#[non_exhaustive]pub struct CreateWorkflowInput {
pub name: Option<String>,
pub client_token: Option<String>,
pub definition_s3_location: Option<DefinitionS3Location>,
pub role_arn: Option<String>,
pub description: Option<String>,
pub encryption_configuration: Option<EncryptionConfiguration>,
pub logging_configuration: Option<LoggingConfiguration>,
pub engine_version: Option<i32>,
pub network_configuration: Option<NetworkConfiguration>,
pub tags: Option<HashMap<String, String>>,
pub trigger_mode: Option<String>,
}Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. } syntax; cannot be matched against without a wildcard ..; and struct update syntax will not work.name: Option<String>The name of the workflow. You must use unique workflow names within your Amazon Web Services account. The service generates a unique identifier that is appended to ensure temporal uniqueness across the account lifecycle.
client_token: Option<String>A unique, case-sensitive identifier that you provide to ensure the idempotency of the request. This token prevents duplicate workflow creation requests.
definition_s3_location: Option<DefinitionS3Location>The Amazon S3 location where the workflow definition file is stored. This must point to a valid YAML file that defines the workflow structure using supported Amazon Web Services operators and tasks. Amazon Managed Workflows for Apache Airflow Serverless takes a snapshot of the definition at creation time, so subsequent changes to the Amazon S3 object will not affect the workflow unless you create a new version. In your YAML definition, include task dependencies, scheduling information, and operator configurations that are compatible with the Amazon Managed Workflows for Apache Airflow Serverless execution environment.
role_arn: Option<String>The Amazon Resource Name (ARN) of the IAM role that Amazon Managed Workflows for Apache Airflow Serverless assumes when executing the workflow. This role must have the necessary permissions to access the required Amazon Web Services services and resources that your workflow tasks will interact with. The role is used for task execution in the isolated, multi-tenant environment and should follow the principle of least privilege. Amazon Managed Workflows for Apache Airflow Serverless validates role access during workflow creation but runtime permission checks are performed by the target services.
description: Option<String>An optional description of the workflow that you can use to provide additional context about the workflow's purpose and functionality.
encryption_configuration: Option<EncryptionConfiguration>The configuration for encrypting workflow data at rest and in transit. Specifies the encryption type and optional KMS key for customer-managed encryption.
logging_configuration: Option<LoggingConfiguration>The configuration for workflow logging. Specifies the CloudWatch log group where workflow execution logs are stored. Amazon Managed Workflows for Apache Airflow Serverless automatically exports worker logs and task-level information to the specified log group in your account using remote logging functionality. This provides comprehensive observability for debugging and monitoring workflow execution across the distributed, serverless environment.
engine_version: Option<i32>The version of the Amazon Managed Workflows for Apache Airflow Serverless engine that you want to use for this workflow. This determines the feature set, supported operators, and execution environment capabilities available to your workflow. Amazon Managed Workflows for Apache Airflow Serverless maintains backward compatibility across versions while introducing new features and improvements. Currently supports version 1 with plans for additional versions as the service evolves.
network_configuration: Option<NetworkConfiguration>Network configuration for the workflow execution environment, including VPC security groups and subnets for secure network access. When specified, Amazon Managed Workflows for Apache Airflow Serverless deploys ECS worker tasks in your customer VPC to provide secure connectivity to your resources. If not specified, tasks run in the service's default worker VPC with network isolation from other customers. This configuration enables secure access to VPC-only resources like RDS databases or private endpoints.
A map of tags to assign to the workflow resource. Tags are key-value pairs that are used for resource organization and cost allocation.
trigger_mode: Option<String>The trigger mode for the workflow execution.
Implementations§
Source§impl CreateWorkflowInput
impl CreateWorkflowInput
Sourcepub fn name(&self) -> Option<&str>
pub fn name(&self) -> Option<&str>
The name of the workflow. You must use unique workflow names within your Amazon Web Services account. The service generates a unique identifier that is appended to ensure temporal uniqueness across the account lifecycle.
Sourcepub fn client_token(&self) -> Option<&str>
pub fn client_token(&self) -> Option<&str>
A unique, case-sensitive identifier that you provide to ensure the idempotency of the request. This token prevents duplicate workflow creation requests.
