Struct aws_sdk_machinelearning::Client
source · pub struct Client { /* private fields */ }Expand description
Client for Amazon Machine Learning
Client for invoking operations on Amazon Machine Learning. Each operation on Amazon Machine Learning is a method on this
this struct. .send() MUST be invoked on the generated operations to dispatch the request to the service.
Constructing a Client
A Config is required to construct a client. For most use cases, the aws-config
crate should be used to automatically resolve this config using
aws_config::load_from_env(), since this will resolve an SdkConfig which can be shared
across multiple different AWS SDK clients. This config resolution process can be customized
by calling aws_config::from_env() instead, which returns a ConfigLoader that uses
the builder pattern to customize the default config.
In the simplest case, creating a client looks as follows:
let config = aws_config::load_from_env().await;
let client = aws_sdk_machinelearning::Client::new(&config);Occasionally, SDKs may have additional service-specific that can be set on the Config that
is absent from SdkConfig, or slightly different settings for a specific client may be desired.
The Config struct implements From<&SdkConfig>, so setting these specific settings can be
done as follows:
let sdk_config = ::aws_config::load_from_env().await;
let config = aws_sdk_machinelearning::config::Builder::from(&sdk_config)
.some_service_specific_setting("value")
.build();See the aws-config docs and Config for more information on customizing configuration.
Note: Client construction is expensive due to connection thread pool initialization, and should be done once at application start-up.
Using the Client
A client has a function for every operation that can be performed by the service.
For example, the AddTags operation has
a Client::add_tags, function which returns a builder for that operation.
The fluent builder ultimately has a send() function that returns an async future that
returns a result, as illustrated below:
let result = client.add_tags()
.resource_id("example")
.send()
.await;The underlying HTTP requests that get made by this can be modified with the customize_operation
function on the fluent builder. See the customize module for more
information.
Implementations§
source§impl Client
impl Client
Constructs a fluent builder for the AddTags operation.
- The fluent builder is configurable:
tags(Tag)/set_tags(Option<Vec<Tag>>):The key-value pairs to use to create tags. If you specify a key without specifying a value, Amazon ML creates a tag with the specified key and a value of null.
resource_id(impl Into<String>)/set_resource_id(Option<String>):The ID of the ML object to tag. For example,
exampleModelId.resource_type(TaggableResourceType)/set_resource_type(Option<TaggableResourceType>):The type of the ML object to tag.
- On success, responds with
AddTagsOutputwith field(s):resource_id(Option<String>):The ID of the ML object that was tagged.
resource_type(Option<TaggableResourceType>):The type of the ML object that was tagged.
- On failure, responds with
SdkError<AddTagsError>
source§impl Client
impl Client
sourcepub fn create_batch_prediction(&self) -> CreateBatchPredictionFluentBuilder
pub fn create_batch_prediction(&self) -> CreateBatchPredictionFluentBuilder
Constructs a fluent builder for the CreateBatchPrediction operation.
- The fluent builder is configurable:
batch_prediction_id(impl Into<String>)/set_batch_prediction_id(Option<String>):A user-supplied ID that uniquely identifies the
BatchPrediction.batch_prediction_name(impl Into<String>)/set_batch_prediction_name(Option<String>):A user-supplied name or description of the
BatchPrediction.BatchPredictionNamecan only use the UTF-8 character set.ml_model_id(impl Into<String>)/set_ml_model_id(Option<String>):The ID of the
MLModelthat will generate predictions for the group of observations.batch_prediction_data_source_id(impl Into<String>)/set_batch_prediction_data_source_id(Option<String>):The ID of the
DataSourcethat points to the group of observations to predict.output_uri(impl Into<String>)/set_output_uri(Option<String>):The location of an Amazon Simple Storage Service (Amazon S3) bucket or directory to store the batch prediction results. The following substrings are not allowed in the
s3 keyportion of theoutputURIfield: ‘:’, ‘//’, ‘/./’, ‘/../’.Amazon ML needs permissions to store and retrieve the logs on your behalf. For information about how to set permissions, see the Amazon Machine Learning Developer Guide.
- On success, responds with
CreateBatchPredictionOutputwith field(s):batch_prediction_id(Option<String>):A user-supplied ID that uniquely identifies the
BatchPrediction. This value is identical to the value of theBatchPredictionIdin the request.
- On failure, responds with
SdkError<CreateBatchPredictionError>
source§impl Client
impl Client
sourcepub fn create_data_source_from_rds(
&self
) -> CreateDataSourceFromRDSFluentBuilder
pub fn create_data_source_from_rds( &self ) -> CreateDataSourceFromRDSFluentBuilder
Constructs a fluent builder for the CreateDataSourceFromRDS operation.
- The fluent builder is configurable:
data_source_id(impl Into<String>)/set_data_source_id(Option<String>):A user-supplied ID that uniquely identifies the
DataSource. Typically, an Amazon Resource Number (ARN) becomes the ID for aDataSource.data_source_name(impl Into<String>)/set_data_source_name(Option<String>):A user-supplied name or description of the
DataSource.rds_data(RdsDataSpec)/set_rds_data(Option<RdsDataSpec>):The data specification of an Amazon RDS
DataSource:-
DatabaseInformation -
-
DatabaseName- The name of the Amazon RDS database. -
InstanceIdentifier- A unique identifier for the Amazon RDS database instance.
-
-
DatabaseCredentials - AWS Identity and Access Management (IAM) credentials that are used to connect to the Amazon RDS database.
-
ResourceRole - A role (DataPipelineDefaultResourceRole) assumed by an EC2 instance to carry out the copy task from Amazon RDS to Amazon Simple Storage Service (Amazon S3). For more information, see Role templates for data pipelines.
-
ServiceRole - A role (DataPipelineDefaultRole) assumed by the AWS Data Pipeline service to monitor the progress of the copy task from Amazon RDS to Amazon S3. For more information, see Role templates for data pipelines.
-
SecurityInfo - The security information to use to access an RDS DB instance. You need to set up appropriate ingress rules for the security entity IDs provided to allow access to the Amazon RDS instance. Specify a [
SubnetId,SecurityGroupIds] pair for a VPC-based RDS DB instance. -
SelectSqlQuery - A query that is used to retrieve the observation data for the
Datasource. -
S3StagingLocation - The Amazon S3 location for staging Amazon RDS data. The data retrieved from Amazon RDS using
SelectSqlQueryis stored in this location. -
DataSchemaUri - The Amazon S3 location of the
DataSchema. -
DataSchema - A JSON string representing the schema. This is not required if
DataSchemaUriis specified. -
DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the
Datasource.Sample -
“{"splitting":{"percentBegin":10,"percentEnd":60}}”
-
role_arn(impl Into<String>)/set_role_arn(Option<String>):The role that Amazon ML assumes on behalf of the user to create and activate a data pipeline in the user’s account and copy data using the
SelectSqlQueryquery from Amazon RDS to Amazon S3.compute_statistics(bool)/set_compute_statistics(Option<bool>):The compute statistics for a
DataSource. The statistics are generated from the observation data referenced by aDataSource. Amazon ML uses the statistics internally duringMLModeltraining. This parameter must be set totrueif theDataSourceneeds to be used forMLModeltraining.
