Struct aws_sdk_personalize::Client
source · pub struct Client { /* private fields */ }
Expand description
Client for Amazon Personalize
Client for invoking operations on Amazon Personalize. Each operation on Amazon Personalize is a method on this
this struct. .send()
MUST be invoked on the generated operations to dispatch the request to the service.
Examples
Constructing a client and invoking an operation
// create a shared configuration. This can be used & shared between multiple service clients.
let shared_config = aws_config::load_from_env().await;
let client = aws_sdk_personalize::Client::new(&shared_config);
// invoke an operation
/* let rsp = client
.<operation_name>().
.<param>("some value")
.send().await; */
Constructing a client with custom configuration
use aws_config::retry::RetryConfig;
let shared_config = aws_config::load_from_env().await;
let config = aws_sdk_personalize::config::Builder::from(&shared_config)
.retry_config(RetryConfig::disabled())
.build();
let client = aws_sdk_personalize::Client::from_conf(config);
Implementations§
source§impl Client
impl Client
sourcepub fn with_config(
client: Client<DynConnector, DynMiddleware<DynConnector>>,
conf: Config
) -> Self
pub fn with_config(
client: Client<DynConnector, DynMiddleware<DynConnector>>,
conf: Config
) -> Self
Creates a client with the given service configuration.
source§impl Client
impl Client
sourcepub fn create_batch_inference_job(&self) -> CreateBatchInferenceJob
pub fn create_batch_inference_job(&self) -> CreateBatchInferenceJob
Constructs a fluent builder for the CreateBatchInferenceJob
operation.
- The fluent builder is configurable:
job_name(impl Into<String>)
/set_job_name(Option<String>)
:The name of the batch inference job to create.
solution_version_arn(impl Into<String>)
/set_solution_version_arn(Option<String>)
:The Amazon Resource Name (ARN) of the solution version that will be used to generate the batch inference recommendations.
filter_arn(impl Into<String>)
/set_filter_arn(Option<String>)
:The ARN of the filter to apply to the batch inference job. For more information on using filters, see Filtering batch recommendations.
num_results(i32)
/set_num_results(Option<i32>)
:The number of recommendations to retrieve.
job_input(BatchInferenceJobInput)
/set_job_input(Option<BatchInferenceJobInput>)
:The Amazon S3 path that leads to the input file to base your recommendations on. The input material must be in JSON format.
job_output(BatchInferenceJobOutput)
/set_job_output(Option<BatchInferenceJobOutput>)
:The path to the Amazon S3 bucket where the job’s output will be stored.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:The ARN of the Amazon Identity and Access Management role that has permissions to read and write to your input and output Amazon S3 buckets respectively.
batch_inference_job_config(BatchInferenceJobConfig)
/set_batch_inference_job_config(Option<BatchInferenceJobConfig>)
:The configuration details of a batch inference job.
tags(Vec<Tag>)
/set_tags(Option<Vec<Tag>>)
:A list of tags to apply to the batch inference job.
- On success, responds with
CreateBatchInferenceJobOutput
with field(s):batch_inference_job_arn(Option<String>)
:The ARN of the batch inference job.
- On failure, responds with
SdkError<CreateBatchInferenceJobError>
sourcepub fn create_batch_segment_job(&self) -> CreateBatchSegmentJob
pub fn create_batch_segment_job(&self) -> CreateBatchSegmentJob
Constructs a fluent builder for the CreateBatchSegmentJob
operation.
- The fluent builder is configurable:
job_name(impl Into<String>)
/set_job_name(Option<String>)
:The name of the batch segment job to create.
solution_version_arn(impl Into<String>)
/set_solution_version_arn(Option<String>)
:The Amazon Resource Name (ARN) of the solution version you want the batch segment job to use to generate batch segments.
filter_arn(impl Into<String>)
/set_filter_arn(Option<String>)
:The ARN of the filter to apply to the batch segment job. For more information on using filters, see Filtering batch recommendations.
num_results(i32)
/set_num_results(Option<i32>)
:The number of predicted users generated by the batch segment job for each line of input data.
job_input(BatchSegmentJobInput)
/set_job_input(Option<BatchSegmentJobInput>)
:The Amazon S3 path for the input data used to generate the batch segment job.
job_output(BatchSegmentJobOutput)
/set_job_output(Option<BatchSegmentJobOutput>)
:The Amazon S3 path for the bucket where the job’s output will be stored.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:The ARN of the Amazon Identity and Access Management role that has permissions to read and write to your input and output Amazon S3 buckets respectively.
tags(Vec<Tag>)
/set_tags(Option<Vec<Tag>>)
:A list of tags to apply to the batch segment job.
- On success, responds with
CreateBatchSegmentJobOutput
with field(s):batch_segment_job_arn(Option<String>)
:The ARN of the batch segment job.
- On failure, responds with
SdkError<CreateBatchSegmentJobError>
sourcepub fn create_campaign(&self) -> CreateCampaign
pub fn create_campaign(&self) -> CreateCampaign
Constructs a fluent builder for the CreateCampaign
operation.
- The fluent builder is configurable:
name(impl Into<String>)
/set_name(Option<String>)
:A name for the new campaign. The campaign name must be unique within your account.
solution_version_arn(impl Into<String>)
/set_solution_version_arn(Option<String>)
:The Amazon Resource Name (ARN) of the solution version to deploy.
min_provisioned_tps(i32)
/set_min_provisioned_tps(Option<i32>)
:Specifies the requested minimum provisioned transactions (recommendations) per second that Amazon Personalize will support.
campaign_config(CampaignConfig)
/set_campaign_config(Option<CampaignConfig>)
:The configuration details of a campaign.
tags(Vec<Tag>)
/set_tags(Option<Vec<Tag>>)
:A list of tags to apply to the campaign.
- On success, responds with
CreateCampaignOutput
with field(s):campaign_arn(Option<String>)
:The Amazon Resource Name (ARN) of the campaign.
- On failure, responds with
SdkError<CreateCampaignError>
sourcepub fn create_dataset(&self) -> CreateDataset
pub fn create_dataset(&self) -> CreateDataset
Constructs a fluent builder for the CreateDataset
operation.
- The fluent builder is configurable:
name(impl Into<String>)
/set_name(Option<String>)
:The name for the dataset.
schema_arn(impl Into<String>)
/set_schema_arn(Option<String>)
:The ARN of the schema to associate with the dataset. The schema defines the dataset fields.
dataset_group_arn(impl Into<String>)
/set_dataset_group_arn(Option<String>)
:The Amazon Resource Name (ARN) of the dataset group to add the dataset to.
dataset_type(impl Into<String>)
/set_dataset_type(Option<String>)
:The type of dataset.
One of the following (case insensitive) values:
-
Interactions
-
Items
-
Users
-
tags(Vec<Tag>)
/set_tags(Option<Vec<Tag>>)
:A list of tags to apply to the dataset.
- On success, responds with
CreateDatasetOutput
with field(s):dataset_arn(Option<String>)
:The ARN of the dataset.
- On failure, responds with
SdkError<CreateDatasetError>
sourcepub fn create_dataset_export_job(&self) -> CreateDatasetExportJob
pub fn create_dataset_export_job(&self) -> CreateDatasetExportJob
Constructs a fluent builder for the CreateDatasetExportJob
operation.
