe ARN of the dataset group that the filter will belong to.
filter_expression(impl Into<String>)/set_filter_expression(Option<String>):
required: trueThe filter expression defines which items are included or excluded from recommendations. Filter expression must follow specific format rules. For information about filter expression structure and syntax, see Filter expressions.
tags(Tag)/set_tags(Option<Vec::<Tag>>):
required: falseA list of tags to apply to the filter.
- On success, responds with
CreateFilterOutputwith field(s):filter_arn(Option<String>):The ARN of the new filter.
- On failure, responds with
SdkError<CreateFilterError>
source§impl Client
impl Client
sourcepub fn create_metric_attribution(&self) -> CreateMetricAttributionFluentBuilder
pub fn create_metric_attribution(&self) -> CreateMetricAttributionFluentBuilder
Constructs a fluent builder for the CreateMetricAttribution operation.
- The fluent builder is configurable:
name(impl Into<String>)/set_name(Option<String>):
required: trueA name for the metric attribution.
dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the destination dataset group for the metric attribution.
metrics(MetricAttribute)/set_metrics(Option<Vec::<MetricAttribute>>):
required: trueA list of metric attributes for the metric attribution. Each metric attribute specifies an event type to track and a function. Available functions are
SUM()orSAMPLECOUNT(). For SUM() functions, provide the dataset type (either Interactions or Items) and column to sum as a parameter. For example SUM(Items.PRICE).metrics_output_config(MetricAttributionOutput)/set_metrics_output_config(Option<MetricAttributionOutput>):
required: trueThe output configuration details for the metric attribution.
- On success, responds with
CreateMetricAttributionOutputwith field(s):metric_attribution_arn(Option<String>):The Amazon Resource Name (ARN) for the new metric attribution.
- On failure, responds with
SdkError<CreateMetricAttributionError>
source§impl Client
impl Client
sourcepub fn create_recommender(&self) -> CreateRecommenderFluentBuilder
pub fn create_recommender(&self) -> CreateRecommenderFluentBuilder
Constructs a fluent builder for the CreateRecommender operation.
- The fluent builder is configurable:
name(impl Into<String>)/set_name(Option<String>):
required: trueThe name of the recommender.
dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the destination domain dataset group for the recommender.
recipe_arn(impl Into<String>)/set_recipe_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the recipe that the recommender will use. For a recommender, a recipe is a Domain dataset group use case. Only Domain dataset group use cases can be used to create a recommender. For information about use cases see Choosing recommender use cases.
recommender_config(RecommenderConfig)/set_recommender_config(Option<RecommenderConfig>):
required: falseThe configuration details of the recommender.
tags(Tag)/set_tags(Option<Vec::<Tag>>):
required: falseA list of tags to apply to the recommender.
- On success, responds with
CreateRecommenderOutputwith field(s):recommender_arn(Option<String>):The Amazon Resource Name (ARN) of the recommender.
- On failure, responds with
SdkError<CreateRecommenderError>
source§impl Client
impl Client
sourcepub fn create_schema(&self) -> CreateSchemaFluentBuilder
pub fn create_schema(&self) -> CreateSchemaFluentBuilder
Constructs a fluent builder for the CreateSchema operation.
- The fluent builder is configurable:
name(impl Into<String>)/set_name(Option<String>):
required: trueThe name for the schema.
schema(impl Into<String>)/set_schema(Option<String>):
required: trueA schema in Avro JSON format.
domain(Domain)/set_domain(Option<Domain>):
required: falseThe domain for the schema. If you are creating a schema for a dataset in a Domain dataset group, specify the domain you chose when you created the Domain dataset group.
- On success, responds with
CreateSchemaOutputwith field(s):schema_arn(Option<String>):The Amazon Resource Name (ARN) of the created schema.
- On failure, responds with
SdkError<CreateSchemaError>
source§impl Client
impl Client
sourcepub fn create_solution(&self) -> CreateSolutionFluentBuilder
pub fn create_solution(&self) -> CreateSolutionFluentBuilder
Constructs a fluent builder for the CreateSolution operation.
- The fluent builder is configurable:
name(impl Into<String>)/set_name(Option<String>):
required: trueThe name for the solution.
perform_hpo(bool)/set_perform_hpo(Option<bool>):
required: falseWhether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is
false.When performing AutoML, this parameter is always
trueand you should not set it tofalse.perform_auto_ml(bool)/set_perform_auto_ml(Option<bool>):
required: falseWe don’t recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see Choosing a recipe.
Whether to perform automated machine learning (AutoML). The default is
false. For this case, you must specifyrecipeArn.When set to
true, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omitrecipeArn. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.perform_auto_training(bool)/set_perform_auto_training(Option<bool>):
required: falseWhether the solution uses automatic training to create new solution versions (trained models). The default is
Trueand the solution automatically creates new solution versions every 7 days. You can change the training frequency by specifying aschedulingExpressionin theAutoTrainingConfigas part of solution configuration. For more information about automatic training, see Configuring automatic training.Automatic solution version creation starts one hour after the solution is ACTIVE. If you manually create a solution version within the hour, the solution skips the first automatic training.
After training starts, you can get the solution version’s Amazon Resource Name (ARN) with the ListSolutionVersions API operation. To get its status, use the DescribeSolutionVersion.
recipe_arn(impl Into<String>)/set_recipe_arn(Option<String>):
required: falseThe Amazon Resource Name (ARN) of the recipe to use for model training. This is required when
performAutoMLis false. For information about different Amazon Personalize recipes and their ARNs, see Choosing a recipe.dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the dataset group that provides the training data.
event_type(impl Into<String>)/set_event_type(Option<String>):
required: falseWhen your have multiple event types (using an
EVENT_TYPEschema field), this parameter specifies which event type (for example, ‘click’ or ‘like’) is used for training the model.If you do not provide an
eventType, Amazon Personalize will use all interactions for training with equal weight regardless of type.solution_config(SolutionConfig)/set_solution_config(Option<SolutionConfig>):
required: falseThe configuration to use with the solution. When
performAutoMLis set to true, Amazon Personalize only evaluates theautoMLConfigsection of the solution configuration.Amazon Personalize doesn’t support configuring the
hpoObjectiveat this time.tags(Tag)/set_tags(Option<Vec::<Tag>>):
required: falseA list of tags to apply to the solution.
