Struct aws_sdk_personalize::client::Client
source · [−]pub struct Client<C = DynConnector, M = DefaultMiddleware, R = Standard> { /* private fields */ }Expand description
Client for Amazon Personalize
Client for invoking operations on Amazon Personalize. Each operation on Amazon Personalize is a method on this
this struct. .send() MUST be invoked on the generated operations to dispatch the request to the service.
Examples
Constructing a client and invoking an operation
// create a shared configuration. This can be used & shared between multiple service clients.
let shared_config = aws_config::load_from_env().await;
let client = aws_sdk_personalize::Client::new(&shared_config);
// invoke an operation
/* let rsp = client
.<operation_name>().
.<param>("some value")
.send().await; */Constructing a client with custom configuration
use aws_config::RetryConfig;
let shared_config = aws_config::load_from_env().await;
let config = aws_sdk_personalize::config::Builder::from(&shared_config)
.retry_config(RetryConfig::disabled())
.build();
let client = aws_sdk_personalize::Client::from_conf(config);Implementations
impl<C, M, R> Client<C, M, R> where
C: SmithyConnector,
M: SmithyMiddleware<C>,
R: NewRequestPolicy,
impl<C, M, R> Client<C, M, R> where
C: SmithyConnector,
M: SmithyMiddleware<C>,
R: NewRequestPolicy,
Constructs a fluent builder for the CreateBatchInferenceJob operation.
- The fluent builder is configurable:
job_name(impl Into<String>)/set_job_name(Option<String>):The name of the batch inference job to create.
solution_version_arn(impl Into<String>)/set_solution_version_arn(Option<String>):The Amazon Resource Name (ARN) of the solution version that will be used to generate the batch inference recommendations.
filter_arn(impl Into<String>)/set_filter_arn(Option<String>):The ARN of the filter to apply to the batch inference job. For more information on using filters, see Filtering Batch Recommendations..
num_results(i32)/set_num_results(Option<i32>):The number of recommendations to retreive.
job_input(BatchInferenceJobInput)/set_job_input(Option<BatchInferenceJobInput>):The Amazon S3 path that leads to the input file to base your recommendations on. The input material must be in JSON format.
job_output(BatchInferenceJobOutput)/set_job_output(Option<BatchInferenceJobOutput>):The path to the Amazon S3 bucket where the job’s output will be stored.
role_arn(impl Into<String>)/set_role_arn(Option<String>):The ARN of the Amazon Identity and Access Management role that has permissions to read and write to your input and output Amazon S3 buckets respectively.
batch_inference_job_config(BatchInferenceJobConfig)/set_batch_inference_job_config(Option<BatchInferenceJobConfig>):The configuration details of a batch inference job.
- On success, responds with
CreateBatchInferenceJobOutputwith field(s):batch_inference_job_arn(Option<String>):The ARN of the batch inference job.
- On failure, responds with
SdkError<CreateBatchInferenceJobError>
Constructs a fluent builder for the CreateBatchSegmentJob operation.
- The fluent builder is configurable:
job_name(impl Into<String>)/set_job_name(Option<String>):The name of the batch segment job to create.
solution_version_arn(impl Into<String>)/set_solution_version_arn(Option<String>):The Amazon Resource Name (ARN) of the solution version you want the batch segment job to use to generate batch segments.
filter_arn(impl Into<String>)/set_filter_arn(Option<String>):The ARN of the filter to apply to the batch segment job. For more information on using filters, see
filter-batch.num_results(i32)/set_num_results(Option<i32>):The number of predicted users generated by the batch segment job for each line of input data.
job_input(BatchSegmentJobInput)/set_job_input(Option<BatchSegmentJobInput>):The Amazon S3 path for the input data used to generate the batch segment job.
job_output(BatchSegmentJobOutput)/set_job_output(Option<BatchSegmentJobOutput>):The Amazon S3 path for the bucket where the job’s output will be stored.
role_arn(impl Into<String>)/set_role_arn(Option<String>):The ARN of the Amazon Identity and Access Management role that has permissions to read and write to your input and output Amazon S3 buckets respectively.
- On success, responds with
CreateBatchSegmentJobOutputwith field(s):batch_segment_job_arn(Option<String>):The ARN of the batch segment job.
- On failure, responds with
SdkError<CreateBatchSegmentJobError>
Constructs a fluent builder for the CreateCampaign operation.
- The fluent builder is configurable:
name(impl Into<String>)/set_name(Option<String>):A name for the new campaign. The campaign name must be unique within your account.
solution_version_arn(impl Into<String>)/set_solution_version_arn(Option<String>):The Amazon Resource Name (ARN) of the solution version to deploy.
min_provisioned_tps(i32)/set_min_provisioned_tps(Option<i32>):Specifies the requested minimum provisioned transactions (recommendations) per second that Amazon Personalize will support.
campaign_config(CampaignConfig)/set_campaign_config(Option<CampaignConfig>):The configuration details of a campaign.