- The fluent builder is configurable:
job_name(impl Into<String>)
/set_job_name(Option<String>)
:The name for the dataset export job.
dataset_arn(impl Into<String>)
/set_dataset_arn(Option<String>)
:The Amazon Resource Name (ARN) of the dataset that contains the data to export.
ingestion_mode(IngestionMode)
/set_ingestion_mode(Option<IngestionMode>)
:The data to export, based on how you imported the data. You can choose to export only
BULK
data that you imported using a dataset import job, onlyPUT
data that you imported incrementally (using the console, PutEvents, PutUsers and PutItems operations), orALL
for both types. The default value isPUT
.role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:The Amazon Resource Name (ARN) of the IAM service role that has permissions to add data to your output Amazon S3 bucket.
job_output(DatasetExportJobOutput)
/set_job_output(Option<DatasetExportJobOutput>)
:The path to the Amazon S3 bucket where the job’s output is stored.
tags(Vec<Tag>)
/set_tags(Option<Vec<Tag>>)
:A list of tags to apply to the dataset export job.
- On success, responds with
CreateDatasetExportJobOutput
with field(s):dataset_export_job_arn(Option<String>)
:The Amazon Resource Name (ARN) of the dataset export job.
- On failure, responds with
SdkError<CreateDatasetExportJobError>
sourcepub fn create_dataset_group(&self) -> CreateDatasetGroup
pub fn create_dataset_group(&self) -> CreateDatasetGroup
Constructs a fluent builder for the CreateDatasetGroup
operation.
- The fluent builder is configurable:
name(impl Into<String>)
/set_name(Option<String>)
:The name for the new dataset group.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:The ARN of the Identity and Access Management (IAM) role that has permissions to access the Key Management Service (KMS) key. Supplying an IAM role is only valid when also specifying a KMS key.
kms_key_arn(impl Into<String>)
/set_kms_key_arn(Option<String>)
:The Amazon Resource Name (ARN) of a Key Management Service (KMS) key used to encrypt the datasets.
domain(Domain)
/set_domain(Option<Domain>)
:The domain of the dataset group. Specify a domain to create a Domain dataset group. The domain you specify determines the default schemas for datasets and the use cases available for recommenders. If you don’t specify a domain, you create a Custom dataset group with solution versions that you deploy with a campaign.
tags(Vec<Tag>)
/set_tags(Option<Vec<Tag>>)
:A list of tags to apply to the dataset group.
- On success, responds with
CreateDatasetGroupOutput
with field(s):dataset_group_arn(Option<String>)
:The Amazon Resource Name (ARN) of the new dataset group.
domain(Option<Domain>)
:The domain for the new Domain dataset group.
- On failure, responds with
SdkError<CreateDatasetGroupError>
sourcepub fn create_dataset_import_job(&self) -> CreateDatasetImportJob
pub fn create_dataset_import_job(&self) -> CreateDatasetImportJob
Constructs a fluent builder for the CreateDatasetImportJob
operation.
- The fluent builder is configurable:
job_name(impl Into<String>)
/set_job_name(Option<String>)
:The name for the dataset import job.
dataset_arn(impl Into<String>)
/set_dataset_arn(Option<String>)
:The ARN of the dataset that receives the imported data.
data_source(DataSource)
/set_data_source(Option<DataSource>)
:The Amazon S3 bucket that contains the training data to import.
role_arn(impl Into<String>)
/set_role_arn(Option<String>)
:The ARN of the IAM role that has permissions to read from the Amazon S3 data source.
tags(Vec<Tag>)
/set_tags(Option<Vec<Tag>>)
:A list of tags to apply to the dataset import job.
import_mode(ImportMode)
/set_import_mode(Option<ImportMode>)
:Specify how to add the new records to an existing dataset. The default import mode is
FULL
. If you haven’t imported bulk records into the dataset previously, you can only specifyFULL
.-
Specify
FULL
to overwrite all existing bulk data in your dataset. Data you imported individually is not replaced. -
Specify
INCREMENTAL
to append the new records to the existing data in your dataset. Amazon Personalize replaces any record with the same ID with the new one.
-
publish_attribution_metrics_to_s3(bool)
/set_publish_attribution_metrics_to_s3(Option<bool>)
:If you created a metric attribution, specify whether to publish metrics for this import job to Amazon S3
- On success, responds with
CreateDatasetImportJobOutput
with field(s):dataset_import_job_arn(Option<String>)
:The ARN of the dataset import job.
- On failure, responds with
SdkError<CreateDatasetImportJobError>
sourcepub fn create_event_tracker(&self) -> CreateEventTracker
pub fn create_event_tracker(&self) -> CreateEventTracker
Constructs a fluent builder for the CreateEventTracker
operation.
- The fluent builder is configurable:
name(impl Into<String>)
/set_name(Option<String>)
:The name for the event tracker.
dataset_group_arn(impl Into<String>)
/set_dataset_group_arn(Option<String>)
:The Amazon Resource Name (ARN) of the dataset group that receives the event data.
tags(Vec<Tag>)
/set_tags(Option<Vec<Tag>>)
:A list of tags to apply to the event tracker.
- On success, responds with
CreateEventTrackerOutput
with field(s):event_tracker_arn(Option<String>)
:The ARN of the event tracker.
tracking_id(Option<String>)
:The ID of the event tracker. Include this ID in requests to the PutEvents API.
- On failure, responds with
SdkError<CreateEventTrackerError>
sourcepub fn create_filter(&self) -> CreateFilter
pub fn create_filter(&self) -> CreateFilter
Constructs a fluent builder for the CreateFilter
operation.
- The fluent builder is configurable:
name(impl Into<String>)
/set_name(Option<String>)
:The name of the filter to create.
dataset_group_arn(impl Into<String>)
/set_dataset_group_arn(Option<String>)
:The ARN of the dataset group that the filter will belong to.
filter_expression(impl Into<String>)
/set_filter_expression(Option<String>)
:The filter expression defines which items are included or excluded from recommendations. Filter expression must follow specific format rules. For information about filter expression structure and syntax, see Filter expressions.
tags(Vec<Tag>)
/set_tags(Option<Vec<Tag>>)
:A list of tags to apply to the filter.
- On success, responds with
CreateFilterOutput
with field(s):filter_arn(Option<String>)
:The ARN of the new filter.
- On failure, responds with
SdkError<CreateFilterError>
sourcepub fn create_metric_attribution(&self) -> CreateMetricAttribution
pub fn create_metric_attribution(&self) -> CreateMetricAttribution
Constructs a fluent builder for the CreateMetricAttribution
operation.
- The fluent builder is configurable:
name(impl Into<String>)
/set_name(Option<String>)
:A name for the metric attribution.
dataset_group_arn(impl Into<String>)
/set_dataset_group_arn(Option<String>)
:The Amazon Resource Name (ARN) of the destination dataset group for the metric attribution.
metrics(Vec<MetricAttribute>)
/set_metrics(Option<Vec<MetricAttribute>>)
:A list of metric attributes for the metric attribution. Each metric attribute specifies an event type to track and a function. Available functions are
SUM()
orSAMPLECOUNT()
. For SUM() functions, provide the dataset type (either Interactions or Items) and column to sum as a parameter. For example SUM(Items.PRICE).metrics_output_config(MetricAttributionOutput)
/set_metrics_output_config(Option<MetricAttributionOutput>)
:The output configuration details for the metric attribution.