- On success, responds with
CreateSolutionOutputwith field(s):solution_arn(Option<String>):The ARN of the solution.
- On failure, responds with
SdkError<CreateSolutionError>
source§impl Client
impl Client
sourcepub fn create_solution_version(&self) -> CreateSolutionVersionFluentBuilder
pub fn create_solution_version(&self) -> CreateSolutionVersionFluentBuilder
Constructs a fluent builder for the CreateSolutionVersion operation.
- The fluent builder is configurable:
name(impl Into<String>)/set_name(Option<String>):
required: falseThe name of the solution version.
solution_arn(impl Into<String>)/set_solution_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the solution containing the training configuration information.
training_mode(TrainingMode)/set_training_mode(Option<TrainingMode>):
required: falseThe scope of training to be performed when creating the solution version. The default is
FULL. This creates a completely new model based on the entirety of the training data from the datasets in your dataset group.If you use User-Personalization, you can specify a training mode of
UPDATE. This updates the model to consider new items for recommendations. It is not a full retraining. You should still complete a full retraining weekly. If you specifyUPDATE, Amazon Personalize will stop automatic updates for the solution version. To resume updates, create a new solution with training mode set toFULLand deploy it in a campaign. For more information about automatic updates, see Automatic updates.The
UPDATEoption can only be used when you already have an active solution version created from the input solution using theFULLoption and the input solution was trained with the User-Personalization recipe or the legacy HRNN-Coldstart recipe.tags(Tag)/set_tags(Option<Vec::<Tag>>):
required: falseA list of tags to apply to the solution version.
- On success, responds with
CreateSolutionVersionOutputwith field(s):solution_version_arn(Option<String>):The ARN of the new solution version.
- On failure, responds with
SdkError<CreateSolutionVersionError>
source§impl Client
impl Client
sourcepub fn delete_campaign(&self) -> DeleteCampaignFluentBuilder
pub fn delete_campaign(&self) -> DeleteCampaignFluentBuilder
Constructs a fluent builder for the DeleteCampaign operation.
- The fluent builder is configurable:
campaign_arn(impl Into<String>)/set_campaign_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the campaign to delete.
- On success, responds with
DeleteCampaignOutput - On failure, responds with
SdkError<DeleteCampaignError>
source§impl Client
impl Client
sourcepub fn delete_dataset(&self) -> DeleteDatasetFluentBuilder
pub fn delete_dataset(&self) -> DeleteDatasetFluentBuilder
Constructs a fluent builder for the DeleteDataset operation.
- The fluent builder is configurable:
dataset_arn(impl Into<String>)/set_dataset_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the dataset to delete.
- On success, responds with
DeleteDatasetOutput - On failure, responds with
SdkError<DeleteDatasetError>
source§impl Client
impl Client
sourcepub fn delete_dataset_group(&self) -> DeleteDatasetGroupFluentBuilder
pub fn delete_dataset_group(&self) -> DeleteDatasetGroupFluentBuilder
Constructs a fluent builder for the DeleteDatasetGroup operation.
- The fluent builder is configurable:
dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):
required: trueThe ARN of the dataset group to delete.
- On success, responds with
DeleteDatasetGroupOutput - On failure, responds with
SdkError<DeleteDatasetGroupError>
source§impl Client
impl Client
sourcepub fn delete_event_tracker(&self) -> DeleteEventTrackerFluentBuilder
pub fn delete_event_tracker(&self) -> DeleteEventTrackerFluentBuilder
Constructs a fluent builder for the DeleteEventTracker operation.
- The fluent builder is configurable:
event_tracker_arn(impl Into<String>)/set_event_tracker_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the event tracker to delete.
- On success, responds with
DeleteEventTrackerOutput - On failure, responds with
SdkError<DeleteEventTrackerError>
source§impl Client
impl Client
sourcepub fn delete_filter(&self) -> DeleteFilterFluentBuilder
pub fn delete_filter(&self) -> DeleteFilterFluentBuilder
Constructs a fluent builder for the DeleteFilter operation.
- The fluent builder is configurable:
filter_arn(impl Into<String>)/set_filter_arn(Option<String>):
required: trueThe ARN of the filter to delete.
- On success, responds with
DeleteFilterOutput - On failure, responds with
SdkError<DeleteFilterError>
source§impl Client
impl Client
sourcepub fn delete_metric_attribution(&self) -> DeleteMetricAttributionFluentBuilder
pub fn delete_metric_attribution(&self) -> DeleteMetricAttributionFluentBuilder
Constructs a fluent builder for the DeleteMetricAttribution operation.
- The fluent builder is configurable:
metric_attribution_arn(impl Into<String>)/set_metric_attribution_arn(Option<String>):
required: trueThe metric attribution’s Amazon Resource Name (ARN).
- On success, responds with
DeleteMetricAttributionOutput - On failure, responds with
SdkError<DeleteMetricAttributionError>
source§impl Client
impl Client
sourcepub fn delete_recommender(&self) -> DeleteRecommenderFluentBuilder
pub fn delete_recommender(&self) -> DeleteRecommenderFluentBuilder
Constructs a fluent builder for the DeleteRecommender operation.
- The fluent builder is configurable:
recommender_arn(impl Into<String>)/set_recommender_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the recommender to delete.
- On success, responds with
DeleteRecommenderOutput - On failure, responds with
SdkError<DeleteRecommenderError>
source§impl Client
impl Client
sourcepub fn delete_schema(&self) -> DeleteSchemaFluentBuilder
pub fn delete_schema(&self) -> DeleteSchemaFluentBuilder
Constructs a fluent builder for the DeleteSchema operation.
- The fluent builder is configurable:
schema_arn(impl Into<String>)/set_schema_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the schema to delete.
- On success, responds with
DeleteSchemaOutput - On failure, responds with
SdkError<DeleteSchemaError>
source§impl Client
impl Client
sourcepub fn delete_solution(&self) -> DeleteSolutionFluentBuilder
pub fn delete_solution(&self) -> DeleteSolutionFluentBuilder
Constructs a fluent builder for the DeleteSolution operation.
- The fluent builder is configurable:
solution_arn(impl Into<String>)/set_solution_arn(Option<String>):
required: trueThe ARN of the solution to delete.