- On success, responds with
CreateDataSourceFromRdsOutputwith field(s):data_source_id(Option<String>):A user-supplied ID that uniquely identifies the datasource. This value should be identical to the value of the
DataSourceIDin the request.
- On failure, responds with
SdkError<CreateDataSourceFromRDSError>
source§impl Client
impl Client
sourcepub fn create_data_source_from_redshift(
&self
) -> CreateDataSourceFromRedshiftFluentBuilder
pub fn create_data_source_from_redshift( &self ) -> CreateDataSourceFromRedshiftFluentBuilder
Constructs a fluent builder for the CreateDataSourceFromRedshift operation.
- The fluent builder is configurable:
data_source_id(impl Into<String>)/set_data_source_id(Option<String>):A user-supplied ID that uniquely identifies the
DataSource.data_source_name(impl Into<String>)/set_data_source_name(Option<String>):A user-supplied name or description of the
DataSource.data_spec(RedshiftDataSpec)/set_data_spec(Option<RedshiftDataSpec>):The data specification of an Amazon Redshift
DataSource:-
DatabaseInformation -
-
DatabaseName- The name of the Amazon Redshift database. -
ClusterIdentifier- The unique ID for the Amazon Redshift cluster.
-
-
DatabaseCredentials - The AWS Identity and Access Management (IAM) credentials that are used to connect to the Amazon Redshift database.
-
SelectSqlQuery - The query that is used to retrieve the observation data for the
Datasource. -
S3StagingLocation - The Amazon Simple Storage Service (Amazon S3) location for staging Amazon Redshift data. The data retrieved from Amazon Redshift using the
SelectSqlQueryquery is stored in this location. -
DataSchemaUri - The Amazon S3 location of the
DataSchema. -
DataSchema - A JSON string representing the schema. This is not required if
DataSchemaUriis specified. -
DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the
DataSource.Sample -
“{"splitting":{"percentBegin":10,"percentEnd":60}}”
-
role_arn(impl Into<String>)/set_role_arn(Option<String>):A fully specified role Amazon Resource Name (ARN). Amazon ML assumes the role on behalf of the user to create the following:
-
A security group to allow Amazon ML to execute the
SelectSqlQueryquery on an Amazon Redshift cluster -
An Amazon S3 bucket policy to grant Amazon ML read/write permissions on the
S3StagingLocation
-
compute_statistics(bool)/set_compute_statistics(Option<bool>):The compute statistics for a
DataSource. The statistics are generated from the observation data referenced by aDataSource. Amazon ML uses the statistics internally duringMLModeltraining. This parameter must be set totrueif theDataSourceneeds to be used forMLModeltraining.
- On success, responds with
CreateDataSourceFromRedshiftOutputwith field(s):data_source_id(Option<String>):A user-supplied ID that uniquely identifies the datasource. This value should be identical to the value of the
DataSourceIDin the request.
- On failure, responds with
SdkError<CreateDataSourceFromRedshiftError>
source§impl Client
impl Client
sourcepub fn create_data_source_from_s3(&self) -> CreateDataSourceFromS3FluentBuilder
pub fn create_data_source_from_s3(&self) -> CreateDataSourceFromS3FluentBuilder
Constructs a fluent builder for the CreateDataSourceFromS3 operation.
- The fluent builder is configurable:
data_source_id(impl Into<String>)/set_data_source_id(Option<String>):A user-supplied identifier that uniquely identifies the
DataSource.data_source_name(impl Into<String>)/set_data_source_name(Option<String>):A user-supplied name or description of the
DataSource.data_spec(S3DataSpec)/set_data_spec(Option<S3DataSpec>):The data specification of a
DataSource:-
DataLocationS3 - The Amazon S3 location of the observation data.
-
DataSchemaLocationS3 - The Amazon S3 location of the
DataSchema. -
DataSchema - A JSON string representing the schema. This is not required if
DataSchemaUriis specified. -
DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the
Datasource.Sample -
“{"splitting":{"percentBegin":10,"percentEnd":60}}”
-
compute_statistics(bool)/set_compute_statistics(Option<bool>):The compute statistics for a
DataSource. The statistics are generated from the observation data referenced by aDataSource. Amazon ML uses the statistics internally duringMLModeltraining. This parameter must be set totrueif theDataSourceneeds to be used forMLModeltraining.
- On success, responds with
CreateDataSourceFromS3Outputwith field(s):data_source_id(Option<String>):A user-supplied ID that uniquely identifies the
DataSource. This value should be identical to the value of theDataSourceIDin the request.
- On failure, responds with
SdkError<CreateDataSourceFromS3Error>
source§impl Client
impl Client
sourcepub fn create_evaluation(&self) -> CreateEvaluationFluentBuilder
pub fn create_evaluation(&self) -> CreateEvaluationFluentBuilder
Constructs a fluent builder for the CreateEvaluation operation.
- The fluent builder is configurable:
evaluation_id(impl Into<String>)/set_evaluation_id(Option<String>):A user-supplied ID that uniquely identifies the
Evaluation.evaluation_name(impl Into<String>)/set_evaluation_name(Option<String>):A user-supplied name or description of the
Evaluation.ml_model_id(impl Into<String>)/set_ml_model_id(Option<String>):The ID of the
MLModelto evaluate.The schema used in creating the
MLModelmust match the schema of theDataSourceused in theEvaluation.evaluation_data_source_id(impl Into<String>)/set_evaluation_data_source_id(Option<String>):The ID of the
DataSourcefor the evaluation. The schema of theDataSourcemust match the schema used to create theMLModel.
- On success, responds with
CreateEvaluationOutputwith field(s):evaluation_id(Option<String>):The user-supplied ID that uniquely identifies the
Evaluation. This value should be identical to the value of theEvaluationIdin the request.
- On failure, responds with
SdkError<CreateEvaluationError>
source§impl Client
impl Client
sourcepub fn create_ml_model(&self) -> CreateMLModelFluentBuilder
pub fn create_ml_model(&self) -> CreateMLModelFluentBuilder
Constructs a fluent builder for the CreateMLModel operation.
- The fluent builder is configurable:
ml_model_id(impl Into<String>)/set_ml_model_id(Option<String>):A user-supplied ID that uniquely identifies the
MLModel.ml_model_name(impl Into<String>)/set_ml_model_name(Option<String>):A user-supplied name or description of the
MLModel.ml_model_type(MlModelType)/set_ml_model_type(Option<MlModelType>):The category of supervised learning that this
MLModelwill address. Choose from the following types:-
Choose
REGRESSIONif theMLModelwill be used to predict a numeric value. -
Choose
BINARYif theMLModelresult has two possible values. -
Choose
MULTICLASSif theMLModelresult has a limited number of values.