- On success, responds with
CreateMetricAttributionOutput
with field(s):metric_attribution_arn(Option<String>)
:The Amazon Resource Name (ARN) for the new metric attribution.
- On failure, responds with
SdkError<CreateMetricAttributionError>
sourcepub fn create_recommender(&self) -> CreateRecommender
pub fn create_recommender(&self) -> CreateRecommender
Constructs a fluent builder for the CreateRecommender
operation.
- The fluent builder is configurable:
name(impl Into<String>)
/set_name(Option<String>)
:The name of the recommender.
dataset_group_arn(impl Into<String>)
/set_dataset_group_arn(Option<String>)
:The Amazon Resource Name (ARN) of the destination domain dataset group for the recommender.
recipe_arn(impl Into<String>)
/set_recipe_arn(Option<String>)
:The Amazon Resource Name (ARN) of the recipe that the recommender will use. For a recommender, a recipe is a Domain dataset group use case. Only Domain dataset group use cases can be used to create a recommender. For information about use cases see Choosing recommender use cases.
recommender_config(RecommenderConfig)
/set_recommender_config(Option<RecommenderConfig>)
:The configuration details of the recommender.
tags(Vec<Tag>)
/set_tags(Option<Vec<Tag>>)
:A list of tags to apply to the recommender.
- On success, responds with
CreateRecommenderOutput
with field(s):recommender_arn(Option<String>)
:The Amazon Resource Name (ARN) of the recommender.
- On failure, responds with
SdkError<CreateRecommenderError>
sourcepub fn create_schema(&self) -> CreateSchema
pub fn create_schema(&self) -> CreateSchema
Constructs a fluent builder for the CreateSchema
operation.
- The fluent builder is configurable:
name(impl Into<String>)
/set_name(Option<String>)
:The name for the schema.
schema(impl Into<String>)
/set_schema(Option<String>)
:A schema in Avro JSON format.
domain(Domain)
/set_domain(Option<Domain>)
:The domain for the schema. If you are creating a schema for a dataset in a Domain dataset group, specify the domain you chose when you created the Domain dataset group.
- On success, responds with
CreateSchemaOutput
with field(s):schema_arn(Option<String>)
:The Amazon Resource Name (ARN) of the created schema.
- On failure, responds with
SdkError<CreateSchemaError>
sourcepub fn create_solution(&self) -> CreateSolution
pub fn create_solution(&self) -> CreateSolution
Constructs a fluent builder for the CreateSolution
operation.
- The fluent builder is configurable:
name(impl Into<String>)
/set_name(Option<String>)
:The name for the solution.
perform_hpo(bool)
/set_perform_hpo(Option<bool>)
:Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is
false
.When performing AutoML, this parameter is always
true
and you should not set it tofalse
.perform_auto_ml(bool)
/set_perform_auto_ml(bool)
:Whether to perform automated machine learning (AutoML). The default is
false
. For this case, you must specifyrecipeArn
.When set to
true
, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omitrecipeArn
. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.recipe_arn(impl Into<String>)
/set_recipe_arn(Option<String>)
:The ARN of the recipe to use for model training. Only specified when
performAutoML
is false.dataset_group_arn(impl Into<String>)
/set_dataset_group_arn(Option<String>)
:The Amazon Resource Name (ARN) of the dataset group that provides the training data.
event_type(impl Into<String>)
/set_event_type(Option<String>)
:When your have multiple event types (using an
EVENT_TYPE
schema field), this parameter specifies which event type (for example, ‘click’ or ‘like’) is used for training the model.If you do not provide an
eventType
, Amazon Personalize will use all interactions for training with equal weight regardless of type.solution_config(SolutionConfig)
/set_solution_config(Option<SolutionConfig>)
:The configuration to use with the solution. When
performAutoML
is set to true, Amazon Personalize only evaluates theautoMLConfig
section of the solution configuration.Amazon Personalize doesn’t support configuring the
hpoObjective
at this time.tags(Vec<Tag>)
/set_tags(Option<Vec<Tag>>)
:A list of tags to apply to the solution.
- On success, responds with
CreateSolutionOutput
with field(s):solution_arn(Option<String>)
:The ARN of the solution.
- On failure, responds with
SdkError<CreateSolutionError>
sourcepub fn create_solution_version(&self) -> CreateSolutionVersion
pub fn create_solution_version(&self) -> CreateSolutionVersion
Constructs a fluent builder for the CreateSolutionVersion
operation.
- The fluent builder is configurable:
name(impl Into<String>)
/set_name(Option<String>)
:The name of the solution version.
solution_arn(impl Into<String>)
/set_solution_arn(Option<String>)
:The Amazon Resource Name (ARN) of the solution containing the training configuration information.
training_mode(TrainingMode)
/set_training_mode(Option<TrainingMode>)
:The scope of training to be performed when creating the solution version. The
FULL
option trains the solution version based on the entirety of the input solution’s training data, while theUPDATE
option processes only the data that has changed in comparison to the input solution. ChooseUPDATE
when you want to incrementally update your solution version instead of creating an entirely new one.The
UPDATE
option can only be used when you already have an active solution version created from the input solution using theFULL
option and the input solution was trained with the User-Personalization recipe or the HRNN-Coldstart recipe.tags(Vec<Tag>)
/set_tags(Option<Vec<Tag>>)
:A list of tags to apply to the solution version.
- On success, responds with
CreateSolutionVersionOutput
with field(s):solution_version_arn(Option<String>)
:The ARN of the new solution version.
- On failure, responds with
SdkError<CreateSolutionVersionError>
sourcepub fn delete_campaign(&self) -> DeleteCampaign
pub fn delete_campaign(&self) -> DeleteCampaign
Constructs a fluent builder for the DeleteCampaign
operation.
- The fluent builder is configurable:
campaign_arn(impl Into<String>)
/set_campaign_arn(Option<String>)
:The Amazon Resource Name (ARN) of the campaign to delete.
- On success, responds with
DeleteCampaignOutput
- On failure, responds with
SdkError<DeleteCampaignError>
sourcepub fn delete_dataset(&self) -> DeleteDataset
pub fn delete_dataset(&self) -> DeleteDataset
Constructs a fluent builder for the DeleteDataset
operation.
- The fluent builder is configurable:
dataset_arn(impl Into<String>)
/set_dataset_arn(Option<String>)
:The Amazon Resource Name (ARN) of the dataset to delete.
- On success, responds with
DeleteDatasetOutput
- On failure, responds with
SdkError<DeleteDatasetError>
sourcepub fn delete_dataset_group(&self) -> DeleteDatasetGroup
pub fn delete_dataset_group(&self) -> DeleteDatasetGroup
Constructs a fluent builder for the DeleteDatasetGroup
operation.