- On success, responds with
DeleteSolutionOutput - On failure, responds with
SdkError<DeleteSolutionError>
source§impl Client
impl Client
sourcepub fn describe_algorithm(&self) -> DescribeAlgorithmFluentBuilder
pub fn describe_algorithm(&self) -> DescribeAlgorithmFluentBuilder
Constructs a fluent builder for the DescribeAlgorithm operation.
- The fluent builder is configurable:
algorithm_arn(impl Into<String>)/set_algorithm_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the algorithm to describe.
- On success, responds with
DescribeAlgorithmOutputwith field(s):algorithm(Option<Algorithm>):A listing of the properties of the algorithm.
- On failure, responds with
SdkError<DescribeAlgorithmError>
source§impl Client
impl Client
sourcepub fn describe_batch_inference_job(
&self
) -> DescribeBatchInferenceJobFluentBuilder
pub fn describe_batch_inference_job( &self ) -> DescribeBatchInferenceJobFluentBuilder
Constructs a fluent builder for the DescribeBatchInferenceJob operation.
- The fluent builder is configurable:
batch_inference_job_arn(impl Into<String>)/set_batch_inference_job_arn(Option<String>):
required: trueThe ARN of the batch inference job to describe.
- On success, responds with
DescribeBatchInferenceJobOutputwith field(s):batch_inference_job(Option<BatchInferenceJob>):Information on the specified batch inference job.
- On failure, responds with
SdkError<DescribeBatchInferenceJobError>
source§impl Client
impl Client
sourcepub fn describe_batch_segment_job(&self) -> DescribeBatchSegmentJobFluentBuilder
pub fn describe_batch_segment_job(&self) -> DescribeBatchSegmentJobFluentBuilder
Constructs a fluent builder for the DescribeBatchSegmentJob operation.
- The fluent builder is configurable:
batch_segment_job_arn(impl Into<String>)/set_batch_segment_job_arn(Option<String>):
required: trueThe ARN of the batch segment job to describe.
- On success, responds with
DescribeBatchSegmentJobOutputwith field(s):batch_segment_job(Option<BatchSegmentJob>):Information on the specified batch segment job.
- On failure, responds with
SdkError<DescribeBatchSegmentJobError>
source§impl Client
impl Client
sourcepub fn describe_campaign(&self) -> DescribeCampaignFluentBuilder
pub fn describe_campaign(&self) -> DescribeCampaignFluentBuilder
Constructs a fluent builder for the DescribeCampaign operation.
- The fluent builder is configurable:
campaign_arn(impl Into<String>)/set_campaign_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the campaign.
- On success, responds with
DescribeCampaignOutputwith field(s):campaign(Option<Campaign>):The properties of the campaign.
- On failure, responds with
SdkError<DescribeCampaignError>
source§impl Client
impl Client
sourcepub fn describe_data_deletion_job(&self) -> DescribeDataDeletionJobFluentBuilder
pub fn describe_data_deletion_job(&self) -> DescribeDataDeletionJobFluentBuilder
Constructs a fluent builder for the DescribeDataDeletionJob operation.
- The fluent builder is configurable:
data_deletion_job_arn(impl Into<String>)/set_data_deletion_job_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the data deletion job.
- On success, responds with
DescribeDataDeletionJobOutputwith field(s):data_deletion_job(Option<DataDeletionJob>):Information about the data deletion job, including the status.
The status is one of the following values:
-
PENDING
-
IN_PROGRESS
-
COMPLETED
-
FAILED
-
- On failure, responds with
SdkError<DescribeDataDeletionJobError>
source§impl Client
impl Client
sourcepub fn describe_dataset(&self) -> DescribeDatasetFluentBuilder
pub fn describe_dataset(&self) -> DescribeDatasetFluentBuilder
Constructs a fluent builder for the DescribeDataset operation.
- The fluent builder is configurable:
dataset_arn(impl Into<String>)/set_dataset_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the dataset to describe.
- On success, responds with
DescribeDatasetOutputwith field(s):dataset(Option<Dataset>):A listing of the dataset’s properties.
- On failure, responds with
SdkError<DescribeDatasetError>
source§impl Client
impl Client
sourcepub fn describe_dataset_export_job(
&self
) -> DescribeDatasetExportJobFluentBuilder
pub fn describe_dataset_export_job( &self ) -> DescribeDatasetExportJobFluentBuilder
Constructs a fluent builder for the DescribeDatasetExportJob operation.
- The fluent builder is configurable:
dataset_export_job_arn(impl Into<String>)/set_dataset_export_job_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the dataset export job to describe.
- On success, responds with
DescribeDatasetExportJobOutputwith field(s):dataset_export_job(Option<DatasetExportJob>):Information about the dataset export job, including the status.
The status is one of the following values:
-
CREATE PENDING
-
CREATE IN_PROGRESS
-
ACTIVE
-
CREATE FAILED
-
- On failure, responds with
SdkError<DescribeDatasetExportJobError>
source§impl Client
impl Client
sourcepub fn describe_dataset_group(&self) -> DescribeDatasetGroupFluentBuilder
pub fn describe_dataset_group(&self) -> DescribeDatasetGroupFluentBuilder
Constructs a fluent builder for the DescribeDatasetGroup operation.
- The fluent builder is configurable:
dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the dataset group to describe.
- On success, responds with
DescribeDatasetGroupOutputwith field(s):dataset_group(Option<DatasetGroup>):A listing of the dataset group’s properties.
- On failure, responds with
SdkError<DescribeDatasetGroupError>
source§impl Client
impl Client
sourcepub fn describe_dataset_import_job(
&self
) -> DescribeDatasetImportJobFluentBuilder
pub fn describe_dataset_import_job( &self ) -> DescribeDatasetImportJobFluentBuilder
Constructs a fluent builder for the DescribeDatasetImportJob operation.
- The fluent builder is configurable:
dataset_import_job_arn(impl Into<String>)/set_dataset_import_job_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the dataset import job to describe.
- On success, responds with
DescribeDatasetImportJobOutputwith field(s):dataset_import_job(Option<DatasetImportJob>):Information about the dataset import job, including the status.
The status is one of the following values:
-
CREATE PENDING
-
CREATE IN_PROGRESS
-
ACTIVE
-
CREATE FAILED
-
- On failure, responds with
SdkError<DescribeDatasetImportJobError>
source§impl Client
impl Client
sourcepub fn describe_event_tracker(&self) -> DescribeEventTrackerFluentBuilder
pub fn describe_event_tracker(&self) -> DescribeEventTrackerFluentBuilder
Constructs a fluent builder for the DescribeEventTracker operation.