- On success, responds with
CreateCampaignOutputwith field(s):campaign_arn(Option<String>):The Amazon Resource Name (ARN) of the campaign.
- On failure, responds with
SdkError<CreateCampaignError>
Constructs a fluent builder for the CreateDataset operation.
- The fluent builder is configurable:
name(impl Into<String>)/set_name(Option<String>):The name for the dataset.
schema_arn(impl Into<String>)/set_schema_arn(Option<String>):The ARN of the schema to associate with the dataset. The schema defines the dataset fields.
dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):The Amazon Resource Name (ARN) of the dataset group to add the dataset to.
dataset_type(impl Into<String>)/set_dataset_type(Option<String>):The type of dataset.
One of the following (case insensitive) values:
-
Interactions
-
Items
-
Users
-
- On success, responds with
CreateDatasetOutputwith field(s):dataset_arn(Option<String>):The ARN of the dataset.
- On failure, responds with
SdkError<CreateDatasetError>
Constructs a fluent builder for the CreateDatasetExportJob operation.
- The fluent builder is configurable:
job_name(impl Into<String>)/set_job_name(Option<String>):The name for the dataset export job.
dataset_arn(impl Into<String>)/set_dataset_arn(Option<String>):The Amazon Resource Name (ARN) of the dataset that contains the data to export.
ingestion_mode(IngestionMode)/set_ingestion_mode(Option<IngestionMode>):The data to export, based on how you imported the data. You can choose to export only
BULKdata that you imported using a dataset import job, onlyPUTdata that you imported incrementally (using the console, PutEvents, PutUsers and PutItems operations), orALLfor both types. The default value isPUT.role_arn(impl Into<String>)/set_role_arn(Option<String>):The Amazon Resource Name (ARN) of the IAM service role that has permissions to add data to your output Amazon S3 bucket.
job_output(DatasetExportJobOutput)/set_job_output(Option<DatasetExportJobOutput>):The path to the Amazon S3 bucket where the job’s output is stored.
- On success, responds with
CreateDatasetExportJobOutputwith field(s):dataset_export_job_arn(Option<String>):The Amazon Resource Name (ARN) of the dataset export job.
- On failure, responds with
SdkError<CreateDatasetExportJobError>
Constructs a fluent builder for the CreateDatasetGroup operation.
- The fluent builder is configurable:
name(impl Into<String>)/set_name(Option<String>):The name for the new dataset group.
role_arn(impl Into<String>)/set_role_arn(Option<String>):The ARN of the Identity and Access Management (IAM) role that has permissions to access the Key Management Service (KMS) key. Supplying an IAM role is only valid when also specifying a KMS key.
kms_key_arn(impl Into<String>)/set_kms_key_arn(Option<String>):The Amazon Resource Name (ARN) of a Key Management Service (KMS) key used to encrypt the datasets.
domain(Domain)/set_domain(Option<Domain>):The domain of the dataset group. Specify a domain to create a Domain dataset group. The domain you specify determines the default schemas for datasets and the use cases available for recommenders. If you don’t specify a domain, you create a Custom dataset group with solution versions that you deploy with a campaign.
- On success, responds with
CreateDatasetGroupOutputwith field(s):dataset_group_arn(Option<String>):The Amazon Resource Name (ARN) of the new dataset group.
domain(Option<Domain>):The domain for the new Domain dataset group.
- On failure, responds with
SdkError<CreateDatasetGroupError>
Constructs a fluent builder for the CreateDatasetImportJob operation.
- The fluent builder is configurable:
job_name(impl Into<String>)/set_job_name(Option<String>):The name for the dataset import job.
dataset_arn(impl Into<String>)/set_dataset_arn(Option<String>):The ARN of the dataset that receives the imported data.
data_source(DataSource)/set_data_source(Option<DataSource>):The Amazon S3 bucket that contains the training data to import.
role_arn(impl Into<String>)/set_role_arn(Option<String>):The ARN of the IAM role that has permissions to read from the Amazon S3 data source.
- On success, responds with
CreateDatasetImportJobOutputwith field(s):dataset_import_job_arn(Option<String>):The ARN of the dataset import job.
- On failure, responds with
SdkError<CreateDatasetImportJobError>
Constructs a fluent builder for the CreateEventTracker operation.
- The fluent builder is configurable:
name(impl Into<String>)/set_name(Option<String>):The name for the event tracker.
dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):The Amazon Resource Name (ARN) of the dataset group that receives the event data.