Sourcepub fn definition_s3_location(&self) -> Option<&DefinitionS3Location>
pub fn definition_s3_location(&self) -> Option<&DefinitionS3Location>
The Amazon S3 location where the workflow definition file is stored. This must point to a valid YAML file that defines the workflow structure using supported Amazon Web Services operators and tasks. Amazon Managed Workflows for Apache Airflow Serverless takes a snapshot of the definition at creation time, so subsequent changes to the Amazon S3 object will not affect the workflow unless you create a new version. In your YAML definition, include task dependencies, scheduling information, and operator configurations that are compatible with the Amazon Managed Workflows for Apache Airflow Serverless execution environment.
Sourcepub fn role_arn(&self) -> Option<&str>
pub fn role_arn(&self) -> Option<&str>
The Amazon Resource Name (ARN) of the IAM role that Amazon Managed Workflows for Apache Airflow Serverless assumes when executing the workflow. This role must have the necessary permissions to access the required Amazon Web Services services and resources that your workflow tasks will interact with. The role is used for task execution in the isolated, multi-tenant environment and should follow the principle of least privilege. Amazon Managed Workflows for Apache Airflow Serverless validates role access during workflow creation but runtime permission checks are performed by the target services.
Sourcepub fn description(&self) -> Option<&str>
pub fn description(&self) -> Option<&str>
An optional description of the workflow that you can use to provide additional context about the workflow's purpose and functionality.
Sourcepub fn encryption_configuration(&self) -> Option<&EncryptionConfiguration>
pub fn encryption_configuration(&self) -> Option<&EncryptionConfiguration>
The configuration for encrypting workflow data at rest and in transit. Specifies the encryption type and optional KMS key for customer-managed encryption.
Sourcepub fn logging_configuration(&self) -> Option<&LoggingConfiguration>
pub fn logging_configuration(&self) -> Option<&LoggingConfiguration>
The configuration for workflow logging. Specifies the CloudWatch log group where workflow execution logs are stored. Amazon Managed Workflows for Apache Airflow Serverless automatically exports worker logs and task-level information to the specified log group in your account using remote logging functionality. This provides comprehensive observability for debugging and monitoring workflow execution across the distributed, serverless environment.
Sourcepub fn engine_version(&self) -> Option<i32>
pub fn engine_version(&self) -> Option<i32>
The version of the Amazon Managed Workflows for Apache Airflow Serverless engine that you want to use for this workflow. This determines the feature set, supported operators, and execution environment capabilities available to your workflow. Amazon Managed Workflows for Apache Airflow Serverless maintains backward compatibility across versions while introducing new features and improvements. Currently supports version 1 with plans for additional versions as the service evolves.
Sourcepub fn network_configuration(&self) -> Option<&NetworkConfiguration>
pub fn network_configuration(&self) -> Option<&NetworkConfiguration>
Network configuration for the workflow execution environment, including VPC security groups and subnets for secure network access. When specified, Amazon Managed Workflows for Apache Airflow Serverless deploys ECS worker tasks in your customer VPC to provide secure connectivity to your resources. If not specified, tasks run in the service's default worker VPC with network isolation from other customers. This configuration enables secure access to VPC-only resources like RDS databases or private endpoints.
A map of tags to assign to the workflow resource. Tags are key-value pairs that are used for resource organization and cost allocation.
Sourcepub fn trigger_mode(&self) -> Option<&str>
pub fn trigger_mode(&self) -> Option<&str>
The trigger mode for the workflow execution.
Source§impl CreateWorkflowInput
impl CreateWorkflowInput
Sourcepub fn builder() -> CreateWorkflowInputBuilder
pub fn builder() -> CreateWorkflowInputBuilder
Creates a new builder-style object to manufacture CreateWorkflowInput.
Trait Implementations§
Source§impl Clone for CreateWorkflowInput
impl Clone for CreateWorkflowInput
Source§fn clone(&self) -> CreateWorkflowInput
fn clone(&self) -> CreateWorkflowInput
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moreSource§impl Debug for CreateWorkflowInput
impl Debug for CreateWorkflowInput
Source§impl PartialEq for CreateWorkflowInput
impl PartialEq for CreateWorkflowInput
impl StructuralPartialEq for CreateWorkflowInput
Auto Trait Implementations§
impl Freeze for CreateWorkflowInput
impl RefUnwindSafe for CreateWorkflowInput
impl Send for CreateWorkflowInput
impl Sync for CreateWorkflowInput
impl Unpin for CreateWorkflowInput
impl UnwindSafe for CreateWorkflowInput
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Paint for Twhere
T: ?Sized,
impl<T> Paint for Twhere
T: ?Sized,
Source§fn fg(&self, value: Color) -> Painted<&T>
fn fg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self with the foreground set to
value.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like red() and
green(), which have the same functionality but are
pithier.