- The fluent builder is configurable:
event_tracker_arn(impl Into<String>)/set_event_tracker_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the event tracker to describe.
- On success, responds with
DescribeEventTrackerOutputwith field(s):event_tracker(Option<EventTracker>):An object that describes the event tracker.
- On failure, responds with
SdkError<DescribeEventTrackerError>
source§impl Client
impl Client
sourcepub fn describe_feature_transformation(
&self
) -> DescribeFeatureTransformationFluentBuilder
pub fn describe_feature_transformation( &self ) -> DescribeFeatureTransformationFluentBuilder
Constructs a fluent builder for the DescribeFeatureTransformation operation.
- The fluent builder is configurable:
feature_transformation_arn(impl Into<String>)/set_feature_transformation_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the feature transformation to describe.
- On success, responds with
DescribeFeatureTransformationOutputwith field(s):feature_transformation(Option<FeatureTransformation>):A listing of the FeatureTransformation properties.
- On failure, responds with
SdkError<DescribeFeatureTransformationError>
source§impl Client
impl Client
sourcepub fn describe_filter(&self) -> DescribeFilterFluentBuilder
pub fn describe_filter(&self) -> DescribeFilterFluentBuilder
Constructs a fluent builder for the DescribeFilter operation.
- The fluent builder is configurable:
filter_arn(impl Into<String>)/set_filter_arn(Option<String>):
required: trueThe ARN of the filter to describe.
- On success, responds with
DescribeFilterOutputwith field(s):filter(Option<Filter>):The filter’s details.
- On failure, responds with
SdkError<DescribeFilterError>
source§impl Client
impl Client
sourcepub fn describe_metric_attribution(
&self
) -> DescribeMetricAttributionFluentBuilder
pub fn describe_metric_attribution( &self ) -> DescribeMetricAttributionFluentBuilder
Constructs a fluent builder for the DescribeMetricAttribution operation.
- The fluent builder is configurable:
metric_attribution_arn(impl Into<String>)/set_metric_attribution_arn(Option<String>):
required: trueThe metric attribution’s Amazon Resource Name (ARN).
- On success, responds with
DescribeMetricAttributionOutputwith field(s):metric_attribution(Option<MetricAttribution>):The details of the metric attribution.
- On failure, responds with
SdkError<DescribeMetricAttributionError>
source§impl Client
impl Client
sourcepub fn describe_recipe(&self) -> DescribeRecipeFluentBuilder
pub fn describe_recipe(&self) -> DescribeRecipeFluentBuilder
Constructs a fluent builder for the DescribeRecipe operation.
- The fluent builder is configurable:
recipe_arn(impl Into<String>)/set_recipe_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the recipe to describe.
- On success, responds with
DescribeRecipeOutputwith field(s):recipe(Option<Recipe>):An object that describes the recipe.
- On failure, responds with
SdkError<DescribeRecipeError>
source§impl Client
impl Client
sourcepub fn describe_recommender(&self) -> DescribeRecommenderFluentBuilder
pub fn describe_recommender(&self) -> DescribeRecommenderFluentBuilder
Constructs a fluent builder for the DescribeRecommender operation.
- The fluent builder is configurable:
recommender_arn(impl Into<String>)/set_recommender_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the recommender to describe.
- On success, responds with
DescribeRecommenderOutputwith field(s):recommender(Option<Recommender>):The properties of the recommender.
- On failure, responds with
SdkError<DescribeRecommenderError>
source§impl Client
impl Client
sourcepub fn describe_schema(&self) -> DescribeSchemaFluentBuilder
pub fn describe_schema(&self) -> DescribeSchemaFluentBuilder
Constructs a fluent builder for the DescribeSchema operation.
- The fluent builder is configurable:
schema_arn(impl Into<String>)/set_schema_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the schema to retrieve.
- On success, responds with
DescribeSchemaOutputwith field(s):schema(Option<DatasetSchema>):The requested schema.
- On failure, responds with
SdkError<DescribeSchemaError>
source§impl Client
impl Client
sourcepub fn describe_solution(&self) -> DescribeSolutionFluentBuilder
pub fn describe_solution(&self) -> DescribeSolutionFluentBuilder
Constructs a fluent builder for the DescribeSolution operation.
- The fluent builder is configurable:
solution_arn(impl Into<String>)/set_solution_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the solution to describe.
- On success, responds with
DescribeSolutionOutputwith field(s):solution(Option<Solution>):An object that describes the solution.
- On failure, responds with
SdkError<DescribeSolutionError>
source§impl Client
impl Client
sourcepub fn describe_solution_version(&self) -> DescribeSolutionVersionFluentBuilder
pub fn describe_solution_version(&self) -> DescribeSolutionVersionFluentBuilder
Constructs a fluent builder for the DescribeSolutionVersion operation.
- The fluent builder is configurable:
solution_version_arn(impl Into<String>)/set_solution_version_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the solution version.
- On success, responds with
DescribeSolutionVersionOutputwith field(s):solution_version(Option<SolutionVersion>):The solution version.
- On failure, responds with
SdkError<DescribeSolutionVersionError>
source§impl Client
impl Client
sourcepub fn get_solution_metrics(&self) -> GetSolutionMetricsFluentBuilder
pub fn get_solution_metrics(&self) -> GetSolutionMetricsFluentBuilder
Constructs a fluent builder for the GetSolutionMetrics operation.
- The fluent builder is configurable:
solution_version_arn(impl Into<String>)/set_solution_version_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the solution version for which to get metrics.
- On success, responds with
GetSolutionMetricsOutputwith field(s):solution_version_arn(Option<String>):The same solution version ARN as specified in the request.
metrics(Option<HashMap::<String, f64>>):The metrics for the solution version. For more information, see Evaluating a solution version with metrics .
- On failure, responds with
SdkError<GetSolutionMetricsError>
source§impl Client
impl Client
sourcepub fn list_batch_inference_jobs(&self) -> ListBatchInferenceJobsFluentBuilder
pub fn list_batch_inference_jobs(&self) -> ListBatchInferenceJobsFluentBuilder
Constructs a fluent builder for the ListBatchInferenceJobs operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
solution_version_arn(impl Into<String>)/set_solution_version_arn(Option<String>):
required: falseThe Amazon Resource Name (ARN) of the solution version from which the batch inference jobs were created.
next_token(impl Into<String>)/set_next_token(Option<String>):
required: falseThe token to request the next page of results.
max_results(i32)/set_max_results(Option<i32>):
required: falseThe maximum number of batch inference job results to return in each page. The default value is 100.