- On success, responds with
CreateEventTrackerOutputwith field(s):event_tracker_arn(Option<String>):The ARN of the event tracker.
tracking_id(Option<String>):The ID of the event tracker. Include this ID in requests to the PutEvents API.
- On failure, responds with
SdkError<CreateEventTrackerError>
Constructs a fluent builder for the CreateFilter operation.
- The fluent builder is configurable:
name(impl Into<String>)/set_name(Option<String>):The name of the filter to create.
dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):The ARN of the dataset group that the filter will belong to.
filter_expression(impl Into<String>)/set_filter_expression(Option<String>):The filter expression defines which items are included or excluded from recommendations. Filter expression must follow specific format rules. For information about filter expression structure and syntax, see
filter-expressions.
- On success, responds with
CreateFilterOutputwith field(s):filter_arn(Option<String>):The ARN of the new filter.
- On failure, responds with
SdkError<CreateFilterError>
Constructs a fluent builder for the CreateRecommender operation.
- The fluent builder is configurable:
name(impl Into<String>)/set_name(Option<String>):The name of the recommender.
dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):The Amazon Resource Name (ARN) of the destination domain dataset group for the recommender.
recipe_arn(impl Into<String>)/set_recipe_arn(Option<String>):The Amazon Resource Name (ARN) of the recipe that the recommender will use. For a recommender, a recipe is a Domain dataset group use case. Only Domain dataset group use cases can be used to create a recommender. For information about use cases see Choosing recommender use cases.
recommender_config(RecommenderConfig)/set_recommender_config(Option<RecommenderConfig>):The configuration details of the recommender.
- On success, responds with
CreateRecommenderOutputwith field(s):recommender_arn(Option<String>):The Amazon Resource Name (ARN) of the recommender.
- On failure, responds with
SdkError<CreateRecommenderError>
Constructs a fluent builder for the CreateSchema operation.
- The fluent builder is configurable:
name(impl Into<String>)/set_name(Option<String>):The name for the schema.
schema(impl Into<String>)/set_schema(Option<String>):A schema in Avro JSON format.
domain(Domain)/set_domain(Option<Domain>):The domain for the schema. If you are creating a schema for a dataset in a Domain dataset group, specify the domain you chose when you created the Domain dataset group.
- On success, responds with
CreateSchemaOutputwith field(s):schema_arn(Option<String>):The Amazon Resource Name (ARN) of the created schema.
- On failure, responds with
SdkError<CreateSchemaError>
Constructs a fluent builder for the CreateSolution operation.
- The fluent builder is configurable:
name(impl Into<String>)/set_name(Option<String>):The name for the solution.
perform_hpo(bool)/set_perform_hpo(Option<bool>):Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is
false.When performing AutoML, this parameter is always
trueand you should not set it tofalse.perform_auto_ml(bool)/set_perform_auto_ml(bool):Whether to perform automated machine learning (AutoML). The default is
false. For this case, you must specifyrecipeArn.When set to
true, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omitrecipeArn. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.recipe_arn(impl Into<String>)/set_recipe_arn(Option<String>):The ARN of the recipe to use for model training. Only specified when
performAutoMLis false.dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):The Amazon Resource Name (ARN) of the dataset group that provides the training data.
event_type(impl Into<String>)/set_event_type(Option<String>):When your have multiple event types (using an
EVENT_TYPEschema field), this parameter specifies which event type (for example, ‘click’ or ‘like’) is used for training the model.If you do not provide an
eventType, Amazon Personalize will use all interactions for training with equal weight regardless of type.solution_config(SolutionConfig)/set_solution_config(Option<SolutionConfig>):The configuration to use with the solution. When
performAutoMLis set to true, Amazon Personalize only evaluates theautoMLConfigsection of the solution configuration.Amazon Personalize doesn’t support configuring the
hpoObjectiveat this time.
- On success, responds with
CreateSolutionOutputwith field(s):solution_arn(Option<String>):The ARN of the solution.
- On failure, responds with
SdkError<CreateSolutionError>
Constructs a fluent builder for the CreateSolutionVersion operation.
- The fluent builder is configurable:
solution_arn(impl Into<String>)/set_solution_arn(Option<String>):The Amazon Resource Name (ARN) of the solution containing the training configuration information.
training_mode(TrainingMode)/set_training_mode(Option<TrainingMode>):The scope of training to be performed when creating the solution version. The
FULLoption trains the solution version based on the entirety of the input solution’s training data, while theUPDATEoption processes only the data that has changed in comparison to the input solution. ChooseUPDATEwhen you want to incrementally update your solution version instead of creating an entirely new one.The
UPDATEoption can only be used when you already have an active solution version created from the input solution using theFULLoption and the input solution was trained with the User-Personalization recipe or the HRNN-Coldstart recipe.