- The fluent builder is configurable:
dataset_group_arn(impl Into<String>)
/set_dataset_group_arn(Option<String>)
:The ARN of the dataset group to delete.
- On success, responds with
DeleteDatasetGroupOutput
- On failure, responds with
SdkError<DeleteDatasetGroupError>
sourcepub fn delete_event_tracker(&self) -> DeleteEventTracker
pub fn delete_event_tracker(&self) -> DeleteEventTracker
Constructs a fluent builder for the DeleteEventTracker
operation.
- The fluent builder is configurable:
event_tracker_arn(impl Into<String>)
/set_event_tracker_arn(Option<String>)
:The Amazon Resource Name (ARN) of the event tracker to delete.
- On success, responds with
DeleteEventTrackerOutput
- On failure, responds with
SdkError<DeleteEventTrackerError>
sourcepub fn delete_filter(&self) -> DeleteFilter
pub fn delete_filter(&self) -> DeleteFilter
Constructs a fluent builder for the DeleteFilter
operation.
- The fluent builder is configurable:
filter_arn(impl Into<String>)
/set_filter_arn(Option<String>)
:The ARN of the filter to delete.
- On success, responds with
DeleteFilterOutput
- On failure, responds with
SdkError<DeleteFilterError>
sourcepub fn delete_metric_attribution(&self) -> DeleteMetricAttribution
pub fn delete_metric_attribution(&self) -> DeleteMetricAttribution
Constructs a fluent builder for the DeleteMetricAttribution
operation.
- The fluent builder is configurable:
metric_attribution_arn(impl Into<String>)
/set_metric_attribution_arn(Option<String>)
:The metric attribution’s Amazon Resource Name (ARN).
- On success, responds with
DeleteMetricAttributionOutput
- On failure, responds with
SdkError<DeleteMetricAttributionError>
sourcepub fn delete_recommender(&self) -> DeleteRecommender
pub fn delete_recommender(&self) -> DeleteRecommender
Constructs a fluent builder for the DeleteRecommender
operation.
- The fluent builder is configurable:
recommender_arn(impl Into<String>)
/set_recommender_arn(Option<String>)
:The Amazon Resource Name (ARN) of the recommender to delete.
- On success, responds with
DeleteRecommenderOutput
- On failure, responds with
SdkError<DeleteRecommenderError>
sourcepub fn delete_schema(&self) -> DeleteSchema
pub fn delete_schema(&self) -> DeleteSchema
Constructs a fluent builder for the DeleteSchema
operation.
- The fluent builder is configurable:
schema_arn(impl Into<String>)
/set_schema_arn(Option<String>)
:The Amazon Resource Name (ARN) of the schema to delete.
- On success, responds with
DeleteSchemaOutput
- On failure, responds with
SdkError<DeleteSchemaError>
sourcepub fn delete_solution(&self) -> DeleteSolution
pub fn delete_solution(&self) -> DeleteSolution
Constructs a fluent builder for the DeleteSolution
operation.
- The fluent builder is configurable:
solution_arn(impl Into<String>)
/set_solution_arn(Option<String>)
:The ARN of the solution to delete.
- On success, responds with
DeleteSolutionOutput
- On failure, responds with
SdkError<DeleteSolutionError>
sourcepub fn describe_algorithm(&self) -> DescribeAlgorithm
pub fn describe_algorithm(&self) -> DescribeAlgorithm
Constructs a fluent builder for the DescribeAlgorithm
operation.
- The fluent builder is configurable:
algorithm_arn(impl Into<String>)
/set_algorithm_arn(Option<String>)
:The Amazon Resource Name (ARN) of the algorithm to describe.
- On success, responds with
DescribeAlgorithmOutput
with field(s):algorithm(Option<Algorithm>)
:A listing of the properties of the algorithm.
- On failure, responds with
SdkError<DescribeAlgorithmError>
sourcepub fn describe_batch_inference_job(&self) -> DescribeBatchInferenceJob
pub fn describe_batch_inference_job(&self) -> DescribeBatchInferenceJob
Constructs a fluent builder for the DescribeBatchInferenceJob
operation.
- The fluent builder is configurable:
batch_inference_job_arn(impl Into<String>)
/set_batch_inference_job_arn(Option<String>)
:The ARN of the batch inference job to describe.
- On success, responds with
DescribeBatchInferenceJobOutput
with field(s):batch_inference_job(Option<BatchInferenceJob>)
:Information on the specified batch inference job.
- On failure, responds with
SdkError<DescribeBatchInferenceJobError>
sourcepub fn describe_batch_segment_job(&self) -> DescribeBatchSegmentJob
pub fn describe_batch_segment_job(&self) -> DescribeBatchSegmentJob
Constructs a fluent builder for the DescribeBatchSegmentJob
operation.
- The fluent builder is configurable:
batch_segment_job_arn(impl Into<String>)
/set_batch_segment_job_arn(Option<String>)
:The ARN of the batch segment job to describe.
- On success, responds with
DescribeBatchSegmentJobOutput
with field(s):batch_segment_job(Option<BatchSegmentJob>)
:Information on the specified batch segment job.
- On failure, responds with
SdkError<DescribeBatchSegmentJobError>
sourcepub fn describe_campaign(&self) -> DescribeCampaign
pub fn describe_campaign(&self) -> DescribeCampaign
Constructs a fluent builder for the DescribeCampaign
operation.
- The fluent builder is configurable:
campaign_arn(impl Into<String>)
/set_campaign_arn(Option<String>)
:The Amazon Resource Name (ARN) of the campaign.
- On success, responds with
DescribeCampaignOutput
with field(s):campaign(Option<Campaign>)
:The properties of the campaign.
- On failure, responds with
SdkError<DescribeCampaignError>
sourcepub fn describe_dataset(&self) -> DescribeDataset
pub fn describe_dataset(&self) -> DescribeDataset
Constructs a fluent builder for the DescribeDataset
operation.
- The fluent builder is configurable:
dataset_arn(impl Into<String>)
/set_dataset_arn(Option<String>)
:The Amazon Resource Name (ARN) of the dataset to describe.
- On success, responds with
DescribeDatasetOutput
with field(s):dataset(Option<Dataset>)
:A listing of the dataset’s properties.
- On failure, responds with
SdkError<DescribeDatasetError>
sourcepub fn describe_dataset_export_job(&self) -> DescribeDatasetExportJob
pub fn describe_dataset_export_job(&self) -> DescribeDatasetExportJob
Constructs a fluent builder for the DescribeDatasetExportJob
operation.
- The fluent builder is configurable:
dataset_export_job_arn(impl Into<String>)
/set_dataset_export_job_arn(Option<String>)
:The Amazon Resource Name (ARN) of the dataset export job to describe.
- On success, responds with
DescribeDatasetExportJobOutput
with field(s):dataset_export_job(Option<DatasetExportJob>)
:Information about the dataset export job, including the status.
The status is one of the following values:
-
CREATE PENDING
-
CREATE IN_PROGRESS
-
ACTIVE
-
CREATE FAILED
-
- On failure, responds with
SdkError<DescribeDatasetExportJobError>
sourcepub fn describe_dataset_group(&self) -> DescribeDatasetGroup
pub fn describe_dataset_group(&self) -> DescribeDatasetGroup
Constructs a fluent builder for the DescribeDatasetGroup
operation.
