Struct aws_sdk_machinelearning::input::create_ml_model_input::Builder [−][src]
#[non_exhaustive]pub struct Builder { /* fields omitted */ }
Expand description
A builder for CreateMlModelInput
Implementations
A user-supplied ID that uniquely identifies the MLModel
.
A user-supplied ID that uniquely identifies the MLModel
.
A user-supplied name or description of the MLModel
.
A user-supplied name or description of the MLModel
.
The category of supervised learning that this MLModel
will address. Choose from the following types:
-
Choose
REGRESSION
if theMLModel
will be used to predict a numeric value. -
Choose
BINARY
if theMLModel
result has two possible values. -
Choose
MULTICLASS
if theMLModel
result has a limited number of values.
For more information, see the Amazon Machine Learning Developer Guide.
The category of supervised learning that this MLModel
will address. Choose from the following types:
-
Choose
REGRESSION
if theMLModel
will be used to predict a numeric value. -
Choose
BINARY
if theMLModel
result has two possible values. -
Choose
MULTICLASS
if theMLModel
result has a limited number of values.
For more information, see the Amazon Machine Learning Developer Guide.
Adds a key-value pair to parameters
.
To override the contents of this collection use set_parameters
.
A list of the training parameters in the MLModel
. The list is implemented as
a map of key-value pairs.
The following is the current set of training parameters:
-
sgd.maxMLModelSizeInBytes
- The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.The value is an integer that ranges from
100000
to2147483648
. The default value is33554432
. -
sgd.maxPasses
- The number of times that the training process traverses the observations to build theMLModel
. The value is an integer that ranges from1
to10000
. The default value is10
. -
sgd.shuffleType
- Whether Amazon ML shuffles the training data. Shuffling the data improves a model's ability to find the optimal solution for a variety of data types. The valid values areauto
andnone
. The default value isnone
. We strongly recommend that you shuffle your data. -
sgd.l1RegularizationAmount
- The coefficient regularization L1 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse feature set. If you use this parameter, start by specifying a small value, such as1.0E-08
.The value is a double that ranges from
0
toMAX_DOUBLE
. The default is to not use L1 normalization. This parameter can't be used whenL2
is specified. Use this parameter sparingly. -
sgd.l2RegularizationAmount
- The coefficient regularization L2 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as1.0E-08
.The value is a double that ranges from
0
toMAX_DOUBLE
. The default is to not use L2 normalization. This parameter can't be used whenL1
is specified. Use this parameter sparingly.
A list of the training parameters in the MLModel
. The list is implemented as
a map of key-value pairs.
The following is the current set of training parameters:
-
sgd.maxMLModelSizeInBytes
- The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.The value is an integer that ranges from
100000
to2147483648
. The default value is33554432
. -
sgd.maxPasses
- The number of times that the training process traverses the observations to build theMLModel
. The value is an integer that ranges from1
to10000
. The default value is10
. -
sgd.shuffleType
- Whether Amazon ML shuffles the training data. Shuffling the data improves a model's ability to find the optimal solution for a variety of data types. The valid values areauto
andnone
. The default value isnone
. We strongly recommend that you shuffle your data. -
sgd.l1RegularizationAmount
- The coefficient regularization L1 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse feature set. If you use this parameter, start by specifying a small value, such as1.0E-08
.The value is a double that ranges from
0
toMAX_DOUBLE
. The default is to not use L1 normalization. This parameter can't be used whenL2
is specified. Use this parameter sparingly. -
sgd.l2RegularizationAmount
- The coefficient regularization L2 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as1.0E-08
.The value is a double that ranges from
0
toMAX_DOUBLE
. The default is to not use L2 normalization. This parameter can't be used whenL1
is specified. Use this parameter sparingly.
The DataSource
that points to the training data.
The DataSource
that points to the training data.
The data recipe for creating the MLModel
. You must specify either the recipe
or its URI. If you don't specify a recipe or its URI, Amazon ML creates a default.
The data recipe for creating the MLModel
. You must specify either the recipe
or its URI. If you don't specify a recipe or its URI, Amazon ML creates a default.
The Amazon Simple Storage Service (Amazon S3) location and file name that contains the MLModel
recipe. You must specify either the recipe or its URI. If you don't specify a recipe or its URI, Amazon ML creates a default.
The Amazon Simple Storage Service (Amazon S3) location and file name that contains the MLModel
recipe. You must specify either the recipe or its URI. If you don't specify a recipe or its URI, Amazon ML creates a default.
Consumes the builder and constructs a CreateMlModelInput
Trait Implementations
Auto Trait Implementations
impl RefUnwindSafe for Builder
impl UnwindSafe for Builder
Blanket Implementations
Mutably borrows from an owned value. Read more
Attaches the provided Subscriber
to this type, returning a
WithDispatch
wrapper. Read more
Attaches the current default Subscriber
to this type, returning a
WithDispatch
wrapper. Read more