- On success, responds with
CreateSolutionVersionOutputwith field(s):solution_version_arn(Option<String>):The ARN of the new solution version.
- On failure, responds with
SdkError<CreateSolutionVersionError>
Constructs a fluent builder for the DeleteCampaign operation.
- The fluent builder is configurable:
campaign_arn(impl Into<String>)/set_campaign_arn(Option<String>):The Amazon Resource Name (ARN) of the campaign to delete.
- On success, responds with
DeleteCampaignOutput - On failure, responds with
SdkError<DeleteCampaignError>
Constructs a fluent builder for the DeleteDataset operation.
- The fluent builder is configurable:
dataset_arn(impl Into<String>)/set_dataset_arn(Option<String>):The Amazon Resource Name (ARN) of the dataset to delete.
- On success, responds with
DeleteDatasetOutput - On failure, responds with
SdkError<DeleteDatasetError>
Constructs a fluent builder for the DeleteDatasetGroup operation.
- The fluent builder is configurable:
dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):The ARN of the dataset group to delete.
- On success, responds with
DeleteDatasetGroupOutput - On failure, responds with
SdkError<DeleteDatasetGroupError>
Constructs a fluent builder for the DeleteEventTracker operation.
- The fluent builder is configurable:
event_tracker_arn(impl Into<String>)/set_event_tracker_arn(Option<String>):The Amazon Resource Name (ARN) of the event tracker to delete.
- On success, responds with
DeleteEventTrackerOutput - On failure, responds with
SdkError<DeleteEventTrackerError>
Constructs a fluent builder for the DeleteFilter operation.
- The fluent builder is configurable:
filter_arn(impl Into<String>)/set_filter_arn(Option<String>):The ARN of the filter to delete.
- On success, responds with
DeleteFilterOutput - On failure, responds with
SdkError<DeleteFilterError>
Constructs a fluent builder for the DeleteRecommender operation.
- The fluent builder is configurable:
recommender_arn(impl Into<String>)/set_recommender_arn(Option<String>):The Amazon Resource Name (ARN) of the recommender to delete.
- On success, responds with
DeleteRecommenderOutput - On failure, responds with
SdkError<DeleteRecommenderError>
Constructs a fluent builder for the DeleteSchema operation.
- The fluent builder is configurable:
schema_arn(impl Into<String>)/set_schema_arn(Option<String>):The Amazon Resource Name (ARN) of the schema to delete.
- On success, responds with
DeleteSchemaOutput - On failure, responds with
SdkError<DeleteSchemaError>
Constructs a fluent builder for the DeleteSolution operation.
- The fluent builder is configurable:
solution_arn(impl Into<String>)/set_solution_arn(Option<String>):The ARN of the solution to delete.
- On success, responds with
DeleteSolutionOutput - On failure, responds with
SdkError<DeleteSolutionError>
Constructs a fluent builder for the DescribeAlgorithm operation.
- The fluent builder is configurable:
algorithm_arn(impl Into<String>)/set_algorithm_arn(Option<String>):The Amazon Resource Name (ARN) of the algorithm to describe.
- On success, responds with
DescribeAlgorithmOutputwith field(s):algorithm(Option<Algorithm>):A listing of the properties of the algorithm.
- On failure, responds with
SdkError<DescribeAlgorithmError>
Constructs a fluent builder for the DescribeBatchInferenceJob operation.
- The fluent builder is configurable:
batch_inference_job_arn(impl Into<String>)/set_batch_inference_job_arn(Option<String>):The ARN of the batch inference job to describe.
- On success, responds with
DescribeBatchInferenceJobOutputwith field(s):batch_inference_job(Option<BatchInferenceJob>):Information on the specified batch inference job.
- On failure, responds with
SdkError<DescribeBatchInferenceJobError>
Constructs a fluent builder for the DescribeBatchSegmentJob operation.
- The fluent builder is configurable:
batch_segment_job_arn(impl Into<String>)/set_batch_segment_job_arn(Option<String>):The ARN of the batch segment job to describe.
- On success, responds with
DescribeBatchSegmentJobOutputwith field(s):batch_segment_job(Option<BatchSegmentJob>):Information on the specified batch segment job.
- On failure, responds with
SdkError<DescribeBatchSegmentJobError>
Constructs a fluent builder for the DescribeCampaign operation.
- The fluent builder is configurable:
campaign_arn(impl Into<String>)/set_campaign_arn(Option<String>):The Amazon Resource Name (ARN) of the campaign.
- On success, responds with
DescribeCampaignOutputwith field(s):campaign(Option<Campaign>):The properties of the campaign.