- On success, responds with
ListBatchInferenceJobsOutputwith field(s):batch_inference_jobs(Option<Vec::<BatchInferenceJobSummary>>):A list containing information on each job that is returned.
next_token(Option<String>):The token to use to retrieve the next page of results. The value is
nullwhen there are no more results to return.
- On failure, responds with
SdkError<ListBatchInferenceJobsError>
source§impl Client
impl Client
sourcepub fn list_batch_segment_jobs(&self) -> ListBatchSegmentJobsFluentBuilder
pub fn list_batch_segment_jobs(&self) -> ListBatchSegmentJobsFluentBuilder
Constructs a fluent builder for the ListBatchSegmentJobs operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
solution_version_arn(impl Into<String>)/set_solution_version_arn(Option<String>):
required: falseThe Amazon Resource Name (ARN) of the solution version that the batch segment jobs used to generate batch segments.
next_token(impl Into<String>)/set_next_token(Option<String>):
required: falseThe token to request the next page of results.
max_results(i32)/set_max_results(Option<i32>):
required: falseThe maximum number of batch segment job results to return in each page. The default value is 100.
- On success, responds with
ListBatchSegmentJobsOutputwith field(s):batch_segment_jobs(Option<Vec::<BatchSegmentJobSummary>>):A list containing information on each job that is returned.
next_token(Option<String>):The token to use to retrieve the next page of results. The value is
nullwhen there are no more results to return.
- On failure, responds with
SdkError<ListBatchSegmentJobsError>
source§impl Client
impl Client
sourcepub fn list_campaigns(&self) -> ListCampaignsFluentBuilder
pub fn list_campaigns(&self) -> ListCampaignsFluentBuilder
Constructs a fluent builder for the ListCampaigns operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
solution_arn(impl Into<String>)/set_solution_arn(Option<String>):
required: falseThe Amazon Resource Name (ARN) of the solution to list the campaigns for. When a solution is not specified, all the campaigns associated with the account are listed.
next_token(impl Into<String>)/set_next_token(Option<String>):
required: falseA token returned from the previous call to ListCampaigns for getting the next set of campaigns (if they exist).
max_results(i32)/set_max_results(Option<i32>):
required: falseThe maximum number of campaigns to return.
- On success, responds with
ListCampaignsOutputwith field(s):campaigns(Option<Vec::<CampaignSummary>>):A list of the campaigns.
next_token(Option<String>):A token for getting the next set of campaigns (if they exist).
- On failure, responds with
SdkError<ListCampaignsError>
source§impl Client
impl Client
sourcepub fn list_data_deletion_jobs(&self) -> ListDataDeletionJobsFluentBuilder
pub fn list_data_deletion_jobs(&self) -> ListDataDeletionJobsFluentBuilder
Constructs a fluent builder for the ListDataDeletionJobs operation.
- The fluent builder is configurable:
dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):
required: falseThe Amazon Resource Name (ARN) of the dataset group to list data deletion jobs for.
next_token(impl Into<String>)/set_next_token(Option<String>):
required: falseA token returned from the previous call to
ListDataDeletionJobsfor getting the next set of jobs (if they exist).max_results(i32)/set_max_results(Option<i32>):
required: falseThe maximum number of data deletion jobs to return.
- On success, responds with
ListDataDeletionJobsOutputwith field(s):data_deletion_jobs(Option<Vec::<DataDeletionJobSummary>>):The list of data deletion jobs.
next_token(Option<String>):A token for getting the next set of data deletion jobs (if they exist).
- On failure, responds with
SdkError<ListDataDeletionJobsError>
source§impl Client
impl Client
sourcepub fn list_dataset_export_jobs(&self) -> ListDatasetExportJobsFluentBuilder
pub fn list_dataset_export_jobs(&self) -> ListDatasetExportJobsFluentBuilder
Constructs a fluent builder for the ListDatasetExportJobs operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
dataset_arn(impl Into<String>)/set_dataset_arn(Option<String>):
required: falseThe Amazon Resource Name (ARN) of the dataset to list the dataset export jobs for.
next_token(impl Into<String>)/set_next_token(Option<String>):
required: falseA token returned from the previous call to
ListDatasetExportJobsfor getting the next set of dataset export jobs (if they exist).max_results(i32)/set_max_results(Option<i32>):
required: falseThe maximum number of dataset export jobs to return.
- On success, responds with
ListDatasetExportJobsOutputwith field(s):dataset_export_jobs(Option<Vec::<DatasetExportJobSummary>>):The list of dataset export jobs.
next_token(Option<String>):A token for getting the next set of dataset export jobs (if they exist).
- On failure, responds with
SdkError<ListDatasetExportJobsError>
source§impl Client
impl Client
sourcepub fn list_dataset_groups(&self) -> ListDatasetGroupsFluentBuilder
pub fn list_dataset_groups(&self) -> ListDatasetGroupsFluentBuilder
Constructs a fluent builder for the ListDatasetGroups operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
next_token(impl Into<String>)/set_next_token(Option<String>):
required: falseA token returned from the previous call to
ListDatasetGroupsfor getting the next set of dataset groups (if they exist).max_results(i32)/set_max_results(Option<i32>):
required: falseThe maximum number of dataset groups to return.
- On success, responds with
ListDatasetGroupsOutputwith field(s):dataset_groups(Option<Vec::<DatasetGroupSummary>>):The list of your dataset groups.
next_token(Option<String>):A token for getting the next set of dataset groups (if they exist).
- On failure, responds with
SdkError<ListDatasetGroupsError>
source§impl Client
impl Client
sourcepub fn list_dataset_import_jobs(&self) -> ListDatasetImportJobsFluentBuilder
pub fn list_dataset_import_jobs(&self) -> ListDatasetImportJobsFluentBuilder
Constructs a fluent builder for the ListDatasetImportJobs operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
dataset_arn(impl Into<String>)/set_dataset_arn(Option<String>):
required: falseThe Amazon Resource Name (ARN) of the dataset to list the dataset import jobs for.
next_token(impl Into<String>)/set_next_token(Option<String>):
required: falseA token returned from the previous call to
ListDatasetImportJobsfor getting the next set of dataset import jobs (if they exist).max_results(i32)/set_max_results(Option<i32>):
required: falseThe maximum number of dataset import jobs to return.