- The fluent builder is configurable:
dataset_group_arn(impl Into<String>)
/set_dataset_group_arn(Option<String>)
:The Amazon Resource Name (ARN) of the dataset group to describe.
- On success, responds with
DescribeDatasetGroupOutput
with field(s):dataset_group(Option<DatasetGroup>)
:A listing of the dataset group’s properties.
- On failure, responds with
SdkError<DescribeDatasetGroupError>
sourcepub fn describe_dataset_import_job(&self) -> DescribeDatasetImportJob
pub fn describe_dataset_import_job(&self) -> DescribeDatasetImportJob
Constructs a fluent builder for the DescribeDatasetImportJob
operation.
- The fluent builder is configurable:
dataset_import_job_arn(impl Into<String>)
/set_dataset_import_job_arn(Option<String>)
:The Amazon Resource Name (ARN) of the dataset import job to describe.
- On success, responds with
DescribeDatasetImportJobOutput
with field(s):dataset_import_job(Option<DatasetImportJob>)
:Information about the dataset import job, including the status.
The status is one of the following values:
-
CREATE PENDING
-
CREATE IN_PROGRESS
-
ACTIVE
-
CREATE FAILED
-
- On failure, responds with
SdkError<DescribeDatasetImportJobError>
sourcepub fn describe_event_tracker(&self) -> DescribeEventTracker
pub fn describe_event_tracker(&self) -> DescribeEventTracker
Constructs a fluent builder for the DescribeEventTracker
operation.
- The fluent builder is configurable:
event_tracker_arn(impl Into<String>)
/set_event_tracker_arn(Option<String>)
:The Amazon Resource Name (ARN) of the event tracker to describe.
- On success, responds with
DescribeEventTrackerOutput
with field(s):event_tracker(Option<EventTracker>)
:An object that describes the event tracker.
- On failure, responds with
SdkError<DescribeEventTrackerError>
sourcepub fn describe_feature_transformation(&self) -> DescribeFeatureTransformation
pub fn describe_feature_transformation(&self) -> DescribeFeatureTransformation
Constructs a fluent builder for the DescribeFeatureTransformation
operation.
- The fluent builder is configurable:
feature_transformation_arn(impl Into<String>)
/set_feature_transformation_arn(Option<String>)
:The Amazon Resource Name (ARN) of the feature transformation to describe.
- On success, responds with
DescribeFeatureTransformationOutput
with field(s):feature_transformation(Option<FeatureTransformation>)
:A listing of the FeatureTransformation properties.
- On failure, responds with
SdkError<DescribeFeatureTransformationError>
sourcepub fn describe_filter(&self) -> DescribeFilter
pub fn describe_filter(&self) -> DescribeFilter
Constructs a fluent builder for the DescribeFilter
operation.
- The fluent builder is configurable:
filter_arn(impl Into<String>)
/set_filter_arn(Option<String>)
:The ARN of the filter to describe.
- On success, responds with
DescribeFilterOutput
with field(s):filter(Option<Filter>)
:The filter’s details.
- On failure, responds with
SdkError<DescribeFilterError>
sourcepub fn describe_metric_attribution(&self) -> DescribeMetricAttribution
pub fn describe_metric_attribution(&self) -> DescribeMetricAttribution
Constructs a fluent builder for the DescribeMetricAttribution
operation.
- The fluent builder is configurable:
metric_attribution_arn(impl Into<String>)
/set_metric_attribution_arn(Option<String>)
:The metric attribution’s Amazon Resource Name (ARN).
- On success, responds with
DescribeMetricAttributionOutput
with field(s):metric_attribution(Option<MetricAttribution>)
:The details of the metric attribution.
- On failure, responds with
SdkError<DescribeMetricAttributionError>
sourcepub fn describe_recipe(&self) -> DescribeRecipe
pub fn describe_recipe(&self) -> DescribeRecipe
Constructs a fluent builder for the DescribeRecipe
operation.
- The fluent builder is configurable:
recipe_arn(impl Into<String>)
/set_recipe_arn(Option<String>)
:The Amazon Resource Name (ARN) of the recipe to describe.
- On success, responds with
DescribeRecipeOutput
with field(s):recipe(Option<Recipe>)
:An object that describes the recipe.
- On failure, responds with
SdkError<DescribeRecipeError>
sourcepub fn describe_recommender(&self) -> DescribeRecommender
pub fn describe_recommender(&self) -> DescribeRecommender
Constructs a fluent builder for the DescribeRecommender
operation.
- The fluent builder is configurable:
recommender_arn(impl Into<String>)
/set_recommender_arn(Option<String>)
:The Amazon Resource Name (ARN) of the recommender to describe.
- On success, responds with
DescribeRecommenderOutput
with field(s):recommender(Option<Recommender>)
:The properties of the recommender.
- On failure, responds with
SdkError<DescribeRecommenderError>
sourcepub fn describe_schema(&self) -> DescribeSchema
pub fn describe_schema(&self) -> DescribeSchema
Constructs a fluent builder for the DescribeSchema
operation.
- The fluent builder is configurable:
schema_arn(impl Into<String>)
/set_schema_arn(Option<String>)
:The Amazon Resource Name (ARN) of the schema to retrieve.
- On success, responds with
DescribeSchemaOutput
with field(s):schema(Option<DatasetSchema>)
:The requested schema.
- On failure, responds with
SdkError<DescribeSchemaError>
sourcepub fn describe_solution(&self) -> DescribeSolution
pub fn describe_solution(&self) -> DescribeSolution
Constructs a fluent builder for the DescribeSolution
operation.
- The fluent builder is configurable:
solution_arn(impl Into<String>)
/set_solution_arn(Option<String>)
:The Amazon Resource Name (ARN) of the solution to describe.
- On success, responds with
DescribeSolutionOutput
with field(s):solution(Option<Solution>)
:An object that describes the solution.
- On failure, responds with
SdkError<DescribeSolutionError>
sourcepub fn describe_solution_version(&self) -> DescribeSolutionVersion
pub fn describe_solution_version(&self) -> DescribeSolutionVersion
Constructs a fluent builder for the DescribeSolutionVersion
operation.
- The fluent builder is configurable:
solution_version_arn(impl Into<String>)
/set_solution_version_arn(Option<String>)
:The Amazon Resource Name (ARN) of the solution version.
- On success, responds with
DescribeSolutionVersionOutput
with field(s):solution_version(Option<SolutionVersion>)
:The solution version.
- On failure, responds with
SdkError<DescribeSolutionVersionError>
sourcepub fn get_solution_metrics(&self) -> GetSolutionMetrics
pub fn get_solution_metrics(&self) -> GetSolutionMetrics
Constructs a fluent builder for the GetSolutionMetrics
operation.
- The fluent builder is configurable:
solution_version_arn(impl Into<String>)
/set_solution_version_arn(Option<String>)
:The Amazon Resource Name (ARN) of the solution version for which to get metrics.