For more information, see the Amazon Machine Learning Developer Guide.
-
parameters(impl Into<String>, impl Into<String>)/set_parameters(Option<HashMap<String, String>>):A list of the training parameters in the
MLModel. The list is implemented as a map of key-value pairs.The following is the current set of training parameters:
-
sgd.maxMLModelSizeInBytes- The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.The value is an integer that ranges from
100000to2147483648. The default value is33554432. -
sgd.maxPasses- The number of times that the training process traverses the observations to build theMLModel. The value is an integer that ranges from1to10000. The default value is10. -
sgd.shuffleType- Whether Amazon ML shuffles the training data. Shuffling the data improves a model’s ability to find the optimal solution for a variety of data types. The valid values areautoandnone. The default value isnone. We strongly recommend that you shuffle your data. -
sgd.l1RegularizationAmount- The coefficient regularization L1 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse feature set. If you use this parameter, start by specifying a small value, such as1.0E-08.The value is a double that ranges from
0toMAX_DOUBLE. The default is to not use L1 normalization. This parameter can’t be used whenL2is specified. Use this parameter sparingly. -
sgd.l2RegularizationAmount- The coefficient regularization L2 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as1.0E-08.The value is a double that ranges from
0toMAX_DOUBLE. The default is to not use L2 normalization. This parameter can’t be used whenL1is specified. Use this parameter sparingly.
-
training_data_source_id(impl Into<String>)/set_training_data_source_id(Option<String>):The
DataSourcethat points to the training data.recipe(impl Into<String>)/set_recipe(Option<String>):The data recipe for creating the
MLModel. You must specify either the recipe or its URI. If you don’t specify a recipe or its URI, Amazon ML creates a default.recipe_uri(impl Into<String>)/set_recipe_uri(Option<String>):The Amazon Simple Storage Service (Amazon S3) location and file name that contains the
MLModelrecipe. You must specify either the recipe or its URI. If you don’t specify a recipe or its URI, Amazon ML creates a default.
- On success, responds with
CreateMlModelOutputwith field(s):ml_model_id(Option<String>):A user-supplied ID that uniquely identifies the
MLModel. This value should be identical to the value of theMLModelIdin the request.
- On failure, responds with
SdkError<CreateMLModelError>
source§impl Client
impl Client
sourcepub fn create_realtime_endpoint(&self) -> CreateRealtimeEndpointFluentBuilder
pub fn create_realtime_endpoint(&self) -> CreateRealtimeEndpointFluentBuilder
Constructs a fluent builder for the CreateRealtimeEndpoint operation.
- The fluent builder is configurable:
ml_model_id(impl Into<String>)/set_ml_model_id(Option<String>):The ID assigned to the
MLModelduring creation.
- On success, responds with
CreateRealtimeEndpointOutputwith field(s):ml_model_id(Option<String>):A user-supplied ID that uniquely identifies the
MLModel. This value should be identical to the value of theMLModelIdin the request.realtime_endpoint_info(Option<RealtimeEndpointInfo>):The endpoint information of the
MLModel
- On failure, responds with
SdkError<CreateRealtimeEndpointError>
source§impl Client
impl Client
sourcepub fn delete_batch_prediction(&self) -> DeleteBatchPredictionFluentBuilder
pub fn delete_batch_prediction(&self) -> DeleteBatchPredictionFluentBuilder
Constructs a fluent builder for the DeleteBatchPrediction operation.
- The fluent builder is configurable:
batch_prediction_id(impl Into<String>)/set_batch_prediction_id(Option<String>):A user-supplied ID that uniquely identifies the
BatchPrediction.
- On success, responds with
DeleteBatchPredictionOutputwith field(s):batch_prediction_id(Option<String>):A user-supplied ID that uniquely identifies the
BatchPrediction. This value should be identical to the value of theBatchPredictionIDin the request.
- On failure, responds with
SdkError<DeleteBatchPredictionError>
source§impl Client
impl Client
sourcepub fn delete_data_source(&self) -> DeleteDataSourceFluentBuilder
pub fn delete_data_source(&self) -> DeleteDataSourceFluentBuilder
Constructs a fluent builder for the DeleteDataSource operation.
- The fluent builder is configurable:
data_source_id(impl Into<String>)/set_data_source_id(Option<String>):A user-supplied ID that uniquely identifies the
DataSource.
- On success, responds with
DeleteDataSourceOutputwith field(s):data_source_id(Option<String>):A user-supplied ID that uniquely identifies the
DataSource. This value should be identical to the value of theDataSourceIDin the request.
- On failure, responds with
SdkError<DeleteDataSourceError>
source§impl Client
impl Client
sourcepub fn delete_evaluation(&self) -> DeleteEvaluationFluentBuilder
pub fn delete_evaluation(&self) -> DeleteEvaluationFluentBuilder
Constructs a fluent builder for the DeleteEvaluation operation.
- The fluent builder is configurable:
evaluation_id(impl Into<String>)/set_evaluation_id(Option<String>):A user-supplied ID that uniquely identifies the
Evaluationto delete.
- On success, responds with
DeleteEvaluationOutputwith field(s):evaluation_id(Option<String>):A user-supplied ID that uniquely identifies the
Evaluation. This value should be identical to the value of theEvaluationIdin the request.
- On failure, responds with
SdkError<DeleteEvaluationError>
source§impl Client
impl Client
sourcepub fn delete_ml_model(&self) -> DeleteMLModelFluentBuilder
pub fn delete_ml_model(&self) -> DeleteMLModelFluentBuilder
Constructs a fluent builder for the DeleteMLModel operation.
- The fluent builder is configurable:
ml_model_id(impl Into<String>)/set_ml_model_id(Option<String>):A user-supplied ID that uniquely identifies the
MLModel.
- On success, responds with
DeleteMlModelOutputwith field(s):ml_model_id(Option<String>):A user-supplied ID that uniquely identifies the
MLModel. This value should be identical to the value of theMLModelIDin the request.
- On failure, responds with
SdkError<DeleteMLModelError>
source§impl Client
impl Client
sourcepub fn delete_realtime_endpoint(&self) -> DeleteRealtimeEndpointFluentBuilder
pub fn delete_realtime_endpoint(&self) -> DeleteRealtimeEndpointFluentBuilder
Constructs a fluent builder for the DeleteRealtimeEndpoint operation.
- The fluent builder is configurable:
ml_model_id(impl Into<String>)/set_ml_model_id(Option<String>):The ID assigned to the
MLModelduring creation.