- On success, responds with
ListDatasetImportJobsOutputwith field(s):dataset_import_jobs(Option<Vec::<DatasetImportJobSummary>>):The list of dataset import jobs.
next_token(Option<String>):A token for getting the next set of dataset import jobs (if they exist).
- On failure, responds with
SdkError<ListDatasetImportJobsError>
source§impl Client
impl Client
sourcepub fn list_datasets(&self) -> ListDatasetsFluentBuilder
pub fn list_datasets(&self) -> ListDatasetsFluentBuilder
Constructs a fluent builder for the ListDatasets operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):
required: falseThe Amazon Resource Name (ARN) of the dataset group that contains the datasets to list.
next_token(impl Into<String>)/set_next_token(Option<String>):
required: falseA token returned from the previous call to
ListDatasetsfor getting the next set of dataset import jobs (if they exist).max_results(i32)/set_max_results(Option<i32>):
required: falseThe maximum number of datasets to return.
- On success, responds with
ListDatasetsOutputwith field(s):datasets(Option<Vec::<DatasetSummary>>):An array of
Datasetobjects. Each object provides metadata information.next_token(Option<String>):A token for getting the next set of datasets (if they exist).
- On failure, responds with
SdkError<ListDatasetsError>
source§impl Client
impl Client
sourcepub fn list_event_trackers(&self) -> ListEventTrackersFluentBuilder
pub fn list_event_trackers(&self) -> ListEventTrackersFluentBuilder
Constructs a fluent builder for the ListEventTrackers operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):
required: falseThe ARN of a dataset group used to filter the response.
next_token(impl Into<String>)/set_next_token(Option<String>):
required: falseA token returned from the previous call to
ListEventTrackersfor getting the next set of event trackers (if they exist).max_results(i32)/set_max_results(Option<i32>):
required: falseThe maximum number of event trackers to return.
- On success, responds with
ListEventTrackersOutputwith field(s):event_trackers(Option<Vec::<EventTrackerSummary>>):A list of event trackers.
next_token(Option<String>):A token for getting the next set of event trackers (if they exist).
- On failure, responds with
SdkError<ListEventTrackersError>
source§impl Client
impl Client
sourcepub fn list_filters(&self) -> ListFiltersFluentBuilder
pub fn list_filters(&self) -> ListFiltersFluentBuilder
Constructs a fluent builder for the ListFilters operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):
required: falseThe ARN of the dataset group that contains the filters.
next_token(impl Into<String>)/set_next_token(Option<String>):
required: falseA token returned from the previous call to
ListFiltersfor getting the next set of filters (if they exist).max_results(i32)/set_max_results(Option<i32>):
required: falseThe maximum number of filters to return.
- On success, responds with
ListFiltersOutputwith field(s):filters(Option<Vec::<FilterSummary>>):A list of returned filters.
next_token(Option<String>):A token for getting the next set of filters (if they exist).
- On failure, responds with
SdkError<ListFiltersError>
source§impl Client
impl Client
sourcepub fn list_metric_attribution_metrics(
&self
) -> ListMetricAttributionMetricsFluentBuilder
pub fn list_metric_attribution_metrics( &self ) -> ListMetricAttributionMetricsFluentBuilder
Constructs a fluent builder for the ListMetricAttributionMetrics operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
metric_attribution_arn(impl Into<String>)/set_metric_attribution_arn(Option<String>):
required: falseThe Amazon Resource Name (ARN) of the metric attribution to retrieve attributes for.
next_token(impl Into<String>)/set_next_token(Option<String>):
required: falseSpecify the pagination token from a previous request to retrieve the next page of results.
max_results(i32)/set_max_results(Option<i32>):
required: falseThe maximum number of metrics to return in one page of results.
- On success, responds with
ListMetricAttributionMetricsOutputwith field(s):metrics(Option<Vec::<MetricAttribute>>):The metrics for the specified metric attribution.
next_token(Option<String>):Specify the pagination token from a previous
ListMetricAttributionMetricsResponserequest to retrieve the next page of results.
- On failure, responds with
SdkError<ListMetricAttributionMetricsError>
source§impl Client
impl Client
sourcepub fn list_metric_attributions(&self) -> ListMetricAttributionsFluentBuilder
pub fn list_metric_attributions(&self) -> ListMetricAttributionsFluentBuilder
Constructs a fluent builder for the ListMetricAttributions operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):
required: falseThe metric attributions’ dataset group Amazon Resource Name (ARN).
next_token(impl Into<String>)/set_next_token(Option<String>):
required: falseSpecify the pagination token from a previous request to retrieve the next page of results.
max_results(i32)/set_max_results(Option<i32>):
required: falseThe maximum number of metric attributions to return in one page of results.
- On success, responds with
ListMetricAttributionsOutputwith field(s):metric_attributions(Option<Vec::<MetricAttributionSummary>>):The list of metric attributions.
next_token(Option<String>):Specify the pagination token from a previous request to retrieve the next page of results.
- On failure, responds with
SdkError<ListMetricAttributionsError>
source§impl Client
impl Client
sourcepub fn list_recipes(&self) -> ListRecipesFluentBuilder
pub fn list_recipes(&self) -> ListRecipesFluentBuilder
Constructs a fluent builder for the ListRecipes operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
recipe_provider(RecipeProvider)/set_recipe_provider(Option<RecipeProvider>):
required: falseThe default is
SERVICE.next_token(impl Into<String>)/set_next_token(Option<String>):
required: falseA token returned from the previous call to
ListRecipesfor getting the next set of recipes (if they exist).max_results(i32)/set_max_results(Option<i32>):
required: falseThe maximum number of recipes to return.
domain(Domain)/set_domain(Option<Domain>):
required: falseFilters returned recipes by domain for a Domain dataset group. Only recipes (Domain dataset group use cases) for this domain are included in the response. If you don’t specify a domain, all recipes are returned.
- On success, responds with
ListRecipesOutputwith field(s):recipes(Option<Vec::<RecipeSummary>>):The list of available recipes.
next_token(Option<String>):A token for getting the next set of recipes.