- On failure, responds with
SdkError<DescribeCampaignError>
Constructs a fluent builder for the DescribeDataset operation.
- The fluent builder is configurable:
dataset_arn(impl Into<String>)/set_dataset_arn(Option<String>):The Amazon Resource Name (ARN) of the dataset to describe.
- On success, responds with
DescribeDatasetOutputwith field(s):dataset(Option<Dataset>):A listing of the dataset’s properties.
- On failure, responds with
SdkError<DescribeDatasetError>
Constructs a fluent builder for the DescribeDatasetExportJob operation.
- The fluent builder is configurable:
dataset_export_job_arn(impl Into<String>)/set_dataset_export_job_arn(Option<String>):The Amazon Resource Name (ARN) of the dataset export job to describe.
- On success, responds with
DescribeDatasetExportJobOutputwith field(s):dataset_export_job(Option<DatasetExportJob>):Information about the dataset export job, including the status.
The status is one of the following values:
-
CREATE PENDING
-
CREATE IN_PROGRESS
-
ACTIVE
-
CREATE FAILED
-
- On failure, responds with
SdkError<DescribeDatasetExportJobError>
Constructs a fluent builder for the DescribeDatasetGroup operation.
- The fluent builder is configurable:
dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):The Amazon Resource Name (ARN) of the dataset group to describe.
- On success, responds with
DescribeDatasetGroupOutputwith field(s):dataset_group(Option<DatasetGroup>):A listing of the dataset group’s properties.
- On failure, responds with
SdkError<DescribeDatasetGroupError>
Constructs a fluent builder for the DescribeDatasetImportJob operation.
- The fluent builder is configurable:
dataset_import_job_arn(impl Into<String>)/set_dataset_import_job_arn(Option<String>):The Amazon Resource Name (ARN) of the dataset import job to describe.
- On success, responds with
DescribeDatasetImportJobOutputwith field(s):dataset_import_job(Option<DatasetImportJob>):Information about the dataset import job, including the status.
The status is one of the following values:
-
CREATE PENDING
-
CREATE IN_PROGRESS
-
ACTIVE
-
CREATE FAILED
-
- On failure, responds with
SdkError<DescribeDatasetImportJobError>
Constructs a fluent builder for the DescribeEventTracker operation.
- The fluent builder is configurable:
event_tracker_arn(impl Into<String>)/set_event_tracker_arn(Option<String>):The Amazon Resource Name (ARN) of the event tracker to describe.
- On success, responds with
DescribeEventTrackerOutputwith field(s):event_tracker(Option<EventTracker>):An object that describes the event tracker.
- On failure, responds with
SdkError<DescribeEventTrackerError>
Constructs a fluent builder for the DescribeFeatureTransformation operation.
- The fluent builder is configurable:
feature_transformation_arn(impl Into<String>)/set_feature_transformation_arn(Option<String>):The Amazon Resource Name (ARN) of the feature transformation to describe.
- On success, responds with
DescribeFeatureTransformationOutputwith field(s):feature_transformation(Option<FeatureTransformation>):A listing of the FeatureTransformation properties.
- On failure, responds with
SdkError<DescribeFeatureTransformationError>
Constructs a fluent builder for the DescribeFilter operation.
- The fluent builder is configurable:
filter_arn(impl Into<String>)/set_filter_arn(Option<String>):The ARN of the filter to describe.
- On success, responds with
DescribeFilterOutputwith field(s):filter(Option<Filter>):The filter’s details.
- On failure, responds with
SdkError<DescribeFilterError>
Constructs a fluent builder for the DescribeRecipe operation.
- The fluent builder is configurable:
recipe_arn(impl Into<String>)/set_recipe_arn(Option<String>):The Amazon Resource Name (ARN) of the recipe to describe.
- On success, responds with
DescribeRecipeOutputwith field(s):recipe(Option<Recipe>):An object that describes the recipe.
- On failure, responds with
SdkError<DescribeRecipeError>
Constructs a fluent builder for the DescribeRecommender operation.
- The fluent builder is configurable:
recommender_arn(impl Into<String>)/set_recommender_arn(Option<String>):The Amazon Resource Name (ARN) of the recommender to describe.
- On success, responds with
DescribeRecommenderOutputwith field(s):recommender(Option<Recommender>):The properties of the recommender.
- On failure, responds with
SdkError<DescribeRecommenderError>
Constructs a fluent builder for the DescribeSchema operation.
- The fluent builder is configurable:
schema_arn(impl Into<String>)/set_schema_arn(Option<String>):The Amazon Resource Name (ARN) of the schema to retrieve.
- On success, responds with
DescribeSchemaOutputwith field(s):schema(Option<DatasetSchema>):The requested schema.