- On success, responds with
DeleteRealtimeEndpointOutputwith field(s):ml_model_id(Option<String>):A user-supplied ID that uniquely identifies the
MLModel. This value should be identical to the value of theMLModelIdin the request.realtime_endpoint_info(Option<RealtimeEndpointInfo>):The endpoint information of the
MLModel
- On failure, responds with
SdkError<DeleteRealtimeEndpointError>
source§impl Client
impl Client
Constructs a fluent builder for the DeleteTags operation.
- The fluent builder is configurable:
tag_keys(impl Into<String>)/set_tag_keys(Option<Vec<String>>):One or more tags to delete.
resource_id(impl Into<String>)/set_resource_id(Option<String>):The ID of the tagged ML object. For example,
exampleModelId.resource_type(TaggableResourceType)/set_resource_type(Option<TaggableResourceType>):The type of the tagged ML object.
- On success, responds with
DeleteTagsOutputwith field(s):resource_id(Option<String>):The ID of the ML object from which tags were deleted.
resource_type(Option<TaggableResourceType>):The type of the ML object from which tags were deleted.
- On failure, responds with
SdkError<DeleteTagsError>
source§impl Client
impl Client
sourcepub fn describe_batch_predictions(
&self
) -> DescribeBatchPredictionsFluentBuilder
pub fn describe_batch_predictions( &self ) -> DescribeBatchPredictionsFluentBuilder
Constructs a fluent builder for the DescribeBatchPredictions operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
filter_variable(BatchPredictionFilterVariable)/set_filter_variable(Option<BatchPredictionFilterVariable>):Use one of the following variables to filter a list of
BatchPrediction:-
CreatedAt- Sets the search criteria to theBatchPredictioncreation date. -
Status- Sets the search criteria to theBatchPredictionstatus. -
Name- Sets the search criteria to the contents of theBatchPredictionName. -
IAMUser- Sets the search criteria to the user account that invoked theBatchPredictioncreation. -
MLModelId- Sets the search criteria to theMLModelused in theBatchPrediction. -
DataSourceId- Sets the search criteria to theDataSourceused in theBatchPrediction. -
DataURI- Sets the search criteria to the data file(s) used in theBatchPrediction. The URL can identify either a file or an Amazon Simple Storage Solution (Amazon S3) bucket or directory.
-
eq(impl Into<String>)/set_eq(Option<String>):The equal to operator. The
BatchPredictionresults will haveFilterVariablevalues that exactly match the value specified withEQ.gt(impl Into<String>)/set_gt(Option<String>):The greater than operator. The
BatchPredictionresults will haveFilterVariablevalues that are greater than the value specified withGT.lt(impl Into<String>)/set_lt(Option<String>):The less than operator. The
BatchPredictionresults will haveFilterVariablevalues that are less than the value specified withLT.ge(impl Into<String>)/set_ge(Option<String>):The greater than or equal to operator. The
BatchPredictionresults will haveFilterVariablevalues that are greater than or equal to the value specified withGE.le(impl Into<String>)/set_le(Option<String>):The less than or equal to operator. The
BatchPredictionresults will haveFilterVariablevalues that are less than or equal to the value specified withLE.ne(impl Into<String>)/set_ne(Option<String>):The not equal to operator. The
BatchPredictionresults will haveFilterVariablevalues not equal to the value specified withNE.prefix(impl Into<String>)/set_prefix(Option<String>):A string that is found at the beginning of a variable, such as
NameorId.For example, a
Batch Predictionoperation could have theName2014-09-09-HolidayGiftMailer. To search for thisBatchPrediction, selectNamefor theFilterVariableand any of the following strings for thePrefix:-
2014-09
-
2014-09-09
-
2014-09-09-Holiday
-
sort_order(SortOrder)/set_sort_order(Option<SortOrder>):A two-value parameter that determines the sequence of the resulting list of
MLModels.-
asc- Arranges the list in ascending order (A-Z, 0-9). -
dsc- Arranges the list in descending order (Z-A, 9-0).
Results are sorted by
FilterVariable.-
next_token(impl Into<String>)/set_next_token(Option<String>):An ID of the page in the paginated results.
limit(i32)/set_limit(Option<i32>):The number of pages of information to include in the result. The range of acceptable values is
1through100. The default value is100.
- On success, responds with
DescribeBatchPredictionsOutputwith field(s):results(Option<Vec<BatchPrediction>>):A list of
BatchPredictionobjects that meet the search criteria.next_token(Option<String>):The ID of the next page in the paginated results that indicates at least one more page follows.
- On failure, responds with
SdkError<DescribeBatchPredictionsError>
source§impl Client
impl Client
sourcepub fn describe_data_sources(&self) -> DescribeDataSourcesFluentBuilder
pub fn describe_data_sources(&self) -> DescribeDataSourcesFluentBuilder
Constructs a fluent builder for the DescribeDataSources operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
filter_variable(DataSourceFilterVariable)/set_filter_variable(Option<DataSourceFilterVariable>):Use one of the following variables to filter a list of
DataSource:-
CreatedAt- Sets the search criteria toDataSourcecreation dates. -
Status- Sets the search criteria toDataSourcestatuses. -
Name- Sets the search criteria to the contents ofDataSourceName. -
DataUri- Sets the search criteria to the URI of data files used to create theDataSource. The URI can identify either a file or an Amazon Simple Storage Service (Amazon S3) bucket or directory. -
IAMUser- Sets the search criteria to the user account that invoked theDataSourcecreation.
-
eq(impl Into<String>)/set_eq(Option<String>):The equal to operator. The
DataSourceresults will haveFilterVariablevalues that exactly match the value specified withEQ.gt(impl Into<String>)/set_gt(Option<String>):The greater than operator. The
DataSourceresults will haveFilterVariablevalues that are greater than the value specified withGT.lt(impl Into<String>)/set_lt(Option<String>):The less than operator. The
DataSourceresults will haveFilterVariablevalues that are less than the value specified withLT.ge(impl Into<String>)/set_ge(Option<String>):The greater than or equal to operator. The
DataSourceresults will haveFilterVariablevalues that are greater than or equal to the value specified withGE.le(impl Into<String>)/set_le(Option<String>):The less than or equal to operator. The
DataSourceresults will haveFilterVariablevalues that are less than or equal to the value specified withLE.ne(impl Into<String>)/set_ne(Option<String>):The not equal to operator. The
DataSourceresults will haveFilterVariablevalues not equal to the value specified withNE.prefix(impl Into<String>)/set_prefix(Option<String>):A string that is found at the beginning of a variable, such as
NameorId.For example, a
DataSourcecould have theName2014-09-09-HolidayGiftMailer. To search for thisDataSource, selectNamefor theFilterVariableand any of the following strings for thePrefix:-
2014-09
-
2014-09-09
-
2014-09-09-Holiday
-
sort_order(SortOrder)/set_sort_order(Option<SortOrder>):A two-value parameter that determines the sequence of the resulting list of
DataSource.-
asc- Arranges the list in ascending order (A-Z, 0-9). -
dsc- Arranges the list in descending order (Z-A, 9-0).