- On success, responds with
GetSolutionMetricsOutput
with field(s):solution_version_arn(Option<String>)
:The same solution version ARN as specified in the request.
metrics(Option<HashMap<String, f64>>)
:The metrics for the solution version. For more information, see Evaluating a solution version with metrics .
- On failure, responds with
SdkError<GetSolutionMetricsError>
sourcepub fn list_batch_inference_jobs(&self) -> ListBatchInferenceJobs
pub fn list_batch_inference_jobs(&self) -> ListBatchInferenceJobs
Constructs a fluent builder for the ListBatchInferenceJobs
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
solution_version_arn(impl Into<String>)
/set_solution_version_arn(Option<String>)
:The Amazon Resource Name (ARN) of the solution version from which the batch inference jobs were created.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:The token to request the next page of results.
max_results(i32)
/set_max_results(Option<i32>)
:The maximum number of batch inference job results to return in each page. The default value is 100.
- On success, responds with
ListBatchInferenceJobsOutput
with field(s):batch_inference_jobs(Option<Vec<BatchInferenceJobSummary>>)
:A list containing information on each job that is returned.
next_token(Option<String>)
:The token to use to retrieve the next page of results. The value is
null
when there are no more results to return.
- On failure, responds with
SdkError<ListBatchInferenceJobsError>
sourcepub fn list_batch_segment_jobs(&self) -> ListBatchSegmentJobs
pub fn list_batch_segment_jobs(&self) -> ListBatchSegmentJobs
Constructs a fluent builder for the ListBatchSegmentJobs
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
solution_version_arn(impl Into<String>)
/set_solution_version_arn(Option<String>)
:The Amazon Resource Name (ARN) of the solution version that the batch segment jobs used to generate batch segments.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:The token to request the next page of results.
max_results(i32)
/set_max_results(Option<i32>)
:The maximum number of batch segment job results to return in each page. The default value is 100.
- On success, responds with
ListBatchSegmentJobsOutput
with field(s):batch_segment_jobs(Option<Vec<BatchSegmentJobSummary>>)
:A list containing information on each job that is returned.
next_token(Option<String>)
:The token to use to retrieve the next page of results. The value is
null
when there are no more results to return.
- On failure, responds with
SdkError<ListBatchSegmentJobsError>
sourcepub fn list_campaigns(&self) -> ListCampaigns
pub fn list_campaigns(&self) -> ListCampaigns
Constructs a fluent builder for the ListCampaigns
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
solution_arn(impl Into<String>)
/set_solution_arn(Option<String>)
:The Amazon Resource Name (ARN) of the solution to list the campaigns for. When a solution is not specified, all the campaigns associated with the account are listed.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:A token returned from the previous call to ListCampaigns for getting the next set of campaigns (if they exist).
max_results(i32)
/set_max_results(Option<i32>)
:The maximum number of campaigns to return.
- On success, responds with
ListCampaignsOutput
with field(s):campaigns(Option<Vec<CampaignSummary>>)
:A list of the campaigns.
next_token(Option<String>)
:A token for getting the next set of campaigns (if they exist).
- On failure, responds with
SdkError<ListCampaignsError>
sourcepub fn list_dataset_export_jobs(&self) -> ListDatasetExportJobs
pub fn list_dataset_export_jobs(&self) -> ListDatasetExportJobs
Constructs a fluent builder for the ListDatasetExportJobs
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
dataset_arn(impl Into<String>)
/set_dataset_arn(Option<String>)
:The Amazon Resource Name (ARN) of the dataset to list the dataset export jobs for.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:A token returned from the previous call to
ListDatasetExportJobs
for getting the next set of dataset export jobs (if they exist).max_results(i32)
/set_max_results(Option<i32>)
:The maximum number of dataset export jobs to return.
- On success, responds with
ListDatasetExportJobsOutput
with field(s):dataset_export_jobs(Option<Vec<DatasetExportJobSummary>>)
:The list of dataset export jobs.
next_token(Option<String>)
:A token for getting the next set of dataset export jobs (if they exist).
- On failure, responds with
SdkError<ListDatasetExportJobsError>
sourcepub fn list_dataset_groups(&self) -> ListDatasetGroups
pub fn list_dataset_groups(&self) -> ListDatasetGroups
Constructs a fluent builder for the ListDatasetGroups
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
next_token(impl Into<String>)
/set_next_token(Option<String>)
:A token returned from the previous call to
ListDatasetGroups
for getting the next set of dataset groups (if they exist).max_results(i32)
/set_max_results(Option<i32>)
:The maximum number of dataset groups to return.
- On success, responds with
ListDatasetGroupsOutput
with field(s):dataset_groups(Option<Vec<DatasetGroupSummary>>)
:The list of your dataset groups.
next_token(Option<String>)
:A token for getting the next set of dataset groups (if they exist).
- On failure, responds with
SdkError<ListDatasetGroupsError>
sourcepub fn list_dataset_import_jobs(&self) -> ListDatasetImportJobs
pub fn list_dataset_import_jobs(&self) -> ListDatasetImportJobs
Constructs a fluent builder for the ListDatasetImportJobs
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
dataset_arn(impl Into<String>)
/set_dataset_arn(Option<String>)
:The Amazon Resource Name (ARN) of the dataset to list the dataset import jobs for.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:A token returned from the previous call to
ListDatasetImportJobs
for getting the next set of dataset import jobs (if they exist).max_results(i32)
/set_max_results(Option<i32>)
:The maximum number of dataset import jobs to return.
- On success, responds with
ListDatasetImportJobsOutput
with field(s):dataset_import_jobs(Option<Vec<DatasetImportJobSummary>>)
:The list of dataset import jobs.
next_token(Option<String>)
:A token for getting the next set of dataset import jobs (if they exist).
- On failure, responds with
SdkError<ListDatasetImportJobsError>
sourcepub fn list_datasets(&self) -> ListDatasets
pub fn list_datasets(&self) -> ListDatasets
Constructs a fluent builder for the ListDatasets
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
dataset_group_arn(impl Into<String>)
/set_dataset_group_arn(Option<String>)
:The Amazon Resource Name (ARN) of the dataset group that contains the datasets to list.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:A token returned from the previous call to
ListDatasetImportJobs
for getting the next set of dataset import jobs (if they exist).max_results(i32)
/set_max_results(Option<i32>)
:The maximum number of datasets to return.
- On success, responds with
ListDatasetsOutput
with field(s):datasets(Option<Vec<DatasetSummary>>)
:An array of
Dataset
objects. Each object provides metadata information.next_token(Option<String>)
:A token for getting the next set of datasets (if they exist).
- On failure, responds with
SdkError<ListDatasetsError>
sourcepub fn list_event_trackers(&self) -> ListEventTrackers
pub fn list_event_trackers(&self) -> ListEventTrackers
Constructs a fluent builder for the ListEventTrackers
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
dataset_group_arn(impl Into<String>)
/set_dataset_group_arn(Option<String>)
:The ARN of a dataset group used to filter the response.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:A token returned from the previous call to
ListEventTrackers
for getting the next set of event trackers (if they exist).max_results(i32)
/set_max_results(Option<i32>)
:The maximum number of event trackers to return.
