Struct aws_sdk_personalize::types::SolutionConfig
source · #[non_exhaustive]pub struct SolutionConfig {
pub event_value_threshold: Option<String>,
pub hpo_config: Option<HpoConfig>,
pub algorithm_hyper_parameters: Option<HashMap<String, String>>,
pub feature_transformation_parameters: Option<HashMap<String, String>>,
pub auto_ml_config: Option<AutoMlConfig>,
pub optimization_objective: Option<OptimizationObjective>,
pub training_data_config: Option<TrainingDataConfig>,
}
Expand description
Describes the configuration properties for the solution.
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.event_value_threshold: Option<String>
Only events with a value greater than or equal to this threshold are used for training a model.
hpo_config: Option<HpoConfig>
Describes the properties for hyperparameter optimization (HPO).
algorithm_hyper_parameters: Option<HashMap<String, String>>
Lists the hyperparameter names and ranges.
feature_transformation_parameters: Option<HashMap<String, String>>
Lists the feature transformation parameters.
auto_ml_config: Option<AutoMlConfig>
The AutoMLConfig object containing a list of recipes to search when AutoML is performed.
optimization_objective: Option<OptimizationObjective>
Describes the additional objective for the solution, such as maximizing streaming minutes or increasing revenue. For more information see Optimizing a solution.
training_data_config: Option<TrainingDataConfig>
Specifies the training data configuration to use when creating a custom solution version (trained model).
Implementations§
source§impl SolutionConfig
impl SolutionConfig
sourcepub fn event_value_threshold(&self) -> Option<&str>
pub fn event_value_threshold(&self) -> Option<&str>
Only events with a value greater than or equal to this threshold are used for training a model.
sourcepub fn hpo_config(&self) -> Option<&HpoConfig>
pub fn hpo_config(&self) -> Option<&HpoConfig>
Describes the properties for hyperparameter optimization (HPO).
sourcepub fn algorithm_hyper_parameters(&self) -> Option<&HashMap<String, String>>
pub fn algorithm_hyper_parameters(&self) -> Option<&HashMap<String, String>>
Lists the hyperparameter names and ranges.
sourcepub fn feature_transformation_parameters(
&self
) -> Option<&HashMap<String, String>>
pub fn feature_transformation_parameters( &self ) -> Option<&HashMap<String, String>>
Lists the feature transformation parameters.
sourcepub fn auto_ml_config(&self) -> Option<&AutoMlConfig>
pub fn auto_ml_config(&self) -> Option<&AutoMlConfig>
The AutoMLConfig object containing a list of recipes to search when AutoML is performed.
sourcepub fn optimization_objective(&self) -> Option<&OptimizationObjective>
pub fn optimization_objective(&self) -> Option<&OptimizationObjective>
Describes the additional objective for the solution, such as maximizing streaming minutes or increasing revenue. For more information see Optimizing a solution.
sourcepub fn training_data_config(&self) -> Option<&TrainingDataConfig>
pub fn training_data_config(&self) -> Option<&TrainingDataConfig>
Specifies the training data configuration to use when creating a custom solution version (trained model).
source§impl SolutionConfig
impl SolutionConfig
sourcepub fn builder() -> SolutionConfigBuilder
pub fn builder() -> SolutionConfigBuilder
Creates a new builder-style object to manufacture SolutionConfig
.
Trait Implementations§
source§impl Clone for SolutionConfig
impl Clone for SolutionConfig
source§fn clone(&self) -> SolutionConfig
fn clone(&self) -> SolutionConfig
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for SolutionConfig
impl Debug for SolutionConfig
source§impl PartialEq for SolutionConfig
impl PartialEq for SolutionConfig
source§fn eq(&self, other: &SolutionConfig) -> bool
fn eq(&self, other: &SolutionConfig) -> bool
self
and other
values to be equal, and is used
by ==
.