#[non_exhaustive]pub struct CreateKeyInput {
pub key_attributes: Option<KeyAttributes>,
pub key_check_value_algorithm: Option<KeyCheckValueAlgorithm>,
pub exportable: Option<bool>,
pub enabled: Option<bool>,
pub tags: Option<Vec<Tag>>,
pub derive_key_usage: Option<DeriveKeyUsage>,
}
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.key_attributes: Option<KeyAttributes>
The role of the key, the algorithm it supports, and the cryptographic operations allowed with the key. This data is immutable after the key is created.
key_check_value_algorithm: Option<KeyCheckValueAlgorithm>
The algorithm that Amazon Web Services Payment Cryptography uses to calculate the key check value (KCV). It is used to validate the key integrity.
For TDES keys, the KCV is computed by encrypting 8 bytes, each with value of zero, with the key to be checked and retaining the 3 highest order bytes of the encrypted result. For AES keys, the KCV is computed using a CMAC algorithm where the input data is 16 bytes of zero and retaining the 3 highest order bytes of the encrypted result.
exportable: Option<bool>
Specifies whether the key is exportable from the service.
enabled: Option<bool>
Specifies whether to enable the key. If the key is enabled, it is activated for use within the service. If the key is not enabled, then it is created but not activated. The default value is enabled.
Assigns one or more tags to the Amazon Web Services Payment Cryptography key. Use this parameter to tag a key when it is created. To tag an existing Amazon Web Services Payment Cryptography key, use the TagResource operation.
Each tag consists of a tag key and a tag value. Both the tag key and the tag value are required, but the tag value can be an empty (null) string. You can't have more than one tag on an Amazon Web Services Payment Cryptography key with the same tag key.
Don't include personal, confidential or sensitive information in this field. This field may be displayed in plaintext in CloudTrail logs and other output.
Tagging or untagging an Amazon Web Services Payment Cryptography key can allow or deny permission to the key.
derive_key_usage: Option<DeriveKeyUsage>
The intended cryptographic usage of keys derived from the ECC key pair to be created.
After creating an ECC key pair, you cannot change the intended cryptographic usage of keys derived from it using ECDH.
Implementations§
Source§impl CreateKeyInput
impl CreateKeyInput
Sourcepub fn key_attributes(&self) -> Option<&KeyAttributes>
pub fn key_attributes(&self) -> Option<&KeyAttributes>
The role of the key, the algorithm it supports, and the cryptographic operations allowed with the key. This data is immutable after the key is created.
Sourcepub fn key_check_value_algorithm(&self) -> Option<&KeyCheckValueAlgorithm>
pub fn key_check_value_algorithm(&self) -> Option<&KeyCheckValueAlgorithm>
The algorithm that Amazon Web Services Payment Cryptography uses to calculate the key check value (KCV). It is used to validate the key integrity.
For TDES keys, the KCV is computed by encrypting 8 bytes, each with value of zero, with the key to be checked and retaining the 3 highest order bytes of the encrypted result. For AES keys, the KCV is computed using a CMAC algorithm where the input data is 16 bytes of zero and retaining the 3 highest order bytes of the encrypted result.
Sourcepub fn exportable(&self) -> Option<bool>
pub fn exportable(&self) -> Option<bool>
Specifies whether the key is exportable from the service.
Sourcepub fn enabled(&self) -> Option<bool>
pub fn enabled(&self) -> Option<bool>
Specifies whether to enable the key. If the key is enabled, it is activated for use within the service. If the key is not enabled, then it is created but not activated. The default value is enabled.
Assigns one or more tags to the Amazon Web Services Payment Cryptography key. Use this parameter to tag a key when it is created. To tag an existing Amazon Web Services Payment Cryptography key, use the TagResource operation.
Each tag consists of a tag key and a tag value. Both the tag key and the tag value are required, but the tag value can be an empty (null) string. You can't have more than one tag on an Amazon Web Services Payment Cryptography key with the same tag key.
Don't include personal, confidential or sensitive information in this field. This field may be displayed in plaintext in CloudTrail logs and other output.
Tagging or untagging an Amazon Web Services Payment Cryptography key can allow or deny permission to the key.
If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .tags.is_none()
.
Sourcepub fn derive_key_usage(&self) -> Option<&DeriveKeyUsage>
pub fn derive_key_usage(&self) -> Option<&DeriveKeyUsage>
The intended cryptographic usage of keys derived from the ECC key pair to be created.
After creating an ECC key pair, you cannot change the intended cryptographic usage of keys derived from it using ECDH.
Source§impl CreateKeyInput
impl CreateKeyInput
Sourcepub fn builder() -> CreateKeyInputBuilder
pub fn builder() -> CreateKeyInputBuilder
Creates a new builder-style object to manufacture CreateKeyInput
.