Results are sorted by
FilterVariable.-
next_token(impl Into<String>)/set_next_token(Option<String>):The ID of the page in the paginated results.
limit(i32)/set_limit(Option<i32>):The maximum number of
DataSourceto include in the result.
- On success, responds with
DescribeDataSourcesOutputwith field(s):results(Option<Vec<DataSource>>):A list of
DataSourcethat meet the search criteria.next_token(Option<String>):An ID of the next page in the paginated results that indicates at least one more page follows.
- On failure, responds with
SdkError<DescribeDataSourcesError>
source§impl Client
impl Client
sourcepub fn describe_evaluations(&self) -> DescribeEvaluationsFluentBuilder
pub fn describe_evaluations(&self) -> DescribeEvaluationsFluentBuilder
Constructs a fluent builder for the DescribeEvaluations operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
filter_variable(EvaluationFilterVariable)/set_filter_variable(Option<EvaluationFilterVariable>):Use one of the following variable to filter a list of
Evaluationobjects:-
CreatedAt- Sets the search criteria to theEvaluationcreation date. -
Status- Sets the search criteria to theEvaluationstatus. -
Name- Sets the search criteria to the contents ofEvaluationName. -
IAMUser- Sets the search criteria to the user account that invoked anEvaluation. -
MLModelId- Sets the search criteria to theMLModelthat was evaluated. -
DataSourceId- Sets the search criteria to theDataSourceused inEvaluation. -
DataUri- Sets the search criteria to the data file(s) used inEvaluation. The URL can identify either a file or an Amazon Simple Storage Solution (Amazon S3) bucket or directory.
-
eq(impl Into<String>)/set_eq(Option<String>):The equal to operator. The
Evaluationresults will haveFilterVariablevalues that exactly match the value specified withEQ.gt(impl Into<String>)/set_gt(Option<String>):The greater than operator. The
Evaluationresults will haveFilterVariablevalues that are greater than the value specified withGT.lt(impl Into<String>)/set_lt(Option<String>):The less than operator. The
Evaluationresults will haveFilterVariablevalues that are less than the value specified withLT.ge(impl Into<String>)/set_ge(Option<String>):The greater than or equal to operator. The
Evaluationresults will haveFilterVariablevalues that are greater than or equal to the value specified withGE.le(impl Into<String>)/set_le(Option<String>):The less than or equal to operator. The
Evaluationresults will haveFilterVariablevalues that are less than or equal to the value specified withLE.ne(impl Into<String>)/set_ne(Option<String>):The not equal to operator. The
Evaluationresults will haveFilterVariablevalues not equal to the value specified withNE.prefix(impl Into<String>)/set_prefix(Option<String>):A string that is found at the beginning of a variable, such as
NameorId.For example, an
Evaluationcould have theName2014-09-09-HolidayGiftMailer. To search for thisEvaluation, selectNamefor theFilterVariableand any of the following strings for thePrefix:-
2014-09
-
2014-09-09
-
2014-09-09-Holiday
-
sort_order(SortOrder)/set_sort_order(Option<SortOrder>):A two-value parameter that determines the sequence of the resulting list of
Evaluation.-
asc- Arranges the list in ascending order (A-Z, 0-9). -
dsc- Arranges the list in descending order (Z-A, 9-0).
Results are sorted by
FilterVariable.-
next_token(impl Into<String>)/set_next_token(Option<String>):The ID of the page in the paginated results.
limit(i32)/set_limit(Option<i32>):The maximum number of
Evaluationto include in the result.
- On success, responds with
DescribeEvaluationsOutputwith field(s):results(Option<Vec<Evaluation>>):A list of
Evaluationthat meet the search criteria.next_token(Option<String>):The ID of the next page in the paginated results that indicates at least one more page follows.
- On failure, responds with
SdkError<DescribeEvaluationsError>
source§impl Client
impl Client
sourcepub fn describe_ml_models(&self) -> DescribeMLModelsFluentBuilder
pub fn describe_ml_models(&self) -> DescribeMLModelsFluentBuilder
Constructs a fluent builder for the DescribeMLModels operation.
This operation supports pagination; See into_paginator().
- The fluent builder is configurable:
filter_variable(MlModelFilterVariable)/set_filter_variable(Option<MlModelFilterVariable>):Use one of the following variables to filter a list of
MLModel:-
CreatedAt- Sets the search criteria toMLModelcreation date. -
Status- Sets the search criteria toMLModelstatus. -
Name- Sets the search criteria to the contents ofMLModelName. -
IAMUser- Sets the search criteria to the user account that invoked theMLModelcreation. -
TrainingDataSourceId- Sets the search criteria to theDataSourceused to train one or moreMLModel. -
RealtimeEndpointStatus- Sets the search criteria to theMLModelreal-time endpoint status. -
MLModelType- Sets the search criteria toMLModeltype: binary, regression, or multi-class. -
Algorithm- Sets the search criteria to the algorithm that theMLModeluses. -
TrainingDataURI- Sets the search criteria to the data file(s) used in training aMLModel. The URL can identify either a file or an Amazon Simple Storage Service (Amazon S3) bucket or directory.
-
eq(impl Into<String>)/set_eq(Option<String>):The equal to operator. The
MLModelresults will haveFilterVariablevalues that exactly match the value specified withEQ.gt(impl Into<String>)/set_gt(Option<String>):The greater than operator. The
MLModelresults will haveFilterVariablevalues that are greater than the value specified withGT.lt(impl Into<String>)/set_lt(Option<String>):The less than operator. The
MLModelresults will haveFilterVariablevalues that are less than the value specified withLT.ge(impl Into<String>)/set_ge(Option<String>):The greater than or equal to operator. The
MLModelresults will haveFilterVariablevalues that are greater than or equal to the value specified withGE.le(impl Into<String>)/set_le(Option<String>):The less than or equal to operator. The
MLModelresults will haveFilterVariablevalues that are less than or equal to the value specified withLE.ne(impl Into<String>)/set_ne(Option<String>):The not equal to operator. The
MLModelresults will haveFilterVariablevalues not equal to the value specified withNE.prefix(impl Into<String>)/set_prefix(Option<String>):A string that is found at the beginning of a variable, such as
NameorId.For example, an
MLModelcould have theName2014-09-09-HolidayGiftMailer. To search for thisMLModel, selectNamefor theFilterVariableand any of the following strings for thePrefix:-
2014-09
-
2014-09-09
-
2014-09-09-Holiday
-
sort_order(SortOrder)/set_sort_order(Option<SortOrder>):A two-value parameter that determines the sequence of the resulting list of
MLModel.-
asc- Arranges the list in ascending order (A-Z, 0-9). -
dsc- Arranges the list in descending order (Z-A, 9-0).