- On success, responds with
ListEventTrackersOutput
with field(s):event_trackers(Option<Vec<EventTrackerSummary>>)
:A list of event trackers.
next_token(Option<String>)
:A token for getting the next set of event trackers (if they exist).
- On failure, responds with
SdkError<ListEventTrackersError>
sourcepub fn list_filters(&self) -> ListFilters
pub fn list_filters(&self) -> ListFilters
Constructs a fluent builder for the ListFilters
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
dataset_group_arn(impl Into<String>)
/set_dataset_group_arn(Option<String>)
:The ARN of the dataset group that contains the filters.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:A token returned from the previous call to
ListFilters
for getting the next set of filters (if they exist).max_results(i32)
/set_max_results(Option<i32>)
:The maximum number of filters to return.
- On success, responds with
ListFiltersOutput
with field(s):filters(Option<Vec<FilterSummary>>)
:A list of returned filters.
next_token(Option<String>)
:A token for getting the next set of filters (if they exist).
- On failure, responds with
SdkError<ListFiltersError>
sourcepub fn list_metric_attribution_metrics(&self) -> ListMetricAttributionMetrics
pub fn list_metric_attribution_metrics(&self) -> ListMetricAttributionMetrics
Constructs a fluent builder for the ListMetricAttributionMetrics
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
metric_attribution_arn(impl Into<String>)
/set_metric_attribution_arn(Option<String>)
:The Amazon Resource Name (ARN) of the metric attribution to retrieve attributes for.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:Specify the pagination token from a previous request to retrieve the next page of results.
max_results(i32)
/set_max_results(Option<i32>)
:The maximum number of metrics to return in one page of results.
- On success, responds with
ListMetricAttributionMetricsOutput
with field(s):metrics(Option<Vec<MetricAttribute>>)
:The metrics for the specified metric attribution.
next_token(Option<String>)
:Specify the pagination token from a previous
ListMetricAttributionMetricsResponse
request to retrieve the next page of results.
- On failure, responds with
SdkError<ListMetricAttributionMetricsError>
sourcepub fn list_metric_attributions(&self) -> ListMetricAttributions
pub fn list_metric_attributions(&self) -> ListMetricAttributions
Constructs a fluent builder for the ListMetricAttributions
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
dataset_group_arn(impl Into<String>)
/set_dataset_group_arn(Option<String>)
:The metric attributions’ dataset group Amazon Resource Name (ARN).
next_token(impl Into<String>)
/set_next_token(Option<String>)
:Specify the pagination token from a previous request to retrieve the next page of results.
max_results(i32)
/set_max_results(Option<i32>)
:The maximum number of metric attributions to return in one page of results.
- On success, responds with
ListMetricAttributionsOutput
with field(s):metric_attributions(Option<Vec<MetricAttributionSummary>>)
:The list of metric attributions.
next_token(Option<String>)
:Specify the pagination token from a previous request to retrieve the next page of results.
- On failure, responds with
SdkError<ListMetricAttributionsError>
sourcepub fn list_recipes(&self) -> ListRecipes
pub fn list_recipes(&self) -> ListRecipes
Constructs a fluent builder for the ListRecipes
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
recipe_provider(RecipeProvider)
/set_recipe_provider(Option<RecipeProvider>)
:The default is
SERVICE
.next_token(impl Into<String>)
/set_next_token(Option<String>)
:A token returned from the previous call to
ListRecipes
for getting the next set of recipes (if they exist).max_results(i32)
/set_max_results(Option<i32>)
:The maximum number of recipes to return.
domain(Domain)
/set_domain(Option<Domain>)
:Filters returned recipes by domain for a Domain dataset group. Only recipes (Domain dataset group use cases) for this domain are included in the response. If you don’t specify a domain, all recipes are returned.
- On success, responds with
ListRecipesOutput
with field(s):recipes(Option<Vec<RecipeSummary>>)
:The list of available recipes.
next_token(Option<String>)
:A token for getting the next set of recipes.
- On failure, responds with
SdkError<ListRecipesError>
sourcepub fn list_recommenders(&self) -> ListRecommenders
pub fn list_recommenders(&self) -> ListRecommenders
Constructs a fluent builder for the ListRecommenders
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
dataset_group_arn(impl Into<String>)
/set_dataset_group_arn(Option<String>)
:The Amazon Resource Name (ARN) of the Domain dataset group to list the recommenders for. When a Domain dataset group is not specified, all the recommenders associated with the account are listed.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:A token returned from the previous call to
ListRecommenders
for getting the next set of recommenders (if they exist).max_results(i32)
/set_max_results(Option<i32>)
:The maximum number of recommenders to return.
- On success, responds with
ListRecommendersOutput
with field(s):recommenders(Option<Vec<RecommenderSummary>>)
:A list of the recommenders.
next_token(Option<String>)
:A token for getting the next set of recommenders (if they exist).
- On failure, responds with
SdkError<ListRecommendersError>
sourcepub fn list_schemas(&self) -> ListSchemas
pub fn list_schemas(&self) -> ListSchemas
Constructs a fluent builder for the ListSchemas
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
next_token(impl Into<String>)
/set_next_token(Option<String>)
:A token returned from the previous call to
ListSchemas
for getting the next set of schemas (if they exist).max_results(i32)
/set_max_results(Option<i32>)
:The maximum number of schemas to return.
- On success, responds with
ListSchemasOutput
with field(s):schemas(Option<Vec<DatasetSchemaSummary>>)
:A list of schemas.
next_token(Option<String>)
:A token used to get the next set of schemas (if they exist).
- On failure, responds with
SdkError<ListSchemasError>
sourcepub fn list_solutions(&self) -> ListSolutions
pub fn list_solutions(&self) -> ListSolutions
Constructs a fluent builder for the ListSolutions
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
dataset_group_arn(impl Into<String>)
/set_dataset_group_arn(Option<String>)
:The Amazon Resource Name (ARN) of the dataset group.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:A token returned from the previous call to
ListSolutions
for getting the next set of solutions (if they exist).max_results(i32)
/set_max_results(Option<i32>)
:The maximum number of solutions to return.
- On success, responds with
ListSolutionsOutput
with field(s):solutions(Option<Vec<SolutionSummary>>)
:A list of the current solutions.
next_token(Option<String>)
:A token for getting the next set of solutions (if they exist).
- On failure, responds with
SdkError<ListSolutionsError>
sourcepub fn list_solution_versions(&self) -> ListSolutionVersions
pub fn list_solution_versions(&self) -> ListSolutionVersions
Constructs a fluent builder for the ListSolutionVersions
operation.
This operation supports pagination; See into_paginator()
.
- The fluent builder is configurable:
solution_arn(impl Into<String>)
/set_solution_arn(Option<String>)
:The Amazon Resource Name (ARN) of the solution.
next_token(impl Into<String>)
/set_next_token(Option<String>)
:A token returned from the previous call to
ListSolutionVersions
for getting the next set of solution versions (if they exist).max_results(i32)
/set_max_results(Option<i32>)
:The maximum number of solution versions to return.
- On success, responds with
ListSolutionVersionsOutput
with field(s):solution_versions(Option<Vec<SolutionVersionSummary>>)
:A list of solution versions describing the version properties.
next_token(Option<String>)
:A token for getting the next set of solution versions (if they exist).