- On failure, responds with
SdkError<DescribeSchemaError>
Constructs a fluent builder for the DescribeSolution operation.
- The fluent builder is configurable:
solution_arn(impl Into<String>)/set_solution_arn(Option<String>):The Amazon Resource Name (ARN) of the solution to describe.
- On success, responds with
DescribeSolutionOutputwith field(s):solution(Option<Solution>):An object that describes the solution.
- On failure, responds with
SdkError<DescribeSolutionError>
Constructs a fluent builder for the DescribeSolutionVersion operation.
- The fluent builder is configurable:
solution_version_arn(impl Into<String>)/set_solution_version_arn(Option<String>):The Amazon Resource Name (ARN) of the solution version.
- On success, responds with
DescribeSolutionVersionOutputwith field(s):solution_version(Option<SolutionVersion>):The solution version.
- On failure, responds with
SdkError<DescribeSolutionVersionError>
Constructs a fluent builder for the GetSolutionMetrics operation.
- The fluent builder is configurable:
solution_version_arn(impl Into<String>)/set_solution_version_arn(Option<String>):The Amazon Resource Name (ARN) of the solution version for which to get metrics.
- On success, responds with
GetSolutionMetricsOutputwith field(s):solution_version_arn(Option<String>):The same solution version ARN as specified in the request.
metrics(Option<HashMap<String, f64>>):The metrics for the solution version.
- On failure, responds with
SdkError<GetSolutionMetricsError>
Constructs a fluent builder for the ListBatchInferenceJobs operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
solution_version_arn(impl Into<String>)/set_solution_version_arn(Option<String>):The Amazon Resource Name (ARN) of the solution version from which the batch inference jobs were created.
next_token(impl Into<String>)/set_next_token(Option<String>):The token to request the next page of results.
max_results(i32)/set_max_results(Option<i32>):The maximum number of batch inference job results to return in each page. The default value is 100.
- On success, responds with
ListBatchInferenceJobsOutputwith field(s):batch_inference_jobs(Option<Vec<BatchInferenceJobSummary>>):A list containing information on each job that is returned.
next_token(Option<String>):The token to use to retrieve the next page of results. The value is
nullwhen there are no more results to return.
- On failure, responds with
SdkError<ListBatchInferenceJobsError>
Constructs a fluent builder for the ListBatchSegmentJobs operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
solution_version_arn(impl Into<String>)/set_solution_version_arn(Option<String>):The Amazon Resource Name (ARN) of the solution version that the batch segment jobs used to generate batch segments.
next_token(impl Into<String>)/set_next_token(Option<String>):The token to request the next page of results.
max_results(i32)/set_max_results(Option<i32>):The maximum number of batch segment job results to return in each page. The default value is 100.
- On success, responds with
ListBatchSegmentJobsOutputwith field(s):batch_segment_jobs(Option<Vec<BatchSegmentJobSummary>>):A list containing information on each job that is returned.
next_token(Option<String>):The token to use to retrieve the next page of results. The value is
nullwhen there are no more results to return.
- On failure, responds with
SdkError<ListBatchSegmentJobsError>
Constructs a fluent builder for the ListCampaigns operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
solution_arn(impl Into<String>)/set_solution_arn(Option<String>):The Amazon Resource Name (ARN) of the solution to list the campaigns for. When a solution is not specified, all the campaigns associated with the account are listed.
next_token(impl Into<String>)/set_next_token(Option<String>):A token returned from the previous call to
ListCampaignsfor getting the next set of campaigns (if they exist).max_results(i32)/set_max_results(Option<i32>):The maximum number of campaigns to return.
- On success, responds with
ListCampaignsOutputwith field(s):campaigns(Option<Vec<CampaignSummary>>):A list of the campaigns.
next_token(Option<String>):A token for getting the next set of campaigns (if they exist).
- On failure, responds with
SdkError<ListCampaignsError>
Constructs a fluent builder for the ListDatasetExportJobs operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
dataset_arn(impl Into<String>)/set_dataset_arn(Option<String>):The Amazon Resource Name (ARN) of the dataset to list the dataset export jobs for.
next_token(impl Into<String>)/set_next_token(Option<String>):A token returned from the previous call to
ListDatasetExportJobsfor getting the next set of dataset export jobs (if they exist).max_results(i32)/set_max_results(Option<i32>):The maximum number of dataset export jobs to return.
- On success, responds with
ListDatasetExportJobsOutputwith field(s):dataset_export_jobs(Option<Vec<DatasetExportJobSummary>>):The list of dataset export jobs.
next_token(Option<String>):A token for getting the next set of dataset export jobs (if they exist).