Trait Implementations§
Source§impl Clone for CreateKeyInput
impl Clone for CreateKeyInput
Source§fn clone(&self) -> CreateKeyInput
fn clone(&self) -> CreateKeyInput
1.0.0 · Source§const fn clone_from(&mut self, source: &Self)
const fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl Debug for CreateKeyInput
impl Debug for CreateKeyInput
Source§impl PartialEq for CreateKeyInput
impl PartialEq for CreateKeyInput
impl StructuralPartialEq for CreateKeyInput
Auto Trait Implementations§
impl Freeze for CreateKeyInput
impl RefUnwindSafe for CreateKeyInput
impl Send for CreateKeyInput
impl Sync for CreateKeyInput
impl Unpin for CreateKeyInput
impl UnwindSafe for CreateKeyInput
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Paint for Twhere
T: ?Sized,
impl<T> Paint for Twhere
T: ?Sized,
Source§fn fg(&self, value: Color) -> Painted<&T>
fn fg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the foreground set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like red()
and
green()
, which have the same functionality but are
pithier.
§Example
Set foreground color to white using fg()
:
use yansi::{Paint, Color};
painted.fg(Color::White);
Set foreground color to white using white()
.
use yansi::Paint;
painted.white();
Source§fn bright_black(&self) -> Painted<&T>
fn bright_black(&self) -> Painted<&T>
Source§fn bright_red(&self) -> Painted<&T>
fn bright_red(&self) -> Painted<&T>
Source§fn bright_green(&self) -> Painted<&T>
fn bright_green(&self) -> Painted<&T>
Source§fn bright_yellow(&self) -> Painted<&T>
fn bright_yellow(&self) -> Painted<&T>
Source§fn bright_blue(&self) -> Painted<&T>
fn bright_blue(&self) -> Painted<&T>
Source§fn bright_magenta(&self) -> Painted<&T>
fn bright_magenta(&self) -> Painted<&T>
Source§fn bright_cyan(&self) -> Painted<&T>
fn bright_cyan(&self) -> Painted<&T>
Source§fn bright_white(&self) -> Painted<&T>
fn bright_white(&self) -> Painted<&T>
Source§fn bg(&self, value: Color) -> Painted<&T>
fn bg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the background set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like on_red()
and
on_green()
, which have the same functionality but
are pithier.
§Example
Set background color to red using fg()
:
use yansi::{Paint, Color};
painted.bg(Color::Red);
Set background color to red using on_red()
.
use yansi::Paint;
painted.on_red();
Source§fn on_primary(&self) -> Painted<&T>
fn on_primary(&self) -> Painted<&T>
Source§fn on_magenta(&self) -> Painted<&T>
fn on_magenta(&self) -> Painted<&T>
Source§fn on_bright_black(&self) -> Painted<&T>
fn on_bright_black(&self) -> Painted<&T>
Source§fn on_bright_red(&self) -> Painted<&T>
fn on_bright_red(&self) -> Painted<&T>
Source§fn on_bright_green(&self) -> Painted<&T>
fn on_bright_green(&self) -> Painted<&T>
Source§fn on_bright_yellow(&self) -> Painted<&T>
fn on_bright_yellow(&self) -> Painted<&T>
Source§fn on_bright_blue(&self) -> Painted<&T>
fn on_bright_blue(&self) -> Painted<&T>
Source§fn on_bright_magenta(&self) -> Painted<&T>
fn on_bright_magenta(&self) -> Painted<&T>
Source§fn on_bright_cyan(&self) -> Painted<&T>
fn on_bright_cyan(&self) -> Painted<&T>
Source§fn on_bright_white(&self) -> Painted<&T>
fn on_bright_white(&self) -> Painted<&T>
Source§fn attr(&self, value: Attribute) -> Painted<&T>
fn attr(&self, value: Attribute) -> Painted<&T>
Enables the styling Attribute
value
.
This method should be used rarely. Instead, prefer to use
attribute-specific builder methods like bold()
and
underline()
, which have the same functionality
but are pithier.
§Example
Make text bold using attr()
:
use yansi::{Paint, Attribute};
painted.attr(Attribute::Bold);
Make text bold using using bold()
.
use yansi::Paint;
painted.bold();
Source§fn rapid_blink(&self) -> Painted<&T>
fn rapid_blink(&self) -> Painted<&T>
Source§fn quirk(&self, value: Quirk) -> Painted<&T>
fn quirk(&self, value: Quirk) -> Painted<&T>
Enables the yansi
Quirk
value
.
This method should be used rarely. Instead, prefer to use quirk-specific
builder methods like mask()
and
wrap()
, which have the same functionality but are
pithier.
§Example
Enable wrapping using .quirk()
:
use yansi::{Paint, Quirk};
painted.quirk(Quirk::Wrap);
Enable wrapping using wrap()
.
use yansi::Paint;
painted.wrap();
Source§fn clear(&self) -> Painted<&T>
👎Deprecated since 1.0.1: renamed to resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.
fn clear(&self) -> Painted<&T>
resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.Source§fn whenever(&self, value: Condition) -> Painted<&T>
fn whenever(&self, value: Condition) -> Painted<&T>
Conditionally enable styling based on whether the Condition
value
applies. Replaces any previous condition.
See the crate level docs for more details.
§Example
Enable styling painted
only when both stdout
and stderr
are TTYs:
use yansi::{Paint, Condition};
painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);