- On failure, responds with
SdkError<ListSolutionVersionsError>
Constructs a fluent builder for the ListTagsForResource
operation.
- The fluent builder is configurable:
resource_arn(impl Into<String>)
/set_resource_arn(Option<String>)
:The resource’s Amazon Resource Name.
- On success, responds with
ListTagsForResourceOutput
with field(s):tags(Option<Vec<Tag>>)
:The resource’s tags.
- On failure, responds with
SdkError<ListTagsForResourceError>
sourcepub fn start_recommender(&self) -> StartRecommender
pub fn start_recommender(&self) -> StartRecommender
Constructs a fluent builder for the StartRecommender
operation.
- The fluent builder is configurable:
recommender_arn(impl Into<String>)
/set_recommender_arn(Option<String>)
:The Amazon Resource Name (ARN) of the recommender to start.
- On success, responds with
StartRecommenderOutput
with field(s):recommender_arn(Option<String>)
:The Amazon Resource Name (ARN) of the recommender you started.
- On failure, responds with
SdkError<StartRecommenderError>
sourcepub fn stop_recommender(&self) -> StopRecommender
pub fn stop_recommender(&self) -> StopRecommender
Constructs a fluent builder for the StopRecommender
operation.
- The fluent builder is configurable:
recommender_arn(impl Into<String>)
/set_recommender_arn(Option<String>)
:The Amazon Resource Name (ARN) of the recommender to stop.
- On success, responds with
StopRecommenderOutput
with field(s):recommender_arn(Option<String>)
:The Amazon Resource Name (ARN) of the recommender you stopped.
- On failure, responds with
SdkError<StopRecommenderError>
sourcepub fn stop_solution_version_creation(&self) -> StopSolutionVersionCreation
pub fn stop_solution_version_creation(&self) -> StopSolutionVersionCreation
Constructs a fluent builder for the StopSolutionVersionCreation
operation.
- The fluent builder is configurable:
solution_version_arn(impl Into<String>)
/set_solution_version_arn(Option<String>)
:The Amazon Resource Name (ARN) of the solution version you want to stop creating.
- On success, responds with
StopSolutionVersionCreationOutput
- On failure, responds with
SdkError<StopSolutionVersionCreationError>
sourcepub fn tag_resource(&self) -> TagResource
pub fn tag_resource(&self) -> TagResource
Constructs a fluent builder for the TagResource
operation.
- The fluent builder is configurable:
resource_arn(impl Into<String>)
/set_resource_arn(Option<String>)
:The resource’s Amazon Resource Name (ARN).
tags(Vec<Tag>)
/set_tags(Option<Vec<Tag>>)
:Tags to apply to the resource. For more information see Tagging Personalize resources.
- On success, responds with
TagResourceOutput
- On failure, responds with
SdkError<TagResourceError>
sourcepub fn untag_resource(&self) -> UntagResource
pub fn untag_resource(&self) -> UntagResource
Constructs a fluent builder for the UntagResource
operation.
- The fluent builder is configurable:
resource_arn(impl Into<String>)
/set_resource_arn(Option<String>)
:The resource’s Amazon Resource Name (ARN).
tag_keys(Vec<String>)
/set_tag_keys(Option<Vec<String>>)
:Keys to remove from the resource’s tags.
- On success, responds with
UntagResourceOutput
- On failure, responds with
SdkError<UntagResourceError>
sourcepub fn update_campaign(&self) -> UpdateCampaign
pub fn update_campaign(&self) -> UpdateCampaign
Constructs a fluent builder for the UpdateCampaign
operation.
- The fluent builder is configurable:
campaign_arn(impl Into<String>)
/set_campaign_arn(Option<String>)
:The Amazon Resource Name (ARN) of the campaign.
solution_version_arn(impl Into<String>)
/set_solution_version_arn(Option<String>)
:The ARN of a new solution version to deploy.
min_provisioned_tps(i32)
/set_min_provisioned_tps(Option<i32>)
:Specifies the requested minimum provisioned transactions (recommendations) per second that Amazon Personalize will support.
campaign_config(CampaignConfig)
/set_campaign_config(Option<CampaignConfig>)
:The configuration details of a campaign.
- On success, responds with
UpdateCampaignOutput
with field(s):campaign_arn(Option<String>)
:The same campaign ARN as given in the request.
- On failure, responds with
SdkError<UpdateCampaignError>
sourcepub fn update_metric_attribution(&self) -> UpdateMetricAttribution
pub fn update_metric_attribution(&self) -> UpdateMetricAttribution
Constructs a fluent builder for the UpdateMetricAttribution
operation.
- The fluent builder is configurable:
add_metrics(Vec<MetricAttribute>)
/set_add_metrics(Option<Vec<MetricAttribute>>)
:Add new metric attributes to the metric attribution.
remove_metrics(Vec<String>)
/set_remove_metrics(Option<Vec<String>>)
:Remove metric attributes from the metric attribution.
metrics_output_config(MetricAttributionOutput)
/set_metrics_output_config(Option<MetricAttributionOutput>)
:An output config for the metric attribution.
metric_attribution_arn(impl Into<String>)
/set_metric_attribution_arn(Option<String>)
:The Amazon Resource Name (ARN) for the metric attribution to update.
- On success, responds with
UpdateMetricAttributionOutput
with field(s):metric_attribution_arn(Option<String>)
:The Amazon Resource Name (ARN) for the metric attribution that you updated.
- On failure, responds with
SdkError<UpdateMetricAttributionError>
sourcepub fn update_recommender(&self) -> UpdateRecommender
pub fn update_recommender(&self) -> UpdateRecommender
Constructs a fluent builder for the UpdateRecommender
operation.
- The fluent builder is configurable:
recommender_arn(impl Into<String>)
/set_recommender_arn(Option<String>)
:The Amazon Resource Name (ARN) of the recommender to modify.
recommender_config(RecommenderConfig)
/set_recommender_config(Option<RecommenderConfig>)
:The configuration details of the recommender.
- On success, responds with
UpdateRecommenderOutput
with field(s):recommender_arn(Option<String>)
:The same recommender Amazon Resource Name (ARN) as given in the request.
- On failure, responds with
SdkError<UpdateRecommenderError>
source§impl Client
impl Client
sourcepub fn new(sdk_config: &SdkConfig) -> Self
pub fn new(sdk_config: &SdkConfig) -> Self
Creates a new client from an SDK Config.
Panics
- This method will panic if the
sdk_config
is missing an async sleep implementation. If you experience this panic, set thesleep_impl
on the Config passed into this function to fix it. - This method will panic if the
sdk_config
is missing an HTTP connector. If you experience this panic, set thehttp_connector
on the Config passed into this function to fix it.
sourcepub fn from_conf(conf: Config) -> Self
pub fn from_conf(conf: Config) -> Self
Creates a new client from the service Config
.
Panics
- This method will panic if the
conf
is missing an async sleep implementation. If you experience this panic, set thesleep_impl
on the Config passed into this function to fix it. - This method will panic if the
conf
is missing an HTTP connector. If you experience this panic, set thehttp_connector
on the Config passed into this function to fix it.