- On failure, responds with
SdkError<ListDatasetExportJobsError>
Constructs a fluent builder for the ListDatasetGroups operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
next_token(impl Into<String>)/set_next_token(Option<String>):A token returned from the previous call to
ListDatasetGroupsfor getting the next set of dataset groups (if they exist).max_results(i32)/set_max_results(Option<i32>):The maximum number of dataset groups to return.
- On success, responds with
ListDatasetGroupsOutputwith field(s):dataset_groups(Option<Vec<DatasetGroupSummary>>):The list of your dataset groups.
next_token(Option<String>):A token for getting the next set of dataset groups (if they exist).
- On failure, responds with
SdkError<ListDatasetGroupsError>
Constructs a fluent builder for the ListDatasetImportJobs operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
dataset_arn(impl Into<String>)/set_dataset_arn(Option<String>):The Amazon Resource Name (ARN) of the dataset to list the dataset import jobs for.
next_token(impl Into<String>)/set_next_token(Option<String>):A token returned from the previous call to
ListDatasetImportJobsfor getting the next set of dataset import jobs (if they exist).max_results(i32)/set_max_results(Option<i32>):The maximum number of dataset import jobs to return.
- On success, responds with
ListDatasetImportJobsOutputwith field(s):dataset_import_jobs(Option<Vec<DatasetImportJobSummary>>):The list of dataset import jobs.
next_token(Option<String>):A token for getting the next set of dataset import jobs (if they exist).
- On failure, responds with
SdkError<ListDatasetImportJobsError>
Constructs a fluent builder for the ListDatasets operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):The Amazon Resource Name (ARN) of the dataset group that contains the datasets to list.
next_token(impl Into<String>)/set_next_token(Option<String>):A token returned from the previous call to
ListDatasetImportJobsfor getting the next set of dataset import jobs (if they exist).max_results(i32)/set_max_results(Option<i32>):The maximum number of datasets to return.
- On success, responds with
ListDatasetsOutputwith field(s):datasets(Option<Vec<DatasetSummary>>):An array of
Datasetobjects. Each object provides metadata information.next_token(Option<String>):A token for getting the next set of datasets (if they exist).
- On failure, responds with
SdkError<ListDatasetsError>
Constructs a fluent builder for the ListEventTrackers operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):The ARN of a dataset group used to filter the response.
next_token(impl Into<String>)/set_next_token(Option<String>):A token returned from the previous call to
ListEventTrackersfor getting the next set of event trackers (if they exist).max_results(i32)/set_max_results(Option<i32>):The maximum number of event trackers to return.
- On success, responds with
ListEventTrackersOutputwith field(s):event_trackers(Option<Vec<EventTrackerSummary>>):A list of event trackers.
next_token(Option<String>):A token for getting the next set of event trackers (if they exist).
- On failure, responds with
SdkError<ListEventTrackersError>
Constructs a fluent builder for the ListFilters operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):The ARN of the dataset group that contains the filters.
next_token(impl Into<String>)/set_next_token(Option<String>):A token returned from the previous call to
ListFiltersfor getting the next set of filters (if they exist).max_results(i32)/set_max_results(Option<i32>):The maximum number of filters to return.
- On success, responds with
ListFiltersOutputwith field(s):filters(Option<Vec<FilterSummary>>):A list of returned filters.
next_token(Option<String>):A token for getting the next set of filters (if they exist).
- On failure, responds with
SdkError<ListFiltersError>
Constructs a fluent builder for the ListRecipes operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
recipe_provider(RecipeProvider)/set_recipe_provider(Option<RecipeProvider>):The default is
SERVICE.next_token(impl Into<String>)/set_next_token(Option<String>):A token returned from the previous call to
ListRecipesfor getting the next set of recipes (if they exist).max_results(i32)/set_max_results(Option<i32>):The maximum number of recipes to return.
domain(Domain)/set_domain(Option<Domain>):Filters returned recipes by domain for a Domain dataset group. Only recipes (Domain dataset group use cases) for this domain are included in the response. If you don’t specify a domain, only non-domain recipes are returned.
- On success, responds with
ListRecipesOutputwith field(s):recipes(Option<Vec<RecipeSummary>>):The list of available recipes.
next_token(Option<String>):A token for getting the next set of recipes.
- On failure, responds with
SdkError<ListRecipesError>
Constructs a fluent builder for the ListRecommenders operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):The Amazon Resource Name (ARN) of the Domain dataset group to list the recommenders for. When a Domain dataset group is not specified, all the recommenders associated with the account are listed.
next_token(impl Into<String>)/set_next_token(Option<String>):A token returned from the previous call to
ListRecommendersfor getting the next set of recommenders (if they exist).max_results(i32)/set_max_results(Option<i32>):The maximum number of recommenders to return.