Results are sorted by
FilterVariable.-
next_token(impl Into<String>)/set_next_token(Option<String>):The ID of the page in the paginated results.
limit(i32)/set_limit(Option<i32>):The number of pages of information to include in the result. The range of acceptable values is
1through100. The default value is100.
- On success, responds with
DescribeMlModelsOutputwith field(s):results(Option<Vec<MlModel>>):A list of
MLModelthat meet the search criteria.next_token(Option<String>):The ID of the next page in the paginated results that indicates at least one more page follows.
- On failure, responds with
SdkError<DescribeMLModelsError>
source§impl Client
impl Client
Constructs a fluent builder for the DescribeTags operation.
- The fluent builder is configurable:
resource_id(impl Into<String>)/set_resource_id(Option<String>):The ID of the ML object. For example,
exampleModelId.resource_type(TaggableResourceType)/set_resource_type(Option<TaggableResourceType>):The type of the ML object.
- On success, responds with
DescribeTagsOutputwith field(s):resource_id(Option<String>):The ID of the tagged ML object.
resource_type(Option<TaggableResourceType>):The type of the tagged ML object.
tags(Option<Vec<Tag>>):A list of tags associated with the ML object.
- On failure, responds with
SdkError<DescribeTagsError>
source§impl Client
impl Client
sourcepub fn get_batch_prediction(&self) -> GetBatchPredictionFluentBuilder
pub fn get_batch_prediction(&self) -> GetBatchPredictionFluentBuilder
Constructs a fluent builder for the GetBatchPrediction operation.
- The fluent builder is configurable:
batch_prediction_id(impl Into<String>)/set_batch_prediction_id(Option<String>):An ID assigned to the
BatchPredictionat creation.
- On success, responds with
GetBatchPredictionOutputwith field(s):batch_prediction_id(Option<String>):An ID assigned to the
BatchPredictionat creation. This value should be identical to the value of theBatchPredictionIDin the request.ml_model_id(Option<String>):The ID of the
MLModelthat generated predictions for theBatchPredictionrequest.batch_prediction_data_source_id(Option<String>):The ID of the
DataSourcethat was used to create theBatchPrediction.input_data_location_s3(Option<String>):The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).
created_by_iam_user(Option<String>):The AWS user account that invoked the
BatchPrediction. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.created_at(Option<DateTime>):The time when the
BatchPredictionwas created. The time is expressed in epoch time.last_updated_at(Option<DateTime>):The time of the most recent edit to
BatchPrediction. The time is expressed in epoch time.name(Option<String>):A user-supplied name or description of the
BatchPrediction.status(Option<EntityStatus>):The status of the
BatchPrediction, which can be one of the following values:-
PENDING- Amazon Machine Learning (Amazon ML) submitted a request to generate batch predictions. -
INPROGRESS- The batch predictions are in progress. -
FAILED- The request to perform a batch prediction did not run to completion. It is not usable. -
COMPLETED- The batch prediction process completed successfully. -
DELETED- TheBatchPredictionis marked as deleted. It is not usable.
-
output_uri(Option<String>):The location of an Amazon S3 bucket or directory to receive the operation results.
log_uri(Option<String>):A link to the file that contains logs of the
CreateBatchPredictionoperation.message(Option<String>):A description of the most recent details about processing the batch prediction request.
compute_time(Option<i64>):The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the
BatchPrediction, normalized and scaled on computation resources.ComputeTimeis only available if theBatchPredictionis in theCOMPLETEDstate.finished_at(Option<DateTime>):The epoch time when Amazon Machine Learning marked the
BatchPredictionasCOMPLETEDorFAILED.FinishedAtis only available when theBatchPredictionis in theCOMPLETEDorFAILEDstate.started_at(Option<DateTime>):The epoch time when Amazon Machine Learning marked the
BatchPredictionasINPROGRESS.StartedAtisn’t available if theBatchPredictionis in thePENDINGstate.total_record_count(Option<i64>):The number of total records that Amazon Machine Learning saw while processing the
BatchPrediction.invalid_record_count(Option<i64>):The number of invalid records that Amazon Machine Learning saw while processing the
BatchPrediction.
- On failure, responds with
SdkError<GetBatchPredictionError>
source§impl Client
impl Client
sourcepub fn get_data_source(&self) -> GetDataSourceFluentBuilder
pub fn get_data_source(&self) -> GetDataSourceFluentBuilder
Constructs a fluent builder for the GetDataSource operation.
- The fluent builder is configurable:
data_source_id(impl Into<String>)/set_data_source_id(Option<String>):The ID assigned to the
DataSourceat creation.verbose(bool)/set_verbose(Option<bool>):Specifies whether the
GetDataSourceoperation should returnDataSourceSchema.If true,
DataSourceSchemais returned.If false,
DataSourceSchemais not returned.
- On success, responds with
GetDataSourceOutputwith field(s):data_source_id(Option<String>):The ID assigned to the
DataSourceat creation. This value should be identical to the value of theDataSourceIdin the request.data_location_s3(Option<String>):The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).
data_rearrangement(Option<String>):A JSON string that represents the splitting and rearrangement requirement used when this
DataSourcewas created.created_by_iam_user(Option<String>):The AWS user account from which the
DataSourcewas created. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.created_at(Option<DateTime>):The time that the
DataSourcewas created. The time is expressed in epoch time.last_updated_at(Option<DateTime>):The time of the most recent edit to the
DataSource. The time is expressed in epoch time.data_size_in_bytes(Option<i64>):The total size of observations in the data files.
number_of_files(Option<i64>):The number of data files referenced by the
DataSource.name(Option<String>):A user-supplied name or description of the
DataSource.status(Option<EntityStatus>):The current status of the
DataSource. This element can have one of the following values:-
PENDING- Amazon ML submitted a request to create aDataSource. -
INPROGRESS- The creation process is underway. -
FAILED- The request to create aDataSourcedid not run to completion. It is not usable. -
COMPLETED- The creation process completed successfully. -
DELETED- TheDataSourceis marked as deleted. It is not usable.
-
log_uri(Option<String>):A link to the file containing logs of
CreateDataSourceFrom*operations.message(Option<String>):The user-supplied description of the most recent details about creating the
DataSource.redshift_metadata(Option<RedshiftMetadata>):Describes the
DataSourcedetails specific to Amazon Redshift.rds_metadata(Option<RdsMetadata>):The datasource details that are specific to Amazon RDS.
role_arn(Option<String>):The Amazon Resource Name (ARN) of an AWS IAM Role, such as the following: arn:aws:iam::account:role/rolename.
compute_statistics(bool):The parameter is
trueif statistics need to be generated from the observation data.compute_time(Option<i64>):The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the
DataSource, normalized and scaled on computation resources.ComputeTimeis only available if theDataSourceis in theCOMPLETEDstate and theComputeStatisticsis set to true.finished_at(Option<DateTime>):The epoch time when Amazon Machine Learning marked the
DataSourceasCOMPLETEDorFAILED.FinishedAtis only available when theDataSourceis in theCOMPLETEDorFAILEDstate.started_at(Option<DateTime>):The epoch time when Amazon Machine Learning marked the
DataSourceasINPROGRESS.StartedAtisn’t available if theDataSourceis in thePENDINGstate.data_source_schema(Option<String>):The schema used by all of the data files of this
DataSource.Note: This parameter is provided as part of the verbose format.