- On failure, responds with
SdkError<ListRecipesError>
source§impl Client
impl Client
sourcepub fn list_recommenders(&self) -> ListRecommendersFluentBuilder
pub fn list_recommenders(&self) -> ListRecommendersFluentBuilder
Constructs a fluent builder for the ListRecommenders operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):
required: falseThe Amazon Resource Name (ARN) of the Domain dataset group to list the recommenders for. When a Domain dataset group is not specified, all the recommenders associated with the account are listed.
next_token(impl Into<String>)/set_next_token(Option<String>):
required: falseA token returned from the previous call to
ListRecommendersfor getting the next set of recommenders (if they exist).max_results(i32)/set_max_results(Option<i32>):
required: falseThe maximum number of recommenders to return.
- On success, responds with
ListRecommendersOutputwith field(s):recommenders(Option<Vec::<RecommenderSummary>>):A list of the recommenders.
next_token(Option<String>):A token for getting the next set of recommenders (if they exist).
- On failure, responds with
SdkError<ListRecommendersError>
source§impl Client
impl Client
sourcepub fn list_schemas(&self) -> ListSchemasFluentBuilder
pub fn list_schemas(&self) -> ListSchemasFluentBuilder
Constructs a fluent builder for the ListSchemas operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
next_token(impl Into<String>)/set_next_token(Option<String>):
required: falseA token returned from the previous call to
ListSchemasfor getting the next set of schemas (if they exist).max_results(i32)/set_max_results(Option<i32>):
required: falseThe maximum number of schemas to return.
- On success, responds with
ListSchemasOutputwith field(s):schemas(Option<Vec::<DatasetSchemaSummary>>):A list of schemas.
next_token(Option<String>):A token used to get the next set of schemas (if they exist).
- On failure, responds with
SdkError<ListSchemasError>
source§impl Client
impl Client
sourcepub fn list_solution_versions(&self) -> ListSolutionVersionsFluentBuilder
pub fn list_solution_versions(&self) -> ListSolutionVersionsFluentBuilder
Constructs a fluent builder for the ListSolutionVersions operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
solution_arn(impl Into<String>)/set_solution_arn(Option<String>):
required: falseThe Amazon Resource Name (ARN) of the solution.
next_token(impl Into<String>)/set_next_token(Option<String>):
required: falseA token returned from the previous call to
ListSolutionVersionsfor getting the next set of solution versions (if they exist).max_results(i32)/set_max_results(Option<i32>):
required: falseThe maximum number of solution versions to return.
- On success, responds with
ListSolutionVersionsOutputwith field(s):solution_versions(Option<Vec::<SolutionVersionSummary>>):A list of solution versions describing the version properties.
next_token(Option<String>):A token for getting the next set of solution versions (if they exist).
- On failure, responds with
SdkError<ListSolutionVersionsError>
source§impl Client
impl Client
sourcepub fn list_solutions(&self) -> ListSolutionsFluentBuilder
pub fn list_solutions(&self) -> ListSolutionsFluentBuilder
Constructs a fluent builder for the ListSolutions operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):
required: falseThe Amazon Resource Name (ARN) of the dataset group.
next_token(impl Into<String>)/set_next_token(Option<String>):
required: falseA token returned from the previous call to
ListSolutionsfor getting the next set of solutions (if they exist).max_results(i32)/set_max_results(Option<i32>):
required: falseThe maximum number of solutions to return.
- On success, responds with
ListSolutionsOutputwith field(s):solutions(Option<Vec::<SolutionSummary>>):A list of the current solutions.
next_token(Option<String>):A token for getting the next set of solutions (if they exist).
- On failure, responds with
SdkError<ListSolutionsError>
source§impl Client
impl Client
Constructs a fluent builder for the ListTagsForResource operation.
- The fluent builder is configurable:
resource_arn(impl Into<String>)/set_resource_arn(Option<String>):
required: trueThe resource’s Amazon Resource Name (ARN).
- On success, responds with
ListTagsForResourceOutputwith field(s):tags(Option<Vec::<Tag>>):The resource’s tags.
- On failure, responds with
SdkError<ListTagsForResourceError>
source§impl Client
impl Client
sourcepub fn start_recommender(&self) -> StartRecommenderFluentBuilder
pub fn start_recommender(&self) -> StartRecommenderFluentBuilder
Constructs a fluent builder for the StartRecommender operation.
- The fluent builder is configurable:
recommender_arn(impl Into<String>)/set_recommender_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the recommender to start.
- On success, responds with
StartRecommenderOutputwith field(s):recommender_arn(Option<String>):The Amazon Resource Name (ARN) of the recommender you started.
- On failure, responds with
SdkError<StartRecommenderError>
source§impl Client
impl Client
sourcepub fn stop_recommender(&self) -> StopRecommenderFluentBuilder
pub fn stop_recommender(&self) -> StopRecommenderFluentBuilder
Constructs a fluent builder for the StopRecommender operation.
- The fluent builder is configurable:
recommender_arn(impl Into<String>)/set_recommender_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the recommender to stop.
- On success, responds with
StopRecommenderOutputwith field(s):recommender_arn(Option<String>):The Amazon Resource Name (ARN) of the recommender you stopped.
- On failure, responds with
SdkError<StopRecommenderError>
source§impl Client
impl Client
sourcepub fn stop_solution_version_creation(
&self
) -> StopSolutionVersionCreationFluentBuilder
pub fn stop_solution_version_creation( &self ) -> StopSolutionVersionCreationFluentBuilder
Constructs a fluent builder for the StopSolutionVersionCreation operation.
- The fluent builder is configurable:
solution_version_arn(impl Into<String>)/set_solution_version_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the solution version you want to stop creating.
- On success, responds with
StopSolutionVersionCreationOutput - On failure, responds with
SdkError<StopSolutionVersionCreationError>
source§impl Client
impl Client
sourcepub fn tag_resource(&self) -> TagResourceFluentBuilder
pub fn tag_resource(&self) -> TagResourceFluentBuilder
Constructs a fluent builder for the TagResource operation.
- The fluent builder is configurable:
resource_arn(impl Into<String>)/set_resource_arn(Option<String>):
required: trueThe resource’s Amazon Resource Name (ARN).
tags(Tag)/set_tags(Option<Vec::<Tag>>):
required: trueTags to apply to the resource. For more information see Tagging Amazon Personalize resources.