§Example
Set foreground color to white using fg():
use yansi::{Paint, Color};
painted.fg(Color::White);Set foreground color to white using white().
use yansi::Paint;
painted.white();Source§fn bright_black(&self) -> Painted<&T>
fn bright_black(&self) -> Painted<&T>
Source§fn bright_red(&self) -> Painted<&T>
fn bright_red(&self) -> Painted<&T>
Source§fn bright_green(&self) -> Painted<&T>
fn bright_green(&self) -> Painted<&T>
Source§fn bright_yellow(&self) -> Painted<&T>
fn bright_yellow(&self) -> Painted<&T>
Source§fn bright_blue(&self) -> Painted<&T>
fn bright_blue(&self) -> Painted<&T>
Source§fn bright_magenta(&self) -> Painted<&T>
fn bright_magenta(&self) -> Painted<&T>
Source§fn bright_cyan(&self) -> Painted<&T>
fn bright_cyan(&self) -> Painted<&T>
Source§fn bright_white(&self) -> Painted<&T>
fn bright_white(&self) -> Painted<&T>
Source§fn bg(&self, value: Color) -> Painted<&T>
fn bg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self with the background set to
value.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like on_red() and
on_green(), which have the same functionality but
are pithier.
§Example
Set background color to red using fg():
use yansi::{Paint, Color};
painted.bg(Color::Red);Set background color to red using on_red().
use yansi::Paint;
painted.on_red();Source§fn on_primary(&self) -> Painted<&T>
fn on_primary(&self) -> Painted<&T>
Source§fn on_magenta(&self) -> Painted<&T>
fn on_magenta(&self) -> Painted<&T>
Source§fn on_bright_black(&self) -> Painted<&T>
fn on_bright_black(&self) -> Painted<&T>
Source§fn on_bright_red(&self) -> Painted<&T>
fn on_bright_red(&self) -> Painted<&T>
Source§fn on_bright_green(&self) -> Painted<&T>
fn on_bright_green(&self) -> Painted<&T>
Source§fn on_bright_yellow(&self) -> Painted<&T>
fn on_bright_yellow(&self) -> Painted<&T>
Source§fn on_bright_blue(&self) -> Painted<&T>
fn on_bright_blue(&self) -> Painted<&T>
Source§fn on_bright_magenta(&self) -> Painted<&T>
fn on_bright_magenta(&self) -> Painted<&T>
Source§fn on_bright_cyan(&self) -> Painted<&T>
fn on_bright_cyan(&self) -> Painted<&T>
Source§fn on_bright_white(&self) -> Painted<&T>
fn on_bright_white(&self) -> Painted<&T>
Source§fn attr(&self, value: Attribute) -> Painted<&T>
fn attr(&self, value: Attribute) -> Painted<&T>
Enables the styling Attribute value.
This method should be used rarely. Instead, prefer to use
attribute-specific builder methods like bold() and
underline(), which have the same functionality
but are pithier.
§Example
Make text bold using attr():
use yansi::{Paint, Attribute};
painted.attr(Attribute::Bold);Make text bold using using bold().
use yansi::Paint;
painted.bold();Source§fn rapid_blink(&self) -> Painted<&T>
fn rapid_blink(&self) -> Painted<&T>
Source§fn quirk(&self, value: Quirk) -> Painted<&T>
fn quirk(&self, value: Quirk) -> Painted<&T>
Enables the yansi Quirk value.
This method should be used rarely. Instead, prefer to use quirk-specific
builder methods like mask() and
wrap(), which have the same functionality but are
pithier.
§Example
Enable wrapping using .quirk():
use yansi::{Paint, Quirk};
painted.quirk(Quirk::Wrap);Enable wrapping using wrap().
use yansi::Paint;
painted.wrap();Source§fn clear(&self) -> Painted<&T>
👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear().
The clear() method will be removed in a future release.
fn clear(&self) -> Painted<&T>
resetting() due to conflicts with Vec::clear().
The clear() method will be removed in a future release.Source§fn whenever(&self, value: Condition) -> Painted<&T>
fn whenever(&self, value: Condition) -> Painted<&T>
Conditionally enable styling based on whether the Condition value
applies. Replaces any previous condition.
See the crate level docs for more details.
§Example
Enable styling painted only when both stdout and stderr are TTYs:
use yansi::{Paint, Condition};
painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);