- On failure, responds with
SdkError<GetDataSourceError>
source§impl Client
impl Client
sourcepub fn get_evaluation(&self) -> GetEvaluationFluentBuilder
pub fn get_evaluation(&self) -> GetEvaluationFluentBuilder
Constructs a fluent builder for the GetEvaluation operation.
- The fluent builder is configurable:
evaluation_id(impl Into<String>)/set_evaluation_id(Option<String>):The ID of the
Evaluationto retrieve. The evaluation of eachMLModelis recorded and cataloged. The ID provides the means to access the information.
- On success, responds with
GetEvaluationOutputwith field(s):evaluation_id(Option<String>):The evaluation ID which is same as the
EvaluationIdin the request.ml_model_id(Option<String>):The ID of the
MLModelthat was the focus of the evaluation.evaluation_data_source_id(Option<String>):The
DataSourceused for this evaluation.input_data_location_s3(Option<String>):The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).
created_by_iam_user(Option<String>):The AWS user account that invoked the evaluation. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.
created_at(Option<DateTime>):The time that the
Evaluationwas created. The time is expressed in epoch time.last_updated_at(Option<DateTime>):The time of the most recent edit to the
Evaluation. The time is expressed in epoch time.name(Option<String>):A user-supplied name or description of the
Evaluation.status(Option<EntityStatus>):The status of the evaluation. This element can have one of the following values:
-
PENDING- Amazon Machine Language (Amazon ML) submitted a request to evaluate anMLModel. -
INPROGRESS- The evaluation is underway. -
FAILED- The request to evaluate anMLModeldid not run to completion. It is not usable. -
COMPLETED- The evaluation process completed successfully. -
DELETED- TheEvaluationis marked as deleted. It is not usable.
-
performance_metrics(Option<PerformanceMetrics>):Measurements of how well the
MLModelperformed using observations referenced by theDataSource. One of the following metric is returned based on the type of theMLModel:-
BinaryAUC: A binary
MLModeluses the Area Under the Curve (AUC) technique to measure performance. -
RegressionRMSE: A regression
MLModeluses the Root Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable. -
MulticlassAvgFScore: A multiclass
MLModeluses the F1 score technique to measure performance.
For more information about performance metrics, please see the Amazon Machine Learning Developer Guide.
-
log_uri(Option<String>):A link to the file that contains logs of the
CreateEvaluationoperation.message(Option<String>):A description of the most recent details about evaluating the
MLModel.compute_time(Option<i64>):The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the
Evaluation, normalized and scaled on computation resources.ComputeTimeis only available if theEvaluationis in theCOMPLETEDstate.finished_at(Option<DateTime>):The epoch time when Amazon Machine Learning marked the
EvaluationasCOMPLETEDorFAILED.FinishedAtis only available when theEvaluationis in theCOMPLETEDorFAILEDstate.started_at(Option<DateTime>):The epoch time when Amazon Machine Learning marked the
EvaluationasINPROGRESS.StartedAtisn’t available if theEvaluationis in thePENDINGstate.
- On failure, responds with
SdkError<GetEvaluationError>
source§impl Client
impl Client
sourcepub fn get_ml_model(&self) -> GetMLModelFluentBuilder
pub fn get_ml_model(&self) -> GetMLModelFluentBuilder
Constructs a fluent builder for the GetMLModel operation.
- The fluent builder is configurable:
ml_model_id(impl Into<String>)/set_ml_model_id(Option<String>):The ID assigned to the
MLModelat creation.verbose(bool)/set_verbose(Option<bool>):Specifies whether the
GetMLModeloperation should returnRecipe.If true,
Recipeis returned.If false,
Recipeis not returned.
- On success, responds with
GetMlModelOutputwith field(s):ml_model_id(Option<String>):The MLModel ID, which is same as the
MLModelIdin the request.training_data_source_id(Option<String>):The ID of the training
DataSource.created_by_iam_user(Option<String>):The AWS user account from which the
MLModelwas created. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.created_at(Option<DateTime>):The time that the
MLModelwas created. The time is expressed in epoch time.last_updated_at(Option<DateTime>):The time of the most recent edit to the
MLModel. The time is expressed in epoch time.name(Option<String>):A user-supplied name or description of the
MLModel.status(Option<EntityStatus>):The current status of the
MLModel. This element can have one of the following values:-
PENDING- Amazon Machine Learning (Amazon ML) submitted a request to describe aMLModel. -
INPROGRESS- The request is processing. -
FAILED- The request did not run to completion. The ML model isn’t usable. -
COMPLETED- The request completed successfully. -
DELETED- TheMLModelis marked as deleted. It isn’t usable.
-
size_in_bytes(Option<i64>):Long integer type that is a 64-bit signed number.
endpoint_info(Option<RealtimeEndpointInfo>):The current endpoint of the
MLModeltraining_parameters(Option<HashMap<String, String>>):A list of the training parameters in the
MLModel. The list is implemented as a map of key-value pairs.The following is the current set of training parameters:
-
sgd.maxMLModelSizeInBytes- The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.The value is an integer that ranges from
100000to2147483648. The default value is33554432. -
sgd.maxPasses- The number of times that the training process traverses the observations to build theMLModel. The value is an integer that ranges from1to10000. The default value is10. -
sgd.shuffleType- Whether Amazon ML shuffles the training data. Shuffling data improves a model’s ability to find the optimal solution for a variety of data types. The valid values areautoandnone. The default value isnone. We strongly recommend that you shuffle your data. -
sgd.l1RegularizationAmount- The coefficient regularization L1 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse feature set. If you use this parameter, start by specifying a small value, such as1.0E-08.The value is a double that ranges from
0toMAX_DOUBLE. The default is to not use L1 normalization. This parameter can’t be used whenL2is specified. Use this parameter sparingly. -
sgd.l2RegularizationAmount- The coefficient regularization L2 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as1.0E-08.The value is a double that ranges from
0toMAX_DOUBLE. The default is to not use L2 normalization. This parameter can’t be used whenL1is specified. Use this parameter sparingly.
-
input_data_location_s3(Option<String>):The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).
ml_model_type(Option<MlModelType>):Identifies the
MLModelcategory. The following are the available types:-
REGRESSION – Produces a numeric result. For example, “What price should a house be listed at?”
-
BINARY – Produces one of two possible results. For example, “Is this an e-commerce website?”
-
MULTICLASS – Produces one of several possible results. For example, “Is this a HIGH, LOW or MEDIUM risk trade?”