- On success, responds with
ListRecommendersOutputwith field(s):recommenders(Option<Vec<RecommenderSummary>>):A list of the recommenders.
next_token(Option<String>):A token for getting the next set of recommenders (if they exist).
- On failure, responds with
SdkError<ListRecommendersError>
Constructs a fluent builder for the ListSchemas operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
next_token(impl Into<String>)/set_next_token(Option<String>):A token returned from the previous call to
ListSchemasfor getting the next set of schemas (if they exist).max_results(i32)/set_max_results(Option<i32>):The maximum number of schemas to return.
- On success, responds with
ListSchemasOutputwith field(s):schemas(Option<Vec<DatasetSchemaSummary>>):A list of schemas.
next_token(Option<String>):A token used to get the next set of schemas (if they exist).
- On failure, responds with
SdkError<ListSchemasError>
Constructs a fluent builder for the ListSolutions operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
dataset_group_arn(impl Into<String>)/set_dataset_group_arn(Option<String>):The Amazon Resource Name (ARN) of the dataset group.
next_token(impl Into<String>)/set_next_token(Option<String>):A token returned from the previous call to
ListSolutionsfor getting the next set of solutions (if they exist).max_results(i32)/set_max_results(Option<i32>):The maximum number of solutions to return.
- On success, responds with
ListSolutionsOutputwith field(s):solutions(Option<Vec<SolutionSummary>>):A list of the current solutions.
next_token(Option<String>):A token for getting the next set of solutions (if they exist).
- On failure, responds with
SdkError<ListSolutionsError>
Constructs a fluent builder for the ListSolutionVersions operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
solution_arn(impl Into<String>)/set_solution_arn(Option<String>):The Amazon Resource Name (ARN) of the solution.
next_token(impl Into<String>)/set_next_token(Option<String>):A token returned from the previous call to
ListSolutionVersionsfor getting the next set of solution versions (if they exist).max_results(i32)/set_max_results(Option<i32>):The maximum number of solution versions to return.
- On success, responds with
ListSolutionVersionsOutputwith field(s):solution_versions(Option<Vec<SolutionVersionSummary>>):A list of solution versions describing the version properties.
next_token(Option<String>):A token for getting the next set of solution versions (if they exist).
- On failure, responds with
SdkError<ListSolutionVersionsError>
Constructs a fluent builder for the StopSolutionVersionCreation operation.
- The fluent builder is configurable:
solution_version_arn(impl Into<String>)/set_solution_version_arn(Option<String>):The Amazon Resource Name (ARN) of the solution version you want to stop creating.
- On success, responds with
StopSolutionVersionCreationOutput - On failure, responds with
SdkError<StopSolutionVersionCreationError>
Constructs a fluent builder for the UpdateCampaign operation.
- The fluent builder is configurable:
campaign_arn(impl Into<String>)/set_campaign_arn(Option<String>):The Amazon Resource Name (ARN) of the campaign.
solution_version_arn(impl Into<String>)/set_solution_version_arn(Option<String>):The ARN of a new solution version to deploy.
min_provisioned_tps(i32)/set_min_provisioned_tps(Option<i32>):Specifies the requested minimum provisioned transactions (recommendations) per second that Amazon Personalize will support.
campaign_config(CampaignConfig)/set_campaign_config(Option<CampaignConfig>):The configuration details of a campaign.
- On success, responds with
UpdateCampaignOutputwith field(s):campaign_arn(Option<String>):The same campaign ARN as given in the request.
- On failure, responds with
SdkError<UpdateCampaignError>
Constructs a fluent builder for the UpdateRecommender operation.
- The fluent builder is configurable:
recommender_arn(impl Into<String>)/set_recommender_arn(Option<String>):The Amazon Resource Name (ARN) of the recommender to modify.
recommender_config(RecommenderConfig)/set_recommender_config(Option<RecommenderConfig>):The configuration details of the recommender.
- On success, responds with
UpdateRecommenderOutputwith field(s):recommender_arn(Option<String>):The same recommender Amazon Resource Name (ARN) as given in the request.
- On failure, responds with
SdkError<UpdateRecommenderError>
Creates a client with the given service config and connector override.
Trait Implementations
Auto Trait Implementations
impl<C = DynConnector, M = DefaultMiddleware, R = Standard> !RefUnwindSafe for Client<C, M, R>
impl<C = DynConnector, M = DefaultMiddleware, R = Standard> !UnwindSafe for Client<C, M, R>
Blanket Implementations
Mutably borrows from an owned value. Read more
Attaches the provided Subscriber to this type, returning a
WithDispatch wrapper. Read more
Attaches the current default Subscriber to this type, returning a
WithDispatch wrapper. Read more