- On success, responds with
TagResourceOutput - On failure, responds with
SdkError<TagResourceError>
source§impl Client
impl Client
sourcepub fn untag_resource(&self) -> UntagResourceFluentBuilder
pub fn untag_resource(&self) -> UntagResourceFluentBuilder
Constructs a fluent builder for the UntagResource operation.
- The fluent builder is configurable:
resource_arn(impl Into<String>)/set_resource_arn(Option<String>):
required: trueThe resource’s Amazon Resource Name (ARN).
tag_keys(impl Into<String>)/set_tag_keys(Option<Vec::<String>>):
required: trueThe keys of the tags to be removed.
- On success, responds with
UntagResourceOutput - On failure, responds with
SdkError<UntagResourceError>
source§impl Client
impl Client
sourcepub fn update_campaign(&self) -> UpdateCampaignFluentBuilder
pub fn update_campaign(&self) -> UpdateCampaignFluentBuilder
Constructs a fluent builder for the UpdateCampaign operation.
- The fluent builder is configurable:
campaign_arn(impl Into<String>)/set_campaign_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the campaign.
solution_version_arn(impl Into<String>)/set_solution_version_arn(Option<String>):
required: falseThe Amazon Resource Name (ARN) of a new model to deploy. To specify the latest solution version of your solution, specify the ARN of your solution in
SolutionArn/$LATESTformat. You must use this format if you setsyncWithLatestSolutionVersiontoTruein the CampaignConfig.To deploy a model that isn’t the latest solution version of your solution, specify the ARN of the solution version.
For more information about automatic campaign updates, see Enabling automatic campaign updates.
min_provisioned_tps(i32)/set_min_provisioned_tps(Option<i32>):
required: falseSpecifies the requested minimum provisioned transactions (recommendations) per second that Amazon Personalize will support. A high
minProvisionedTPSwill increase your bill. We recommend starting with 1 forminProvisionedTPS(the default). Track your usage using Amazon CloudWatch metrics, and increase theminProvisionedTPSas necessary.campaign_config(CampaignConfig)/set_campaign_config(Option<CampaignConfig>):
required: falseThe configuration details of a campaign.
- On success, responds with
UpdateCampaignOutputwith field(s):campaign_arn(Option<String>):The same campaign ARN as given in the request.
- On failure, responds with
SdkError<UpdateCampaignError>
source§impl Client
impl Client
sourcepub fn update_dataset(&self) -> UpdateDatasetFluentBuilder
pub fn update_dataset(&self) -> UpdateDatasetFluentBuilder
Constructs a fluent builder for the UpdateDataset operation.
- The fluent builder is configurable:
dataset_arn(impl Into<String>)/set_dataset_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the dataset that you want to update.
schema_arn(impl Into<String>)/set_schema_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the new schema you want use.
- On success, responds with
UpdateDatasetOutputwith field(s):dataset_arn(Option<String>):The Amazon Resource Name (ARN) of the dataset you updated.
- On failure, responds with
SdkError<UpdateDatasetError>
source§impl Client
impl Client
sourcepub fn update_metric_attribution(&self) -> UpdateMetricAttributionFluentBuilder
pub fn update_metric_attribution(&self) -> UpdateMetricAttributionFluentBuilder
Constructs a fluent builder for the UpdateMetricAttribution operation.
- The fluent builder is configurable:
add_metrics(MetricAttribute)/set_add_metrics(Option<Vec::<MetricAttribute>>):
required: falseAdd new metric attributes to the metric attribution.
remove_metrics(impl Into<String>)/set_remove_metrics(Option<Vec::<String>>):
required: falseRemove metric attributes from the metric attribution.
metrics_output_config(MetricAttributionOutput)/set_metrics_output_config(Option<MetricAttributionOutput>):
required: falseAn output config for the metric attribution.
metric_attribution_arn(impl Into<String>)/set_metric_attribution_arn(Option<String>):
required: falseThe Amazon Resource Name (ARN) for the metric attribution to update.
- On success, responds with
UpdateMetricAttributionOutputwith field(s):metric_attribution_arn(Option<String>):The Amazon Resource Name (ARN) for the metric attribution that you updated.
- On failure, responds with
SdkError<UpdateMetricAttributionError>
source§impl Client
impl Client
sourcepub fn update_recommender(&self) -> UpdateRecommenderFluentBuilder
pub fn update_recommender(&self) -> UpdateRecommenderFluentBuilder
Constructs a fluent builder for the UpdateRecommender operation.
- The fluent builder is configurable:
recommender_arn(impl Into<String>)/set_recommender_arn(Option<String>):
required: trueThe Amazon Resource Name (ARN) of the recommender to modify.
recommender_config(RecommenderConfig)/set_recommender_config(Option<RecommenderConfig>):
required: trueThe configuration details of the recommender.
- On success, responds with
UpdateRecommenderOutputwith field(s):recommender_arn(Option<String>):The same recommender Amazon Resource Name (ARN) as given in the request.
- On failure, responds with
SdkError<UpdateRecommenderError>
source§impl Client
impl Client
sourcepub fn from_conf(conf: Config) -> Self
pub fn from_conf(conf: Config) -> Self
Creates a new client from the service Config.
§Panics
This method will panic in the following cases:
- Retries or timeouts are enabled without a
sleep_implconfigured. - Identity caching is enabled without a
sleep_implandtime_sourceconfigured. - No
behavior_versionis provided.
The panic message for each of these will have instructions on how to resolve them.
source§impl Client
impl Client
sourcepub fn new(sdk_config: &SdkConfig) -> Self
pub fn new(sdk_config: &SdkConfig) -> Self
Creates a new client from an SDK Config.
§Panics
- This method will panic if the
sdk_configis missing an async sleep implementation. If you experience this panic, set thesleep_implon the Config passed into this function to fix it. - This method will panic if the
sdk_configis missing an HTTP connector. If you experience this panic, set thehttp_connectoron the Config passed into this function to fix it. - This method will panic if no
BehaviorVersionis provided. If you experience this panic, setbehavior_versionon the Config or enable thebehavior-version-latestCargo feature.
Trait Implementations§
Auto Trait Implementations§
impl Freeze for Client
impl !RefUnwindSafe for Client
impl Send for Client
impl Sync for Client
impl Unpin for Client
impl !UnwindSafe for Client
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> Instrument for T
impl<T> Instrument for T
source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more