-
score_threshold(Option<f32>):The scoring threshold is used in binary classification
MLModelmodels. It marks the boundary between a positive prediction and a negative prediction.Output values greater than or equal to the threshold receive a positive result from the MLModel, such as
true. Output values less than the threshold receive a negative response from the MLModel, such asfalse.score_threshold_last_updated_at(Option<DateTime>):The time of the most recent edit to the
ScoreThreshold. The time is expressed in epoch time.log_uri(Option<String>):A link to the file that contains logs of the
CreateMLModeloperation.message(Option<String>):A description of the most recent details about accessing the
MLModel.compute_time(Option<i64>):The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the
MLModel, normalized and scaled on computation resources.ComputeTimeis only available if theMLModelis in theCOMPLETEDstate.finished_at(Option<DateTime>):The epoch time when Amazon Machine Learning marked the
MLModelasCOMPLETEDorFAILED.FinishedAtis only available when theMLModelis in theCOMPLETEDorFAILEDstate.started_at(Option<DateTime>):The epoch time when Amazon Machine Learning marked the
MLModelasINPROGRESS.StartedAtisn’t available if theMLModelis in thePENDINGstate.recipe(Option<String>):The recipe to use when training the
MLModel. TheRecipeprovides detailed information about the observation data to use during training, and manipulations to perform on the observation data during training.Note: This parameter is provided as part of the verbose format.
schema(Option<String>):The schema used by all of the data files referenced by the
DataSource.Note: This parameter is provided as part of the verbose format.
- On failure, responds with
SdkError<GetMLModelError>
source§impl Client
impl Client
sourcepub fn predict(&self) -> PredictFluentBuilder
pub fn predict(&self) -> PredictFluentBuilder
Constructs a fluent builder for the Predict operation.
- The fluent builder is configurable:
ml_model_id(impl Into<String>)/set_ml_model_id(Option<String>):A unique identifier of the
MLModel.record(impl Into<String>, impl Into<String>)/set_record(Option<HashMap<String, String>>):A map of variable name-value pairs that represent an observation.
predict_endpoint(impl Into<String>)/set_predict_endpoint(Option<String>): (undocumented)
- On success, responds with
PredictOutputwith field(s):prediction(Option<Prediction>):The output from a
Predictoperation:-
Details- Contains the following attributes:DetailsAttributes.PREDICTIVE_MODEL_TYPE - REGRESSION | BINARY | MULTICLASSDetailsAttributes.ALGORITHM - SGD -
PredictedLabel- Present for either aBINARYorMULTICLASSMLModelrequest. -
PredictedScores- Contains the raw classification score corresponding to each label. -
PredictedValue- Present for aREGRESSIONMLModelrequest.
-
- On failure, responds with
SdkError<PredictError>
source§impl Client
impl Client
sourcepub fn update_batch_prediction(&self) -> UpdateBatchPredictionFluentBuilder
pub fn update_batch_prediction(&self) -> UpdateBatchPredictionFluentBuilder
Constructs a fluent builder for the UpdateBatchPrediction operation.
- The fluent builder is configurable:
batch_prediction_id(impl Into<String>)/set_batch_prediction_id(Option<String>):The ID assigned to the
BatchPredictionduring creation.batch_prediction_name(impl Into<String>)/set_batch_prediction_name(Option<String>):A new user-supplied name or description of the
BatchPrediction.
- On success, responds with
UpdateBatchPredictionOutputwith field(s):batch_prediction_id(Option<String>):The ID assigned to the
BatchPredictionduring creation. This value should be identical to the value of theBatchPredictionIdin the request.
- On failure, responds with
SdkError<UpdateBatchPredictionError>
source§impl Client
impl Client
sourcepub fn update_data_source(&self) -> UpdateDataSourceFluentBuilder
pub fn update_data_source(&self) -> UpdateDataSourceFluentBuilder
Constructs a fluent builder for the UpdateDataSource operation.
- The fluent builder is configurable:
data_source_id(impl Into<String>)/set_data_source_id(Option<String>):The ID assigned to the
DataSourceduring creation.data_source_name(impl Into<String>)/set_data_source_name(Option<String>):A new user-supplied name or description of the
DataSourcethat will replace the current description.
- On success, responds with
UpdateDataSourceOutputwith field(s):data_source_id(Option<String>):The ID assigned to the
DataSourceduring creation. This value should be identical to the value of theDataSourceIDin the request.
- On failure, responds with
SdkError<UpdateDataSourceError>
source§impl Client
impl Client
sourcepub fn update_evaluation(&self) -> UpdateEvaluationFluentBuilder
pub fn update_evaluation(&self) -> UpdateEvaluationFluentBuilder
Constructs a fluent builder for the UpdateEvaluation operation.
- The fluent builder is configurable:
evaluation_id(impl Into<String>)/set_evaluation_id(Option<String>):The ID assigned to the
Evaluationduring creation.evaluation_name(impl Into<String>)/set_evaluation_name(Option<String>):A new user-supplied name or description of the
Evaluationthat will replace the current content.
- On success, responds with
UpdateEvaluationOutputwith field(s):evaluation_id(Option<String>):The ID assigned to the
Evaluationduring creation. This value should be identical to the value of theEvaluationin the request.
- On failure, responds with
SdkError<UpdateEvaluationError>
source§impl Client
impl Client
sourcepub fn update_ml_model(&self) -> UpdateMLModelFluentBuilder
pub fn update_ml_model(&self) -> UpdateMLModelFluentBuilder
Constructs a fluent builder for the UpdateMLModel operation.
- The fluent builder is configurable:
ml_model_id(impl Into<String>)/set_ml_model_id(Option<String>):The ID assigned to the
MLModelduring creation.ml_model_name(impl Into<String>)/set_ml_model_name(Option<String>):A user-supplied name or description of the
MLModel.score_threshold(f32)/set_score_threshold(Option<f32>):The
ScoreThresholdused in binary classificationMLModelthat marks the boundary between a positive prediction and a negative prediction.Output values greater than or equal to the
ScoreThresholdreceive a positive result from theMLModel, such astrue. Output values less than theScoreThresholdreceive a negative response from theMLModel, such asfalse.
- On success, responds with
UpdateMlModelOutputwith field(s):ml_model_id(Option<String>):The ID assigned to the
MLModelduring creation. This value should be identical to the value of theMLModelIDin the request.
- On failure, responds with
SdkError<UpdateMLModelError>
source§impl Client
impl Client
sourcepub fn new(sdk_config: &SdkConfig) -> Self
pub fn new(sdk_config: &SdkConfig) -> Self
Creates a new client from an SDK Config.
Panics
- This method will panic if the
sdk_configis missing an async sleep implementation. If you experience this panic, set thesleep_implon the Config passed into this function to fix it. - This method will panic if the
sdk_configis missing an HTTP connector. If you experience this panic, set thehttp_connectoron the Config passed into this function to fix it.